Log in

Analytical solutions for resonant response of suspended cables subjected to external excitation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, two analytical methods are applied to study the primary resonances response of suspended cables subjected to external excitation. We choose four different sag-to-span ratios and the first two modes to investigate the differences in nonlinear responses obtained with analytical methods. First, we summarize the equations of motion by applying the Hamilton’s principle and quasi-static assumption, and then these equations are discretized by the Galerkin procedure. Second, the multiple-scale method and homotopy analysis method are adopted to obtain the approximate solutions. Moreover, numerical integrations are introduced in order to verify the obtained approximate results. The numerical results show that frequency response curves obtained by different analytical methods show different quantitative predictions in some cases of motion, modes, and particular sag-to-span ratios. Finally, the differences in displacement fields and axial tension forces are compared and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rega, G.: Nonlinear vibrations of suspended cable. Part I: modeling and analysis. Appl Mech Rev. 57, 443–478 (2004)

    Article  Google Scholar 

  2. Rega, G.: Nonlinear vibrations of suspended cable. Part II: deterministic phenomena. Appl Mech Rev. 57, 479–514 (2004)

    Article  Google Scholar 

  3. Luongo, A., Rega, G., Vestroni, F.: Monofrequency oscillations of a nonlinear model of a suspended cable. J. Sound Vib. 82, 247–259 (1982)

    Article  Google Scholar 

  4. Luongo, A., Rega, G., Vestroni, F.: Planar non-linear free vibrations of an elastic cable. Int. J. Non Linear. Mech. 19, 39–52 (1984)

    Article  MATH  Google Scholar 

  5. Benedettini, F., Rega, G.: Non-linear dynamics of an elastic cable under planar excitation. Int. J. Non Linear. Mech. 22, 497–509 (1987)

    Article  MATH  Google Scholar 

  6. Benedettini, F., Rega, G., Alaggio, R.: Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. J. Sound Vib. 182, 775–798 (1995)

    Article  Google Scholar 

  7. Rega, G., Benedettini, F.: Planar non-linear oscillations of elastic cables under subharmonic resonance conditions. J. Sound Vib. 132, 367–381 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Arafat, H.N., Nayfeh, A.H.: Non-linear responses of suspended cables to primary resonance excitations. J. Sound Vib. 266, 325–354 (2003)

    Article  Google Scholar 

  9. Takahashi, K., Wu, Q., Nakamura, S.: In-plane anti-symmetric response of cables through bifurcation under symmetric sinusoidally time-varying load. J. Sound Vib. 268, 1–14 (2003)

    Article  Google Scholar 

  10. Srinil, N., Rega, G.: Nonlinear longitudinal/transversal modal interactions in highly extensible suspended cables. J. Sound Vib. 210, 230–242 (2008)

    Article  Google Scholar 

  11. Kamel, M.M., Hamed, Y.S.: Nonlinear analysis of an elastic cable under harmonic excitation. Acta Mech. 214, 315–325 (2010)

    Article  MATH  Google Scholar 

  12. Lee, C.L., Perkins, N.C.: Nonlinear oscillations of suspended cables containing a two-to-one internal resonance. Nonlinear Dyn. 3, 465–490 (1992)

    Google Scholar 

  13. Luongo, A., Paolone, A.: On the reconstitution problem in the multiple scales method. Nonlinear Dyn. 19, 133–156 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rega, G., Lacarbonara, W., Nayfeh, A.H., Chin, C.M.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Non Linear. Mech. 34, 901–924 (1999)

  15. Pilipchuk, V.N., Ibrahim, R.A.: Strongly nonlinear modal interaction in shallow suspended cables with oscillating ends. Chaos, Solitons Fractals. 8, 637–657 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liao, S.J.: The proposed homotopy analysis techniques for the solution of nonlinear problems. Ph.D Thesis, Shanghai Jiao Tong University (1992)

  17. Pirbodaghi, T., Ahmadian, M.T., Fesanghary, M.: On the homotopy analysis method for non-linear vibration of beams. Mech. Res. Commun. 36, 143–148 (2009)

    Article  MATH  Google Scholar 

  18. Mohammad, H.K., Ramazan, A.J.T.: Application of the homotopy method for the analytic approach of the nonlinear free vibration analysis of the simple end beams using four engineering theories. Acta Mech. 212, 199–213 (2010)

    Article  MATH  Google Scholar 

  19. Zhu, J., Ye, G.R., **ang, Y.Q., Chen, W.Q.: Dynamic behavior of cable-stayed beam with localized damage. J. Vib. Control. 17, 1080–1089 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wu, R.X., Wang, J., Du, J., Hu, Y.T., Hu, H.P.: Solutions of nonlinear thickness-shear vibrations of an infinite isotropic plate with the homotopy analysis method. Numer. Algor. 59, 213–226 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Chen, Y.M., Liu, J.K.: Homotopy analysis method for limit cycle flutter of airfoils. Appl. Math. Comput. 203, 854–863 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hoseini, S.H., Pirbodaghi, T., Asghari, M., Farrahi, G.H., Ahmadian, M.T.: Nonlinear free vibration of conservative oscillators with inertia and static type cubic nonlinearities using homotopy analysis method. J. Sound Vib. 316, 263–273 (2008)

    Article  Google Scholar 

  23. Qian, Y.H., Zhang, W., Lin, B.W., Lai, S.K.: Analytical approximate periodic solutions for two-degree-of-freedom coupled van der Pol-Duffing oscillators by extended homotopy analysis method. Acta Mech. 219, 1–14 (2011)

    Article  MATH  Google Scholar 

  24. Ganjiani, M.: Solution of coupled system of nonlinear differential equations using homotopy analysis method. Nonlinear Dyn. 56, 159–167 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhao, Y.B., Sun, C.S., Wang, Z.Q., Wang, L.H.: Nonlinear in-plane free oscillations of suspended cable investigated by homotopy analysis method. Struct. Eng. Mech. 50, 487–500 (2014)

  26. Zhao, Y.B., Sun, C.S., Wang, Z.Q., Wang, L.H.: Approximate series solutions for nonlinear free vibration of suspended cables. Shock and Vib. doi:10.1155/2014/795708

  27. You, X.C., Xu, H.: Analytical approximations for the periodic motion of the Duffing system with delayed feedback. Numer Algor. 56, 561–576 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tan, Y., Abbasbandy, S.: Homotopy analysis method for quadratic Riccati differential equation. Comm. Non-linear Sci. Numer. Simm. 13, 539–546 (2008)

    Article  MATH  Google Scholar 

  29. Yuan, P.X., Li, Y.Q.: Primary resonance of multiple degree-of-freedom dynamic systems with strong nonlinearity using the homotopy analysis method. Appl. Math. Mech. (Engl). 31, 1293–1304 (2011)

    Article  MathSciNet  Google Scholar 

  30. Wang, L.H., Zhao, Y.Y.: Nonlinear planar dynamics of suspended cables investigated by the continuation technique. Eng. Struct. 29, 135–1144 (2007)

  31. Nayfeh, A.H.: Introduction to Perturbation techniques. Wiley, New York (2000)

    Google Scholar 

  32. Boyaci, H., Pakdemirli, M.: A comparison of different versions of the method of multiple scales for partial differential equations. J. Sound Vib. 204, 595–607 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  33. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and Hall/CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  34. Gattulli, V., Martinelli, L., Perotti, F., Vestroni, F.: Nonlinear oscillations of cables under harmonic loading using analytical and finite element models. Comput. Methods Appl. Mech. Engrg. 193, 69–85 (2004)

    Article  MATH  Google Scholar 

  35. Srinil, N., Rega, G., Chucheepsakul, S.: Three dimensional non-linear coupling and dynamic tension in the large amplitude free vibrations of arbitrarily sagged cables. J. Sound Vib. 269, 823–852 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by the State Key Program of National Natural Science Foundation of China (nos. 11032004). The authors also wish to thank the anonymous reviewers for their helpful comments and suggestions on the manuscript on which the quality of this work has been improved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaobing Zhao.

Appendix

Appendix

$$\begin{aligned} \mathbf R _{nm}&= \frac{1}{(m-1)!}\frac{\partial ^{m-1} \mathcal {N}\left[ \varPhi _n(\tau ;q),A_n(q),\Delta _n(q),\varGamma _n(q)\right] }{\partial q^{m-1}}\Bigg |_{q=0}\\&= \varPi _1+\varPi _2+\varPi _3+\varPi _4\\ \varPi _1&= \varOmega _n^2\sum _{k=0}^{m-1}a_{nk}\ddot{u}_{nr}\\&+2\varOmega _n \mu _n \sum _{k=0}^{m-1}a_{nk} \dot{u}_{nr}\\&+\omega _n^2\left[ \left( \sum _{k=0}^{m-1}a_{nk}u_{r}\right) +\delta _{n,m-1}\right] ;\\ \varPi _2&= \varGamma _{nnn}\sum _{k=0}^{m-1}\delta _{nk}\delta _{nr}+2\varGamma _{nnn}\\&\sum _{k=0}^{m-1}\left( \sum _{p=0}^{k}a_{np}\delta _{n,k-p}\right) u_{r}\\&+\varGamma _{nnn}\left\{ \sum _{k=0}^{m-1}\left( \sum _{p=0}^{k}a_{np} a_{n,k-p}\right) \left( \sum _{p=0}^{r}u_{np} u_{n,r-p}\right) \right\} ;\\ \varPi _3&= \varLambda _{nnnn}\sum _{k=0}^{m-1}\left( \sum _{p=0}^{k}\delta _{np}\delta _{n,k-p}\right) \delta _{nr}\\&+\varLambda _{nnnn}\sum _{k=0}^{m-1}\left\{ \left[ \sum _{p=0}^{k}\left( \sum _{s=0}^{p}a_{ns} a_{n,p-s}\right) a_{n,k-p}\right] \right. \\&\left. \left[ \sum _{p=0}^{r}\left( \sum _{s=0}^{p}u_{ns} u_{n,p-s}\right) u_{n,r-p}\right] \right\} \\&+3\varLambda _{nnnn}\sum _{k=0}^{m-1}\left[ \sum _{p=0}^{k}\left( \sum _{s=0}^{p}a_{ns} a_{n,p-s}\right) \right. \\&\left. \left( \sum _{s=0}^{k-p}u_{ns} u_{n,k-p-s}\right) \delta _{nr}\right] \\&+3\varLambda _{nnnn}\sum _{k=0}^{m-1}\left( \sum _{p=0}^{k}a_{np} u_{n,k-p}\right) \left( \sum _{p=0}^{r}\delta _{p}\delta _{n,r-p}\right) ;\\ \varPi _4&= -\frac{f_n}{(m-1)!}\frac{\partial ^{m-1}\left[ \cos \tau \cos \varGamma _n(q) +\sin \tau \sin \varGamma _n(q) \right] }{\partial q^{m-1}}\Bigg |_{q=0}; \end{aligned}$$

in which \(r=m-k-1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Sun, C., Wang, Z. et al. Analytical solutions for resonant response of suspended cables subjected to external excitation. Nonlinear Dyn 78, 1017–1032 (2014). https://doi.org/10.1007/s11071-014-1493-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1493-z

Keywords

Navigation