Log in

Bifurcation analysis of the problem of a “rubber” ellipsoid of revolution rolling on a plane

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the problem of an ellipsoid of revolution rolling on a horizontal plane under the assumption that there is no slip** at the point of contact and no spinning about the vertical. A reduction of the equations of motion to a fixed level set of first integrals is performed. Permanent rotations corresponding to the rolling of an ellipsoid in a circle or in a straight line are found. A linear stability analysis of permanent rotations is carried out. A complete classification of possible trajectories of the reduced system is performed using a bifurcation analysis. A classification of the trajectories of the center of mass of the ellipsoid depending on parameter values and initial conditions is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Data availability

This manuscript does not report data generation or analysis.

Notes

  1. Here and below, unless otherwise specified, all vectors will be referred to the moving coordinate system \(Cx_1x_2x_3\).

  2. We do not present here the phase portrait at the moment of bifurcation for \(\kappa =\kappa _c\) since visually it does not differ from the case \(\kappa >\kappa _c\).

References

  1. Alves, J., Dias, J.: Design and control of a spherical mobile robot. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 217(6), 457–467 (2003)

    Google Scholar 

  2. Appell, P.: Sur l’intégration des équations du mouvement d’un corps pesant de révolution roulant par une arête circulaire sur un plan horizontal; cas particulier du cerceau. Rend. Circ. Mat. Palermo (1884–1940) 14(1), 1–6 (1900)

  3. Appell, P.: Traité de mécanique rationnelle, vol. 2. Gauthier-Villars, Paris (1904)

    Google Scholar 

  4. Artemova, E.M., Karavaev, Y.L., Mamaev, I.S., Vetchanin, E.V.: Dynamics of a spherical robot with variable moments of inertia and a displaced center of mass. Regul. Chaotic Dyn. 25, 689–706 (2020)

    Article  MathSciNet  Google Scholar 

  5. Beghin, H.: Sur les conditions d’application des équations de lagrange à un système non holomorphe. Bull. Soc. Math. France 57, 118–124 (1929)

    Article  MathSciNet  Google Scholar 

  6. Bicchi, A., Prattichizzo, D., Sastry, S.S.: Planning motions of rolling surfaces. In: Proceedings of 1995 34th IEEE Conference on Decision and Control, vol. 3. IEEE, pp. 2812–2817 (1995)

  7. Bizyaev, I.A., Bolsinov, A., Borisov, A., Mamaev, I.: Topology and bifurcations in nonholonomic mechanics. Int. J. Bifurc. Chaos 25(10), 1530028 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bizyaev, I.A., Borisov, A.V., Mamaev, I.S.: An invariant measure and the probability of a fall in the problem of an inhomogeneous disk rolling on a plane. Regul. Chaotic Dyn. 23(6), 665–684 (2018)

    Article  MathSciNet  Google Scholar 

  9. Bizyaev, I.A., Kazakov, A.O.: Integrability and stochastic behavior in some nonholonomic dynamics problems. Russ. J. Nonlinear Dyn. 9(2), 257–265 (2013)

    Google Scholar 

  10. Bizyaev, I.A., Mamaev, I.S.: Permanent rotations in nonholonomic mechanics. omnirotational ellipsoid. Regul. Chaotic Dyn. 27(6), 587–612 (2022)

    Article  MathSciNet  Google Scholar 

  11. Bolsinov, A.V., Borisov, A.V., Mamaev, I.S.: Topology and stability of integrable systems. Russ. Math. Surv. 65(2), 259 (2010)

    Article  MathSciNet  Google Scholar 

  12. Bolsinov, A.V., Borisov, A.V., Mamaev, I.S.: Rolling of a ball without spinning on a plane: the absence of an invariant measure in a system with a complete set of integrals. Regul. Chaotic Dyn. 17, 571–579 (2012)

    Article  MathSciNet  Google Scholar 

  13. Borisov, A., Mamaev, I.: The rolling motion of a rigid body on a plane and a sphere. hierarchy of dynamics. Regul. Chaotic Dyn. 7(2), 177–200 (2002)

    Article  MathSciNet  Google Scholar 

  14. Borisov, A., Mamaev, I.S.: Rigid Body Dynamics. De Gruyter Studies in Mathematical Physics, vol. 52. Walter de Gruyter GmbH & Co KG, Berlin (2018)

    Google Scholar 

  15. Borisov, A.V., Ivanov, A.P.: A top on a vibrating base: new integrable problem of nonholonomic mechanics. Regul. Chaotic Dyn. 27(1), 2–10 (2022)

    Article  MathSciNet  Google Scholar 

  16. Borisov, A.V., Ivanova, T.B., Kilin, A.A., Mamaev, I.S.: Nonholonomic rolling of a ball on the surface of a rotating cone. Nonlinear Dyn. 97(2), 1635–1648 (2019)

    Article  Google Scholar 

  17. Borisov, A.V., Kazakov, A.O., Pivovarova, E.N.: Regular and chaotic dynamics in the rubber model of a Chaplygin top. Regul. Chaotic Dyn. 21, 885–901 (2016)

    Article  MathSciNet  Google Scholar 

  18. Borisov, A.V., Kilin, A.A., Mamaev, I.S.: Generalized Chaplygin’s transformation and explicit integration of a system with a spherical support. Regul. Chaotic Dyn. 17, 170–190 (2012)

    Article  MathSciNet  Google Scholar 

  19. Borisov, A.V., Mamaev, I.S.: Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems. Regul. Chaotic Dyn. 13(5), 443–490 (2008)

    Article  MathSciNet  Google Scholar 

  20. Borisov, A.V., Mamaev, I.S.: Topological analysis of an integrable system related to the rolling of a ball on a sphere. Regul. Chaotic Dyn. 18, 356–371 (2013)

    Article  MathSciNet  Google Scholar 

  21. Borisov, A.V., Mamaev, I.S.: An inhomogeneous Chaplygin sleigh. Regul. Chaotic Dyn. 22, 435–447 (2017)

    Article  MathSciNet  Google Scholar 

  22. Borisov, A.V., Mamaev, I.S., Bizyaev, I.A.: The hierarchy of dynamics of a rigid body rolling without slip** and spinning on a plane and a sphere. Regul. Chaotic Dyn. 18(3), 277–328 (2013)

    Article  MathSciNet  Google Scholar 

  23. Borisov, A.V., Mamaev, I.S., Kilin, A.A.: The rolling motion of a ball on a surface. New integrals and hierarchy of dynamics. Regul. Chaotic Dyn. 7(2), 201–219 (2002)

    Article  MathSciNet  Google Scholar 

  24. Borisov, A.V., Mamaev, I.S., Kilin, A.A.: Dynamics of rolling disk. Regul. Chaotic Dyn. 8(2), 201–212 (2003)

    Article  MathSciNet  Google Scholar 

  25. Borisov, A.V., Mamaev, I.S., Treschev, D.V.: Rolling of a rigid body without slip** and spinning: kinematics and dynamics. J. Appl. Nonlinear Dyn. 2(2), 161–173 (2013)

    Article  Google Scholar 

  26. Cai, Y., Zhan, Q., **, X.: Path tracking control of a spherical mobile robot. Mech. Mach. Theory 51, 58–73 (2012)

    Article  Google Scholar 

  27. Cendra, H., Etchechoury, M.: Rolling of a symmetric sphere on a horizontal plane without sliding or spinning. Rep. Math. Phys. 57(3), 367–374 (2006)

    Article  MathSciNet  Google Scholar 

  28. Cendra, H., Etchechoury, M., Ferraro, S.J.: Impulsive control of a symmetric ball rolling without sliding or spinning. J. Geom. Mech. 2(4), 321–342 (2010)

    Article  MathSciNet  Google Scholar 

  29. Chaplygin, S.A.: On a motion of a heavy body of revolution on a horizontal plane. Regul. Chaotic Dyn. 7(2), 119–130 (2002)

    Article  MathSciNet  Google Scholar 

  30. Chen, W.H., Chen, C.P., Yu, W.S., Lin, C.H., Lin, P.C.: Design and implementation of an omnidirectional spherical robot omnicron. In: 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 719–724. IEEE (2012)

  31. Dalla Via, M., Fassò, F., Sansonetto, N.: On the dynamics of a heavy symmetric ball that rolls without sliding on a uniformly rotating surface of revolution. J. Nonlinear Sci. 32(6), 84 (2022)

    Article  MathSciNet  Google Scholar 

  32. Dragović, V., Gajić, B., Jovanović, B.: Spherical and planar ball bearings-nonholonomic systems with invariant measures. Regul. Chaotic Dyn. 27(4), 424–442 (2022)

    Article  MathSciNet  Google Scholar 

  33. Dragović, V., Gajić, B., Jovanović, B.: Spherical and planar ball bearings—a study of integrable cases. Regul. Chaotic Dyn. 28(1), 62–77 (2023)

    Article  MathSciNet  Google Scholar 

  34. Ehlers, K., Koiller, J.: Rubber rolling: Geometry and dynamics of 2-3-5 distributions. In: IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence: Proceedings of the IUTAM Symposium held in Moscow, 25–30 August, 2006, pp. 469–479. Springer (2008)

  35. Fassò, F., Sansonetto, N.: On some aspects of the dynamics of a ball in a rotating surface of revolution and of the Kasamawashi art. Regul. Chaotic Dyn. 27(4), 409–423 (2022)

    Article  MathSciNet  Google Scholar 

  36. Fedorov, Y.N.: Motion of a rigid body in a spherical suspension. Vestn. Mosk. Univ. Ser. 1 Mat. Mekh. 5, 91–93 (1988)

    Google Scholar 

  37. García-Agúndez Blanco, A., García Vallejo, D., Freire Macías, E.: Analytical and numerical stability analysis of a toroidal wheel with nonholonomic constraints. Nonlinear Dyn. 112(4), 2453–2476 (2024)

    Article  Google Scholar 

  38. Hadamard, J.: Sur les mouvements de roulement. Mém. Soc. Sci. Phys. Nat. Bordeaux, 4 sér 5, 397–417 (1895)

    Google Scholar 

  39. Ivanova, T.B.: Non-holonomic rolling of a ball on the surface of a rotating cylinder. Z. Angew. Math. Mech. 100(12), e202000067 (2020)

    Article  MathSciNet  Google Scholar 

  40. Jurdjevic, V.: The geometry of the plate-ball problem. Arch. Ration. Mech. Anal. 124, 305–328 (1993)

    Article  MathSciNet  Google Scholar 

  41. Karapetyan, A.: Families of permanent rotations of triaxial ellipsoid on rough horizontal plane and their branchings. Actual Problems of Classical and Celestial Mechanics, pp. 46–51 (1998)

  42. Karavaev, Y.L.: Spherical robots: an up-to-date overview of designs and features. Russ. J. Nonlinear Dyn. 18(4), 709–750 (2022)

    MathSciNet  Google Scholar 

  43. Kazakov, A.O.: Strange attractors and mixed dynamics in the problem of an unbalanced rubber ball rolling on a plane. Regul. Chaotic Dyn. 18(5), 508–520 (2013)

    Article  MathSciNet  Google Scholar 

  44. Kilin, A.A., Ivanova, T.B.: The integrable problem of the rolling motion of a dynamically symmetric spherical top with one nonholonomic constraint. Russ. J. Nonlinear Dyn. 19(1), 3–17 (2023)

    MathSciNet  Google Scholar 

  45. Kilin, A.A., Ivanova, T.B.: The problem of the rolling motion of a dynamically symmetric spherical top with one nonholonomic constraint. Russ. J. Nonlinear Dyn. 19(4), 533–543 (2023)

    MathSciNet  Google Scholar 

  46. Kilin, A.A., Pivovarova, E.N.: The rolling motion of a truncated ball without slip** and spinning on a plane. Regul. Chaotic Dyn. 22(3), 298–317 (2017)

    Article  MathSciNet  Google Scholar 

  47. Kilin, A.A., Pivovarova, E.N.: Qualitative analysis of the nonholonomic rolling of a rubber wheel with sharp edges. Regul. Chaotic Dyn. 24, 212–233 (2019)

    Article  MathSciNet  Google Scholar 

  48. Kilin, A.A., Pivovarova, E.N.: Stability of vertical rotations of an axisymmetric ellipsoid on a vibrating plane. Mathematics 11(18), 3948 (2023)

    Article  Google Scholar 

  49. Koiller, J., Ehlers, K.: Rubber rolling over a sphere. Regul. Chaotic Dyn. 12, 127–152 (2007)

    Article  MathSciNet  Google Scholar 

  50. Kozlov, V.V., Kolesnikov, N.N.: On theorems of dynamics. J. Appl. Math. Mech. 42(1), 26–31 (1978)

    Article  MathSciNet  Google Scholar 

  51. Mamaev, I.S., Vetchanin, E.V.: Dynamics of rubber Chaplygin sphere under periodic control. Regul. Chaotic Dyn. 25, 215–236 (2020)

    Article  MathSciNet  Google Scholar 

  52. Marigo, A., Bicchi, A.: Rolling bodies with regular surface: controllability theory and applications. IEEE Trans. Autom. Control 45(9), 1586–1599 (2000)

    Article  MathSciNet  Google Scholar 

  53. Markeev, A.P.: The dynamics of a body contacting a rigid surface. M.: Nauka p. 336 (1992)

  54. Mukherjee, R., Minor, M.A., Pukrushpan, J.T.: Motion planning for a spherical mobile robot: revisiting the classical ball-plate problem. J. Dyn. Syst. Meas. Control 124(4), 502–511 (2002)

    Article  Google Scholar 

  55. Poincaré, H.: Sur le forme nouvelle des equations de la mecanique. C. R. Acad. Sci. Paris 132, 369–371 (1901)

    Google Scholar 

  56. Routh, E.J.: The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies. Macmillan, London (1892)

    Google Scholar 

  57. Ylikorpi, T., Forsman, P., Halme, A., et al.: Gyroscopic precession in motion modelling of ball-shaped robots. In: Proceedings of the 28th European Conference on Modelling and Simulation. ECMS (2014)

  58. Zhan, Q., Cai, Y., Yan, C.: Design, analysis and experiments of an omni-directional spherical robot. In: 2011 IEEE International Conference on Robotics and Automation, pp. 4921–4926. IEEE (2011)

  59. Zheng, M., Qiang, Z., **kun, L., Yao, C.: Control of a spherical robot: path following based on nonholonomic kinematics and dynamics. Chin. J. Aeronaut. 24(3), 337–345 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Ivan Mamaev for useful comments and discussions.

Funding

The work of A. Kilin (Sects. 13) was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of Russia (FEWS-2020-0009). The work of E. Pivovarova (Sects. 4 and 5) is supported by the Russian Science Foundation under Grant 23-71-01045.

Author information

Authors and Affiliations

Authors

Contributions

A.K.: Conceptualization, Investigation, Writing—Review & Editing. E.P.: Investigation, Visualization, Writing—Original Draft. All authors reviewed the manuscript.

Corresponding author

Correspondence to Elena N. Pivovarova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilin, A.A., Pivovarova, E.N. Bifurcation analysis of the problem of a “rubber” ellipsoid of revolution rolling on a plane. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09863-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09863-7

Keywords

Mathematics Subject Classification

Navigation