Log in

Vibration control of a cantilever beam coupled with magnetic tri-stable nonlinear energy sink

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In response to limitations in vibration suppression performance of traditional linear tuned mass damper due to energy threshold constraints and narrow vibration bands, this study proposes a magnetic tri-stable NES (MTNES) formed by combining a linear spring and magnets. Compared to the conventional nonlinear energy sink (NES), the magnetic tri-stable NES (MTNES) incorporates magnetism to enhance the nonlinear stiffness. Firstly, the mechanism of the MTNES is introduced in this study, which reveals the existence of the three stable points in the system. Subsequently, the equations of motion of the coupled system with MTNES attached to the cantilever beam are derived, and the optimal parameter combination for MTNES is determined using a global optimization method. Furthermore, the influence of MTNES parameter variations on vibration suppression efficiency is studied through parameter analysis. Then, the restoring force of the MTNES is simplified into polynomial form, and the system response is analyzed using the harmonic balance method and Runge–Kutta method. Finally, experimental studies on the coupled system are conducted. The results indicate that MTNES can effectively suppress the resonance of the host structure within a wide frequency band, with the highest vibration suppression rate of up to 66% under strong modulated response. Additionally, the results of numerical calculations and theoretical analysis are in good agreement with that of the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Elias, S., Matsagar, V.: Research developments in vibration control of structures using passive tuned mass dampers. Annu. Rev. Control. 44, 129–156 (2017). https://doi.org/10.1016/j.arcontrol.2017.09.015

    Article  Google Scholar 

  2. Soto, M.G., Adeli, H.: Tuned mass dampers. Arch. Comput. Method E 20(4), 419–431 (2013). https://doi.org/10.1007/s11831-013-9091-7

    Article  Google Scholar 

  3. Pinkaew, T., Lukkunaprasit, P., Chatupote, P.: Seismic effectiveness of tuned mass dampers for damage reduction of structures. Eng. Struct. 25(1), 39–46 (2003). https://doi.org/10.1016/S0141-0296(02)00115-3

    Article  Google Scholar 

  4. Rahimi, F., Aghayari, R., Samali, B.: Application of tuned mass dampers for structural vibration control: a state-of-the-art review. Civ. Eng. J. 6(8), 1622–1651 (2020). https://doi.org/10.28991/cej-2020-03091571

    Article  Google Scholar 

  5. Ding, H., Chen, L.Q.: Design, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100(04), 3061–3107 (2020). https://doi.org/10.1007/s11071-020-05724-1

    Article  Google Scholar 

  6. Lu, Z., Wang, Z.X., Zhou, Y., Lv, X.L.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. 423, 18–49 (2018). https://doi.org/10.1016/j.jsv.2018.02.052

    Article  Google Scholar 

  7. Gendelman, O.V., Manevitch, L.I., Vakakis, A.F., M’Closkey, R.: Energy pum** in nonlinear mechanical oscillators: Part I—dynamics of the underlying Hamiltonian systems. J. Appl. Mech. 68(1), 34–41 (2001). https://doi.org/10.1115/1.1345524

    Article  MathSciNet  Google Scholar 

  8. Vakakis, A.F., Gendelman, O.V.: Energy pum** in nonlinear mechanical oscillators: Part II—resonance capture. J. Appl. Mech. 68(1), 42–48 (2001). https://doi.org/10.1115/1.1345525

    Article  MathSciNet  Google Scholar 

  9. Manevitch, L.I., Musienko, A.I., Lamarque, C.H.: New analytical approach to energy pum** problem in strongly nonhomogeneous 2DOF systems. Meccanica 42(1), 77–83 (2007). https://doi.org/10.1007/s11012-006-9021-y

    Article  MathSciNet  Google Scholar 

  10. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, Part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009). https://doi.org/10.1016/j.ymssp.2008.04.002

    Article  Google Scholar 

  11. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, Part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009). https://doi.org/10.1016/j.ymssp.2008.04.003

    Article  Google Scholar 

  12. Al-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76(4), 1905–1920 (2014). https://doi.org/10.1007/s11071-014-1256-x

    Article  MathSciNet  Google Scholar 

  13. Manevitch, L.I., Sigalov, G., Romeo, F., Bergman, L.A., Vakakis, A.: Dynamics of a linear oscillator coupled to a bistable light attachment: analytical study. J. Appl. Mech. 81(4), 041011 (2014). https://doi.org/10.1115/1.4025150

    Article  Google Scholar 

  14. Romeo, F., Sigalov, G., Bergman, L.A., Vakakis, A.F.: Dynamics of a linear oscillator coupled to a bistable light attachment: numerical study. J. Comput. Nonlinear Dyn. 10(1), 011007 (2015). https://doi.org/10.1115/1.4025150

    Article  Google Scholar 

  15. Romeo, F., Manevitch, L.I., Bergman, L.A., Vakakis, A.: Transient and chaotic low-energy transfers in a system with bistable nonlinearity. Chaos 25(5), 53109 (2015). https://doi.org/10.1063/1.4921193

    Article  MathSciNet  Google Scholar 

  16. Fang, X., Wen, J.H., Yin, J.F., Yu, D.L.: Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer dam**. Nonlinear Dyn. 87(4), 2677–2695 (2017). https://doi.org/10.1007/s11071-016-3220-4

    Article  Google Scholar 

  17. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89(1), 179–196 (2017). https://doi.org/10.1007/s11071-017-3444-y

    Article  Google Scholar 

  18. Dekemele, K., Van Torre, P., Loccufier, M.: Performance and tuning of a chaotic bi-stable NES to mitigate transient vibrations. Nonlinear Dyn. 98(3), 1831–1851 (2019). https://doi.org/10.1007/s11071-019-05291-0

    Article  Google Scholar 

  19. Yao, H.L., Wang, Y., **e, L., Wen, B.: Bi-stable buckled beam nonlinear energy sink applied to rotor system. Mech. Syst. Signal Process. 138, 106546 (2020). https://doi.org/10.1016/j.ymssp.2019.106546

    Article  Google Scholar 

  20. Chen, Y.Y., Qian, Z.C., Zhao, W., Chang, C.M.: A magnetic bi-stable nonlinear energy sink for structural seismic control. J. Sound Vib. 473, 115233 (2020). https://doi.org/10.1016/j.jsv.2020.115233

    Article  Google Scholar 

  21. Chen, Y.Y., Su, W.T., Tesfamariam, S., Qian, Z.C., Zhao, W., Shen, C.Y., Zhou, F.L.: Experimental testing and system identification of the sliding bistable nonlinear energy sink implemented to a four-story structure model subjected to earthquake excitation. J. Build. Eng. 61, 105226 (2022). https://doi.org/10.1016/j.jobe.2022.105226

    Article  Google Scholar 

  22. Chen, Y.Y., Su, W.T., Tesfamariam, S., Qian, Z.C., Zhao, W., Yang, Z.Y., Zhou, F.L.: Experimental study of magnetic bistable nonlinear energy sink for structural seismic control. Soil Dyn. Earthq. Eng. 164, 107572 (2023). https://doi.org/10.1016/j.soildyn.2022.107572

    Article  Google Scholar 

  23. Chen, L., Liao, X., **a, G.F., Sun, B.B., Zhou, Y.: Variable-potential bistable nonlinear energy sink for enhanced vibration suppression and energy harvesting. Int. J. Mech. Sci. 242, 107997 (2023). https://doi.org/10.1016/j.ijmecsci.2022.107997

    Article  Google Scholar 

  24. Fang, S.T., Chen, K.Y., **ng, J.T., Zhou, S.X., Liao, W.H.: Tuned bistable nonlinear energy sink for simultaneously improved vibration suppression and energy harvesting. Int. J. Mech. Sci. 212, 106838 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106838

    Article  Google Scholar 

  25. Lvm, X.L., Liu, Z.P., Lu, Z.: Optimization design and experimental verification of track nonlinear energy sink for vibration control under seismic excitation. Struct. Control Health Monit. 24(12), e2033 (2017). https://doi.org/10.1002/stc.2033

    Article  Google Scholar 

  26. Wang, J.J., Wierschem, N.E., Spencer, B.F., Lu, X.L.: Track nonlinear energy sink for rapid response reduction in building structures. J. Eng. Mech. 141(1), 1–10 (2015). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000824

    Article  Google Scholar 

  27. Wang, J.J., Wierschem, N.E., Spencer, B.F., Lu, X.L.: Experimental study of track nonlinear energy sinks for dynamic response reduction. Eng. Struct. 94, 9–15 (2015). https://doi.org/10.1016/j.engstruct.2015.03.007

    Article  Google Scholar 

  28. Wang, J.J., Wierschem, N.E., Wang, B., Spencer, B.F.: Multi-objective design and performance investigation of a high-rise building with track nonlinear energy sinks. Struct. Des. Tall Spec. Build. 29(02), e1692 (2020). https://doi.org/10.1002/tal.1692

    Article  Google Scholar 

  29. Dou, J.X., Yao, H.L., Li, H., Li, J.L., Jia, R.Y.: A track nonlinear energy sink with restricted motion for rotor systems. Int. J. Mech. Sci. 259, 108631 (2023). https://doi.org/10.1016/j.ijmecsci.2023.108631

    Article  Google Scholar 

  30. Nucera, F., Vakakis, A.F., Mcfarland, D.M., Bergman, L.A., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50(3), 651–677 (2007). https://doi.org/10.1007/s11071-006-9189-7

    Article  Google Scholar 

  31. Nucera, F., Lacono, F.L., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: experimental results. J. Sound Vib. 313(1–2), 57–76 (2008). https://doi.org/10.1016/j.jsv.2010.01.020

    Article  Google Scholar 

  32. Nucera, F., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: computational results. J. Sound Vib. 329(15), 2973–2994 (2010). https://doi.org/10.1016/j.jsv.2010.01.020

    Article  Google Scholar 

  33. Li, T., Seguy, S., Berlioz, A.: Dynamics of cubic and vibro-impact nonlinear energy sink (NES): analytical, numerical, and experimental analysis. J. Vib. Acoust. 138(3), 031010 (2016). https://doi.org/10.1115/1.4032725

    Article  Google Scholar 

  34. Ahmadi, M., Attari, N.K.A., Shahrouzi, M.: Structural seismic response mitigation using optimized vibro-impact nonlinear energy sinks. J. Earthq. Eng. 19(2), 193–219 (2014). https://doi.org/10.1080/13632469.2014.962671

    Article  Google Scholar 

  35. Li, H.Q., Li, A., Zhang, Y.F.: Importance of gravity and friction on the targeted energy transfer of vibro-impact nonlinear energy sink. Int. J. Impact Eng. 157, 104001 (2021). https://doi.org/10.1016/j.ijimpeng.2021.104001

    Article  Google Scholar 

  36. Rong, K.J., Yang, M., Lu, Z., Zhang, J.W., Tian, L., Wu, S.Y.: Energy analysis of a nonlinear gas-spring dynamic vibration absorber subjected to seismic excitations. J. Build. Eng. 89, 109253 (2024). https://doi.org/10.1016/j.jobe.2024.109253

    Article  Google Scholar 

  37. Rong, K.J., Lu, Z., Zhang, J.W., Zhou, M.Y., Huang, W.Y.: Nonlinear gas-spring DVA for seismic response control: experiment and numerical simulation. Eng. Sturct. 283, 115940 (2023). https://doi.org/10.1016/j.engstruct.2023.115940

    Article  Google Scholar 

  38. Qiu, D.H., Seguy, S., Paredes, M.: Tuned nonlinear energy sink with conical spring: design theory and sensitivity analysis. J. Mech. Des. 140(1), 011404 (2018). https://doi.org/10.1115/1.4038304

    Article  Google Scholar 

  39. Rong, K.J., Lu, Z.: A novel nonlinear gas-spring TMD for the seismic vibration control of a MDOF structure. Struct. Eng. Mech. 83(1), 31–43 (2022). https://doi.org/10.12989/sem.2022.83.1.031

    Article  Google Scholar 

  40. Yao, H.L., Cao, Y.B., Ding, Z.Y., Wen, B.C.: Using grounded nonlinear energy sinks to suppress lateral vibration in rotor systems. Mech. Syst. Signal Process. 124, 237–253 (2019). https://doi.org/10.1016/j.ymssp.2019.01.054

    Article  Google Scholar 

  41. Sigalov, G., Gendelman, O.V., Al-Shudeifat, M.A., Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink. Nonlinear Dyn. 69(4), 1693–1704 (2012). https://doi.org/10.1007/s11071-012-0379-1

    Article  MathSciNet  Google Scholar 

  42. Kong, X.R., Li, H.Q., Wu, C.: Dynamics of 1-DOF and 2-DOF energy sink with geometrically nonlinear dam**: application to vibration suppression. Nonlinear Dyn. 91(1), 733–754 (2018). https://doi.org/10.1007/s11071-021-06615-9

    Article  Google Scholar 

  43. Silva, T.M.P., Clementino, M.A., Erturk, A., De Marqui, C.: Equivalent electrical circuit framework for nonlinear and high quality factor piezoelectric structures. Mechatronics 54, 133–143 (2018). https://doi.org/10.1016/j.mechatronics.2018.07.009

    Article  Google Scholar 

  44. Silva, T.M.P., Clementino, M.A., De Marqui, C., Erturk, A.: An experimentally validated piezoelectric nonlinear energy sink for wideband vibration attenuation. J. Sound Vib. 437, 68–78 (2018). https://doi.org/10.1016/j.jsv.2018.08.038

    Article  Google Scholar 

  45. Raze, G., Kerschen, G.: Multimodal vibration dam** of nonlinear structures using multiple nonlinear absorbers. Int. J. Non-Linear Mech. 119, 103308 (2020). https://doi.org/10.1016/j.ijnonlinmec.2019.103308

    Article  Google Scholar 

  46. Wierschem, N.E., Quinn, D.D., Hubbard, S.A., Al-Shudeifat, M.A., McFarland, D.M., Luo, J., Fahnestock, L.A., Spencer, B.F., Vakakis, A.F., Bergman, L.A.: Passive dam** enhancement of a two-degree-of-freedom system through a strongly nonlinear two-degree-of-freedom attachment. J. Sound Vib. 331(25), 5393–5407 (2012). https://doi.org/10.1016/j.jsv.2012.06.023

    Article  Google Scholar 

  47. Taghipour, J., Dardel, M.: Steady state dynamics and robustness of a harmonically excited essentially nonlinear oscillator coupled with a two-DOF nonlinear energy sink. Mech. Syst. Signal Process. 62–63, 164–182 (2015). https://doi.org/10.1016/j.ymssp.2015.03.018

    Article  Google Scholar 

  48. Zhou, S., Lallart, M., Erturk, A.: Multistable vibration energy harvesters: principle, progress, and perspectives. J. Sound Vib. 528, 116886 (2022). https://doi.org/10.1016/j.jsv.2022.116886

    Article  Google Scholar 

  49. Liu, C.R., Liao, B.P., Zhao, R., Yu, K.P., Pueh Lee, H., Zhao, J.: Large stroke tri-stable vibration energy harvester: modelling and experimental validation. Mech. Syst. Signal Process. 168, 108699 (2022). https://doi.org/10.1016/j.ymssp.2021.108699

    Article  Google Scholar 

  50. Schmidt, F., Lamarque, C.H.: Energy pum** for mechanical systems involving non-smooth Saint-Venant terms. Int. J. Nonlinear Mech. 45(9), 866–875 (2010). https://doi.org/10.1016/j.ijnonlinmec.2009.11.018

    Article  Google Scholar 

  51. Lamarque, C.H., Savadkoohi, A.T.: Targeted energy transfer between a system with a set of Saint-Venant elements and a nonlinear energy sink. Contin. Mech. Thermodyn. 27(4), 819–833 (2015). https://doi.org/10.1007/s00161-014-0354-9

    Article  MathSciNet  Google Scholar 

  52. Al-Shudeifat, M.A.: Asymmetric magnet-based nonlinear energy sink. J. Comput. Nonlinear Dyn. 210(1), 01450 (2015). https://doi.org/10.1115/1.4027462

    Article  Google Scholar 

  53. Saeed, A.S., Al-Shudeifat, M.A., Vakakis, A.F.: Rotary-oscillatory nonlinear energy sink of robust performance. Int. J. Nonlinear Mech. 117, 103249 (2019). https://doi.org/10.1016/j.ijnonlinmec.2019.103249

    Article  Google Scholar 

  54. Zeng, Y.C., Ding, H.: A tristable nonlinear energy sink. Int. J. Mech. Sci. 238, 107839 (2023). https://doi.org/10.1016/j.ijmecsci.2022.10783

    Article  Google Scholar 

  55. Rezaei, M., Talebitooti, R., Liao, W.H.: Exploiting bi-stable magneto-piezoelastic absorber for simultaneous energy harvesting and vibration mitigation. Int. J. Mech. Sci. 207, 106618 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106618

    Article  Google Scholar 

  56. Rezaei, M., Talebitooti, R., Liao, W.H.: Concurrent energy harvesting and vibration suppression utilizing PZT-based dynamic vibration absorber. Arch. Appl. Mech. 92(1), 363–382 (2022). https://doi.org/10.1007/s00419-021-02063-4

    Article  Google Scholar 

  57. Rezaei, M., Talebitooti, R.: Investigating the performance of tri-stable magnetopiezoelastic absorber in simultaneous energy harvesting and vibration isolation. Appl. Math. Model. 102, 661–693 (2022). https://doi.org/10.1016/j.apm.2021.09.044

    Article  Google Scholar 

  58. Lo Feudo, S., Touze, C., Boisson, J., Cumunel, G.: Nonlinear magnetic vibration absorber for passive control of a multi-storey structure. J. Sound Vib. 438, 33–53 (2019). https://doi.org/10.1016/j.jsv.2018.09.007

    Article  Google Scholar 

  59. Yao, H.L., Cao, Y.B., Wang, Y.W., Wen, B.C.: A tri-stable nonlinear energy sink with piecewise stiffness. J. Sound Vib. 463, 114971 (2019). https://doi.org/10.1016/j.jsv.2019.114971

    Article  Google Scholar 

  60. Yao, H.L., Wang, Y.W., Cao, Y.B., Wen, B.C.: Multi-stable nonlinear energy sink for rotor system. Int. J. Nonlinear Mech. 118, 103273 (2020). https://doi.org/10.1016/j.ijnonlinmec.2019.103273

    Article  Google Scholar 

  61. Wang, Y.W., Yao, H.L., Han, J.C., Li, Z.A., Wen, B.C.: Application of non-smooth NES in vibration suppression of rotor-blade systems. Appl. Math. Model. 87, 351–371 (2020). https://doi.org/10.1016/j.apm.2020.06.014

    Article  MathSciNet  Google Scholar 

  62. Fu, J.D., Wan, S., Zhou, P., Shen, J.W., Loccufier, M., Dekemele, K.: Effect of magnetic-spring bi-stable nonlinear energy sink on vibration and damage reduction of concrete double-column piers: experimental and numerical analysis. Eng. Struct. 303, 117517 (2024). https://doi.org/10.1016/j.engstruct.2024.1175

    Article  Google Scholar 

  63. Wu, W.J., Chen, X.D., Shan, Y.H.: Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness. J. Vib. Control 333(13), 2958–2970 (2014). https://doi.org/10.1016/j.jsv.2014.02.009

    Article  Google Scholar 

  64. Allag, H., Yonnet, J.P.: 3-D analytical calculation of the torque and force exerted between two cuboidal magnets. IEEE Trans. Magn. 45, 3969–3972 (2009). https://doi.org/10.1109/TMAG.2009.2025047

    Article  Google Scholar 

  65. Yang, Y.Q., Wang, X.: Investigation into the linear velocity response of cantilever beam embedded with impact damper. J. Vib. Control 25(7), 1–14 (2019). https://doi.org/10.1177/107754631882171

    Article  MathSciNet  Google Scholar 

  66. Li, W.K., Wierschem, N.E., Li, X.H., Yang, T.J., Brennan, M.J.: Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam. Nonlinear Dyn. 100(2), 951–971 (2020). https://doi.org/10.1007/s11071-020-05571-0

    Article  Google Scholar 

  67. Ahmadabadi, Z.N., Khadem, S.E.: Nonlinear vibration control of a cantilever beam by a nonlinear energy sink. Mech. Mach. Theory 50, 134–149 (2012). https://doi.org/10.1016/j.mechmachtheory.2011.11.007

    Article  Google Scholar 

  68. Avramov, K.V., Gendelman, O.V.: Forced oscillations of beam with essentially nonlinear absorber. Strength Mater. 41(3), 310–317 (2009). https://doi.org/10.1007/s11223-009-9125-4

    Article  Google Scholar 

  69. Parseh, M., Dardel, M., Ghasemi, M.H., Pashaei, M.H.: Steady state dynamics of a non-linear energy sink. Int. J. Nonlinear Mech. 79, 48–65 (2016). https://doi.org/10.1016/j.ijnonlinmec.2015.11.005

    Article  Google Scholar 

  70. Eurocode 1: Actions on structures—Part 2: Traffic loads on bridges. EN 1991-2 (2003).

  71. Rana, R., Soong, T.T.: Parametric study and simplified design of tuned mass dampers. Eng. Struct. 20(3), 193–204 (1998). https://doi.org/10.1016/S0141-0296(97)00078-3

    Article  Google Scholar 

  72. Rong, K.J., Lu, Z.: An improved ESM-FEM method for seismic control of particle turned mass damper on MDOF system. Appl. Acoust. 172, 107663 (2020). https://doi.org/10.1016/j.apacoust.2020.107663

    Article  Google Scholar 

  73. Zeng, Y.C., Ding, H., Ji, J.C., **g, X.J., Chen, L.Q.: A tristable nonlinear energy sink to suppress strong excitation vibration. Mech. Syst. Signal Process. 202, 110694 (2023). https://doi.org/10.1016/j.ymssp.2023.110694

    Article  Google Scholar 

  74. Tian, W., Zhao, T., Yang, Z.C.: Supersonic meta-plate with tunable-stiffness nonlinear oscillators for nonlinear flutter suppression. Int. J. Mech. Sci. 229, 107533 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107533

    Article  Google Scholar 

  75. Manevitch, L.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25, 95–109 (2001). https://doi.org/10.1023/A:1012994430793

    Article  MathSciNet  Google Scholar 

  76. Dekemele, K.: Tailored nonlinear stiffness and geometric dam**: applied to a bistable vibration absorber. Int. J. Nonlinear Mech. 157, 104548 (2023). https://doi.org/10.1016/j.ijnonlinmec.2023.104548

    Article  Google Scholar 

  77. Gendelman, O.V.: Targeted energy transfer in systems with non-polynomial nonlinearity. J. Vib. Control 315(3), 732–745 (2008). https://doi.org/10.1016/j.jsv.2007.12.024

    Article  Google Scholar 

  78. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes. Nonlinear Dyn. 51, 31–46 (2008). https://doi.org/10.1007/s11071-006-9167-0

    Article  Google Scholar 

  79. Gendelman, O.V.: Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dyn. 37(2), 115–128 (2004). https://doi.org/10.1023/B:NODY.0000042911.49430.25

    Article  MathSciNet  Google Scholar 

  80. Wu, T.M., Huang, J.L., Zhu, W.D.: Quasi-periodic oscillation characteristics of a nonlinear energy sink system under harmonic excitation. J. Sound Vib. 572, 118143 (2024). https://doi.org/10.1016/j.jsv.2023.118143

    Article  Google Scholar 

  81. Wang, Y.F., Kang, H.J., Cong, Y.Y., Guo, T.D., Zhu, W.D.: Vibration suppression of a cable under harmonic excitation by a nonlinear energy sink. Commun. Nonlinear SCI. 117, 106988 (2023). https://doi.org/10.1016/j.cnsns.2022.106988

    Article  MathSciNet  Google Scholar 

  82. Wang, X., Geng, X.F., Mao, X.Y., Ding, H., **g, X.J., Chen, L.Q.: Theoretical and experimental analysis of vibration reduction for piecewise linear system by nonlinear energy sink. Mech. Syst. Signal Process. 172, 109001 (2022). https://doi.org/10.1016/j.ymssp.2022.109001

    Article  Google Scholar 

  83. Luo, J., Wierschem, N.E., Hubbard, S.A., Fahnestock, L.A., Quinn, D.D., McFarland, D.M., Spencer, B.F., Vakakis, A.F., Bergman, L.A.: Large-scale experimental evaluation and numerical simulation of a system of nonlinear energy sinks for seismic mitigation. Eng. Struct. 77, 34–48 (2014). https://doi.org/10.1016/j.engstruct.2014.07.020

    Article  Google Scholar 

  84. Masri, S., Caughey, T.: A nonparametric identification technique for nonlinear dynamic problems. J. Appl. Mech. 46(2), 433–477 (1979). https://doi.org/10.1115/1.3424568

    Article  Google Scholar 

  85. Dekemele, K., Van Torre, P., Loccufie, R.M.: Design, construction and experimental performance of a nonlinear energy sink in mitigating multi-modal vibrations. J. Sound Vib. 473, 115243 (2020). https://doi.org/10.1016/j.jsv.2020.115243

    Article  Google Scholar 

  86. Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20(3), 505–592 (2005). https://doi.org/10.1016/j.ymssp.2005.04.008

    Article  Google Scholar 

  87. Noël, J., Kerschen, G.: Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process. 83, 2–35 (2017). https://doi.org/10.1016/j.ymssp.2016.07.020

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 51878151), National Natural Science Foundation of China (Grant No. 12102100), China Scholarship Council (No. 202206090067), and a post-doc fellowship of the Special Research Fund (BOF) from the Flemish Government awarded by Ghent University (BOF22/PDO/022). At the same time, we would like to thank all the reviewers who provided constructive comments on this article for their hard work.

Author information

Authors and Affiliations

Authors

Contributions

Jundong Fu and Kevin Dekemele wrote the main manuscript text. Shui Wan and Mia Loccufier provided funding support and conception for the research. Wenke Li, Jiwei Shen, and Harikrishnan Venugopal prepared Figs. 2, 3, 4 and 5. All authors reviewed the manuscript.

Corresponding author

Correspondence to Shui Wan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in preparing this article. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Human and animal rights

No human or animal subjects were used in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Stability criterion of SIM

Linearizing the second equation of Eq. (22) at the fixed point \(B_{eq} = B - \Delta_{B}\) obtained from the solutions of Eq. (23), the stability of the solutions on the SIM is described as,

$$ \left[ {\begin{array}{*{20}c} {\dot{\Delta }_{B} } \\ {\dot{\Delta }_{B}^{ * } } \\ \end{array} } \right] = \underbrace {{\left[ {\begin{array}{*{20}c} {a_{11} } & {a_{12} } \\ {a_{21} } & {a_{22} } \\ \end{array} } \right]}}_{\Theta }\left[ {\begin{array}{*{20}c} {\Delta_{B} } \\ {\Delta_{B}^{ * } } \\ \end{array} } \right]. $$
(A-1)

where \(\Delta_{B} = B - B_{eq}\) and

$$ \begin{aligned} & a_{11} = a^{ * }_{22} = - iX - \xi_{n} \sqrt X + \left. {\sum\limits_{\gamma = 1}^{9} {\frac{\gamma + 1}{2}k_{\gamma } } C_{\gamma }^{{\frac{\gamma + 1}{2}}} B^{{\frac{\gamma - 1}{2}}} B^{{ * \frac{\gamma - 1}{2}}} } \right|_{{B = B_{eq} }} \quad (\gamma = 1,3,5,7,9), \hfill \\ & a_{12} = a^{ * }_{21} = \left. {i\sum\limits_{\gamma = 1}^{9} {\frac{\gamma - 1}{2}k_{\gamma } } C_{\gamma }^{{\frac{\gamma - 1}{2}}} B^{{\frac{\gamma + 1}{2}}} B^{{ * \frac{\gamma - 3}{2}}} } \right|_{{B = B_{eq} }} \quad (\gamma = 1,3,5,7,9). \hfill \\ \end{aligned} $$
(A-2)

The eigenvalues of the Jacobian matrix \(\Theta\) dictate the stability. Positive real eigenvalues indicate instability of the fixed point.

Appendix B. Stability criterion under harmonic load

The calculation of the stability for the harmonic balanced Eq. (21) involves assessing the linear stability around the equilibrium points A and B, where \(\Delta_{A} = A - A_{eq}\), \(\Delta_{B} = B - B_{eq}\) and

$$ i2\sqrt X \left[ {\begin{array}{*{20}c} {\dot{\Delta }_{A} } \\ {\dot{\Delta }_{A}^{ * } } \\ {\dot{\Delta }_{B} } \\ {\dot{\Delta }_{B}^{ * } } \\ \end{array} } \right] = \underbrace {{\left[ {\begin{array}{*{20}c} {a_{11} } & {a_{12} } & {a_{13} } & {a_{14} } \\ {a_{21} } & {a_{22} } & {a_{23} } & {a_{24} } \\ {a_{31} } & {a_{32} } & {a_{33} } & {a_{34} } \\ {a_{41} } & {a_{42} } & {a_{43} } & {a_{44} } \\ \end{array} } \right]}}_{\Psi }\left[ {\begin{array}{*{20}c} {\Delta_{A} } \\ {\Delta_{A}^{ * } } \\ {\Delta_{B} } \\ {\Delta_{B}^{ * } } \\ \end{array} } \right], $$
(B-1)
$$ a_{12} = a_{21} = a_{32} = a_{41} = 0, $$
(B-2)
$$ a_{11} = - a^{ * }_{22} = - \varepsilon \sigma - i\varepsilon \xi \sqrt X , $$
(B-3)
$$ a_{13} = - a_{24}^{ * } = i\varepsilon \xi_{n} \sqrt X + \left. {\varepsilon \sum\limits_{\gamma = 1}^{9} {\overline{{k_{\gamma } }} } \frac{\gamma + 1}{2}C_{\gamma }^{{\frac{\gamma + 1}{2}}} B^{{\frac{\gamma - 1}{2}}} B^{{ * \frac{\gamma - 1}{2}}} } \right|_{{B = B_{eq} }} (\gamma = 1,3,5,7,9), $$
(B-4)
$$ a_{14} = - a_{23}^{ * } = \varepsilon \left. {\sum\limits_{\gamma = 1}^{9} {\overline{{k_{\gamma } }} } \frac{\gamma - 1}{2}C_{\gamma }^{{\frac{\gamma + 1}{2}}} B^{{\frac{\gamma + 1}{2}}} B^{{ * \frac{\gamma - 3}{2}}} } \right|_{{B = B_{eq} }} \quad (\gamma = 1,3,5,7,9), $$
(B-5)
$$ a_{31} = - a_{42}^{ * } = 1 + i\varepsilon \xi \sqrt X , $$
(B-6)
$$ a_{33} = - a_{44}^{ * } = X - \frac{1 + \varepsilon }{\varepsilon }a_{13} , $$
(B-7)
$$ a_{34} = - a_{43}^{ * } = - \frac{1 + \varepsilon }{\varepsilon }a_{14} . $$
(B-8)

If any eigenvalue of matrix Ψ possesses a real part greater than zero, the point is deemed unstable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Wan, S., Li, W. et al. Vibration control of a cantilever beam coupled with magnetic tri-stable nonlinear energy sink. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09849-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09849-5

Keywords

Navigation