Log in

Reliability analysis of iced transmission lines under Poisson white noise excitation via path integration method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The stochastic fluctuating factors caused by wind gust can change the dynamic behavior of iced transmission lines, which has been widely concerned by scholars. The stochastic impulsive disturbance in nature is simulated as Poisson white noise in this paper. For the path integration method under Poisson white noise excitation, a function that considers the randomness of pulses occurring at each time interval is used as an approximation of the short-time transition probability density. The Chapman–Kolmogorov equation with variable substitution is numerically solved using the backward Runge–Kutta method and the linear interpolation. Thus the evolution of probability density function of the system is worked out. After that, based on the results obtained by the path integration method, three indexes are got to measure the reliability of the system through the reliability theory. The effects of pulse sparsity, wind gust intensity and security domain scope on system reliability are revealed by analyzing the reliability function, first passage probability density, and mean first passage time. The accuracy of the path integration method is verified by comparing the results with the Monte Carlo results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availibility

The data that support the findings of this study are available within the article.

References

  1. Ibrahim, R., Chang, W.: Stochastic excitation of suspended cables involving three simultaneous internal resonances using Monte Carlo simulation. Comput. Methods Appl. Mech. Eng. 168(1–4), 285–304 (1999)

    Article  Google Scholar 

  2. Liu, Z., Ding, C., Qin, J., Lei, Y.: The nonlinear gallo** of iced transmission conductor under uniform and turbulence wind. Struct. Eng. Mech. 75(4), 465–475 (2020)

    Google Scholar 

  3. Tagata, G.: Analysis of a randomly excited non-linear stretched string. J. Sound Vib. 58(1), 95–107 (1978)

    Article  MathSciNet  Google Scholar 

  4. Tagata, G.: Non-linear string random vibration. J. Sound Vib. 129(3), 361–384 (1989)

    Article  Google Scholar 

  5. Bai, Y., Xu, W., Wei, W., Zhang, Z.: Stochastic dynamics and first passage analysis of iced transmission lines via path integration method. Chaos 33(7), 073105 (2023)

    Article  MathSciNet  Google Scholar 

  6. Grigoriu, M.: Reliability of linear systems under Poisson white noise. Probab. Eng. Mech. 24(3), 397–406 (2009)

    Article  Google Scholar 

  7. Grigoriu, M.: Response of dynamic systems to Poisson white noise. J. Sound Vib. 195(3), 375–389 (1996)

    Article  MathSciNet  Google Scholar 

  8. Köylüoǧlu, H., Nielsen, S., Iwankiewicz, R.: Reliability of non-linear oscillators subject to Poisson driven impulses. J. Sound Vib. 176(1), 19–33 (1994)

    Article  Google Scholar 

  9. Luongo, A., Zulli, D.: Dynamic instability of inclined cables under combined wind flow and support motion. Nonlinear Dyn. 67(1), 71–87 (2012)

    Article  MathSciNet  Google Scholar 

  10. Lu, N., Liu, Y., Beer, M.: System reliability evaluation of in-service cable-stayed bridges subjected to cable degradation. Struct. Infrastruct. Eng. 11(14), 1486–1498 (2018)

    Article  Google Scholar 

  11. Okpokparoro, S., Sriramula, S.: Reliability analysis of floating wind turbine dynamic cables under realistic environmental loads. Ocean Eng. 278, 114594 (2023)

    Article  Google Scholar 

  12. Wei, S., Sun, Y., Ding, H., Chen, L.: Random vibration and reliability analysis of fluid-conveying pipe under white noise excitations. Appl. Math. Model. 123, 259–273 (2023)

    Article  MathSciNet  Google Scholar 

  13. Huang, X., Fei, Z., Li, H., Liu, X.: An online technology for measuring icing shape on conductor based on vision and force sensors. IEEE Trans. Instrum. Meas. 66(12), 3180–3189 (2017)

    Article  Google Scholar 

  14. Ren, Z., Xu, W., Zhang, S.: Reliability analysis of nonlinear vibro-impact systems with both randomly fluctuating restoring and dam** terms. Commun. Nonlinear Sci. Numer. Simul. 82, 105087 (2019)

    Article  MathSciNet  Google Scholar 

  15. Han, Q., Xu, W., Yue, X., Zhang, Y.: First-passage time statistics in a bistable system subject to Poisson white noise by the generalized cell map** method[J]. Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 220–228 (2015)

    Article  MathSciNet  Google Scholar 

  16. Grigoriu, M.: Dynamic systems with Poisson white noise. Nonlinear Dyn. 36(2–4), 255–266 (2004)

    Article  MathSciNet  Google Scholar 

  17. Zeng, Y., Zhu, W.: Stochastic averaging of quasi-linear systems driven by Poisson white noise. Probab. Eng. Mech. 25(1), 99–107 (2010)

    Article  Google Scholar 

  18. Jia, W., Zhu, W., Xu, Y.: Stochastic averaging of quasi-non-integrable Hamiltonian systems under combined Gaussian and Poisson white noise excitations. Int. J. Non-Linear Mech. 51(2), 45–53 (2013)

    Article  Google Scholar 

  19. Yue, X., Xu, W., Jia, W., Wang, L.: Stochastic response of a \(\varphi ^6\) oscillator subjected to combined harmonic and Poisson white noise excitations. Phys. A Stat. Mech. Appl. 392(14), 2988–2998 (2013)

    Article  MathSciNet  Google Scholar 

  20. Di Matteo, A., Di Paola, M., Pirrotta, A.: Probabilistic characterization of nonlinear systems under Poisson white noise via complex fractional moments. Nonlinear Dyn. 77(3), 729–738 (2014)

    Article  Google Scholar 

  21. Chen, H., Chen, G., Meng, Z., Yang, D.: Stochastic dynamic analysis of nonlinear MDOF systems under combined Gaussian and Poisson noise excitation based on DPIM. Mech. Syst. Signal Process. 176, 109163 (2022)

    Article  Google Scholar 

  22. Bucher, C., Di Paola, M.: Efficient solution of the first passage problem by path integration for normal and Poissonian white noise. Probab. Eng. Mech. 41, 121–128 (2015)

    Article  Google Scholar 

  23. Di Paola, M., Santoro, R.: Path integral solution for non-linear system enforced by Poisson White Noise. Probab. Eng. Mech. 23(2–3), 164–169 (2008)

    Article  Google Scholar 

  24. Di Matteo, A., Di Paola, M., Pirrotta, A.: Path integral solution for nonlinear systems under parametric Poissonian white noise input. Probab. Eng. Mech. 44, 89–98 (2016)

    Article  Google Scholar 

  25. Pirrotta, A., Santoro, R.: Probabilistic response of nonlinear systems under combined normal and Poisson white noise via path integral method. Probab. Eng. Mech. 26(1), 26–32 (2011)

    Article  Google Scholar 

  26. Di Paola, M., Bucher, C.: Ideal and physical barrier problems for non-linear systems driven by normal and Poissonian white noise via path integral method. Int. J. Non-Linear Mech. 81, 274–282 (2016)

    Article  Google Scholar 

  27. Koyluoglu, H., Nielsen, S., Iwankiewicz, R.: Response and reliability of Poisson-driven systems by path integration. J. Eng. Mech. 121(1), 117–130 (1995)

    Article  Google Scholar 

  28. Ren, Z., Xu, W.: An improved path integration method for nonlinear systems under Poisson white noise excitation. Appl. Math. Comput. 373, 125036 (2020)

    MathSciNet  Google Scholar 

  29. Peng, J., Wang, L., Wang, B., Yuan, M., Xu, W.: A new path integration method for the stochastic system under Poisson white noise excitation based on a probability map**. J. Sound Vib. 571, 118037 (2024)

    Article  Google Scholar 

  30. Liu, X., Yang, S., Min, G., Sun, C., Liang, H., Zou, M., Wu, C., Cai, M.: Forced-self-excited system of iced transmission lines under planar harmonic excitations. Nonlinear Dyn. 110(1), 1175–1197 (2022)

    Article  Google Scholar 

  31. Zhao, Y., Sun, C., Wang, Z., Wang, L.: Analytical solutions for resonant response of suspended cables subjected to external excitation[J]. Nonlinear Dyn. 78(2), 1017–1032 (2014)

    Article  MathSciNet  Google Scholar 

  32. Benedettini, F., Rega, G.: Non-linear dynamics of an elastic cable under planar excitation. Int. J. Non-Linear Mech. 22(6), 497–509 (1987)

    Article  Google Scholar 

  33. Jafari, M., Hou, F., Abdelkefi, A.: Wind-induced vibration of structural cables. Nonlinear Dyn. 100(1), 351–421 (2020)

    Article  Google Scholar 

  34. Di Paola, M., Vasta, M.: Stochastic integro-differential and differential equations of non-linear systems excited by parametric Poisson pulses. Int. J. Non-Linear Mech. 32(5), 855–862 (1997)

    Article  MathSciNet  Google Scholar 

  35. Muscolino, G., Ricciardi, G., Cacciola, P.: Monte Carlo simulation in the stochastic analysis of non-linear systems under external stationary Poisson white noise input[J]. Int. J. Non-Linear Mech. 38(8), 1269–1283 (2003)

  36. Di Paola, M., Falsone, G.: Ito and Stratonovich integrals for delta-correlated processes. Probab. Eng. Mech. 8(3–4), 197–208 (1993)

  37. Ren, Z., Xu, W., Wang, D.: Dynamic and first passage analysis of ship roll motion with inelastic impacts via path integration method. Nonlinear Dyn. 97(1), 391–402 (2019)

    Article  Google Scholar 

  38. Jia, W., Luo, M., Ni, F., Hao, M., Zan, W.: Response and reliability of suspension system under stochastic and periodic track excitations by path integral method. Int. J. Non-Linear Mech. 157, 104544 (2023)

    Article  Google Scholar 

  39. Naess, A., Moe, V.: Efficient path integration methods for nonlinear dynamic systems. Probab. Eng. Mech. 15(2), 221–231 (2000)

    Article  Google Scholar 

  40. Zan, W., Jia, W., Xu, Y.: Reliability of dynamical systems with combined Gaussian and Poisson white noise via path integral method. Probab. Eng. Mech. 68, 103252 (2022)

    Article  Google Scholar 

  41. **e, W., Xu, W., Cai, L.: Numerical meshfree path integration method for non-linear dynamic systems. Appl. Math. Comput. 197(1), 426–434 (2008)

    MathSciNet  Google Scholar 

  42. Yu, J., Lin, Y.: Numerical path integration of a non-homogeneous Markov process. Int. J. Non-Linear Mech. 39(9), 1493–1500 (2004)

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant NOs. 12372034, 12072261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Ethics declarations

Conflict of interest

The authors declare this manuscript is original, and they have no potential conflicts of interest with respected to the research, authorship, and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Xu, W. & Zhang, W. Reliability analysis of iced transmission lines under Poisson white noise excitation via path integration method. Nonlinear Dyn 112, 12019–12033 (2024). https://doi.org/10.1007/s11071-024-09662-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09662-0

Keywords

Navigation