Log in

Asymptotic formulation of the nonlinear bifurcation scenarios in thermomechanically coupled plates

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear dynamics of composite plates with thermomechanical coupling is analytically addressed in order to describe the main bifurcation phenomena triggering the involved pre- and post-buckling response scenario. The static buckling occurrence and two resonance conditions around the unbuckled and buckled equilibria are investigated by means of the asymptotic multiple scale method, together with the double-zero bifurcation marking the occurrence of dynamical buckling. The resulting modulation equations and the steady-state mechanical and thermal responses are determined and compared with the numerical outcomes in order to verify the adequacy and effectiveness of the refined scalings adopted in the multiple scale analyses to describe the various bifurcation scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. McNamara, J.J., Friedmann, P.P.: Aeroelastic and aerothermoelastic analysis in hypersonic flow: past, present, and future. AIAA J. 49(6), 1089–1122 (2011)

    Article  Google Scholar 

  2. Ribeiro, P.: Thermally induced transitions to chaos in plate vibrations. J. Sound Vib. 299(1), 314–330 (2007)

    Article  Google Scholar 

  3. Ribeiro, P., Jansen, E.: Non-linear vibrations of laminated cylindrical shallow shells under thermomechanical loading. J. Sound Vib. 315(3), 626–640 (2008)

    Article  Google Scholar 

  4. Zhang, W., Yang, J., Hao, Y.: Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory. Nonlinear Dyn. 59(4), 619–660 (2010)

    Article  MATH  Google Scholar 

  5. Alijani, F., Bakhtiari-Nejad, F., Amabili, M.: Nonlinear vibrations of FGM rectangular plates in thermal environments. Nonlinear Dyn. 66(3), 251–270 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Shen, H.-S., **ang, Y.: Nonlinear vibration of nanotube-reinforced composite cylindrical panels, resting on elastic foundations in thermal environments. Compos. Struct. 111, 291–300 (2014)

    Article  Google Scholar 

  7. Gao, K., Gao, W., Wu, D., Song, C.: Nonlinear dynamic characteristics and stability of composite orthotropic plate on elastic foundation under thermal environment. Compos. Struct. 168, 619–632 (2017)

    Article  Google Scholar 

  8. Cong, P.H., Anh, V.M., Duc, N.D.: Nonlinear dynamic response of eccentrically stiffened FGM plate using Reddy’s TSDT in thermal environment. J. Therm. Stress. 40(6), 704–732 (2017)

    Article  Google Scholar 

  9. Thanh, N.V., Khoa, N.D., Tuan, N.D., Tran, P., Duc, N.D.: Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shear deformable plates with temperature-dependent material properties and surrounded on elastic foundations. J. Therm. Stress. 40(10), 1254–1274 (2017)

    Article  Google Scholar 

  10. Yundong, S., Jian, W.: Nonlinear response analysis and experimental verification for thin-walled plates to thermal-acoustic loads. Chin. J. Aeronaut. 30(6), 1919–1930 (2017)

    Article  Google Scholar 

  11. Manoach, E., Warminska, A., Warminski, J., Doneva, S.: A reduced multimodal thermoelastic model of a circular Mindlin plate. Int. J. Mech. Sci. 153, 479–489 (2019)

    Article  Google Scholar 

  12. Manoach, E., Warminski, J., Kloda, L., Warminska, A., Doneva, S.: Nonlinear vibrations of a bi-material beam under thermal and mechanical loadings. Mech. Syst. Sig. Process. 177, 109127 (2022)

    Article  Google Scholar 

  13. Cukic, R.: Coupled thermoelastic vibrations of plates. Arch. Mech. 25, 513 (1973)

    MATH  Google Scholar 

  14. Chang, W.P., Wan, S.M.: Thermo mechanically coupled nonlinear vibration of plates. Int. J. Nonlinear Mech. 21(5), 375–389 (1986)

    Article  MATH  Google Scholar 

  15. Shu, X., Zhang, X., Zhang, J.: Thermoelastic free vibration of clamped circular plate. Appl. Math. Mech. 21(6), 715–724 (2000)

    Article  MATH  Google Scholar 

  16. Yeh, Y.-L., Chen, C.-K., Lai, H.-Y.: Chaotic and bifurcation dynamic for a simply supported rectangular plate with thermo-mechanical coupling in large deflection. Chaos Soliton Fract. 13(7), 1493–1506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yeh, Y.-L.: Chaotic and bifurcation dynamic behavior of a simply supported rectangular orthotropic plate with thermomechanical coupling. Chaos Soliton Fract. 24(5), 1243–1255 (2005)

    Article  MATH  Google Scholar 

  18. Yeh, Y.-L.: The effect of thermo-mechanical coupling for a simply supported orthotropic rectangular plate on non-linear dynamics. Thin Wall. Struct. 43(8), 1277–1295 (2005)

    Article  Google Scholar 

  19. Culler, A.J., McNamara, J.J.: Studies on fluid-thermal-structural coupling for aerothermoelasticity in hypersonic flow. AIAA J. 48(8), 1721–1738 (2010)

    Article  Google Scholar 

  20. Culler, A.J., McNamara, J.J.: Impact of fluid-thermal-structural coupling on response prediction of hypersonic skin panels. AIAA J. 49(11), 2393–2406 (2011)

    Article  Google Scholar 

  21. Saetta, E., Rega, G.: Unified 2D continuous and reduced order modeling of thermomechanically coupled laminated plate for nonlinear vibrations. Meccanica 49(8), 1723–1749 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Saetta, E., Rega, G.: Third-order thermomechanically coupled laminated plates: 2D nonlinear modeling, minimal reduction and transient/post-buckled dynamics under different thermal excitations. Compos. Struct. 174, 420–441 (2017)

    Article  Google Scholar 

  23. Settimi, V., Rega, G., Saetta, E.: Avoiding/inducing dynamic buckling in a thermomechanically coupled plate: a local and global analysis of slow/fast response. Proc. R. Soc. Lond. Ser. A 474(2213), 20180206 (2018)

    MATH  Google Scholar 

  24. Rega, G., Saetta, E., Settimi, V.: Modeling and nonlinear dynamics of thermomechanically coupled composite plates. Int. J. Mech. Sci. 187, 106106 (2020)

    Article  Google Scholar 

  25. Settimi, V., Rega, G.: Thermomechanical coupling and transient to steady global dynamics of orthotropic plates. in: Problems of Nonlinear Mechanics and Physics of Materials, pp. 483–499. Springer (2019)

  26. Settimi, V., Saetta, E., Rega, G.: Nonlinear dynamics of a third-order reduced model of thermomechanically coupled plate under different thermal excitations. Meccanica 55(12), 2451–2473 (2020)

  27. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  28. Awrejcewicz, J., Starosta, R., Sypniewska-Kamińska, G.: Asymptotic Multiple Scale Method in Time Domain: Multi-Degree-of-Freedom Stationary and Nonstationary Dynamics. CRC Press, London (2022)

    Book  MATH  Google Scholar 

  29. Rand, R.H., Zehnder, A.T., Shayak, B., Bhaskar, A.: Simplified model and analysis of a pair of coupled thermo-optical MEMS oscillators. Nonlinear Dyn. 99(1), 73–83 (2020)

    Article  MATH  Google Scholar 

  30. Jain, S., Tiso, P.: Model order reduction for temperature-dependent nonlinear mechanical systems: a multiple scales approach. J. Sound Vib. 465, 115022 (2020)

    Article  Google Scholar 

  31. Doedel, E.J., Oldeman, B.E.: AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations. Concordia University, Montreal (2012)

    Google Scholar 

  32. Saetta, E., Settimi, V., Rega, G.: Minimal thermal modeling of two-way thermomechanically coupled plates for nonlinear dynamics investigation. J. Therm. Stress. 43(3), 345–371 (2020)

  33. Wolfram Research, Inc. Mathematica, Version 13.0.0, 2021. URL https://www.wolfram.com/mathematica. Champaign, IL

  34. Luongo, A., Di Egidio, A.: Divergence, Hopf and double-zero bifurcations of a nonlinear planar beam. Comput. Struct. 84(24–25), 1596–1605 (2006)

    Article  Google Scholar 

  35. Luongo, A., Zulli, D.: A paradigmatic system to study the transition from zero/Hopf to double-zero/Hopf bifurcation. Nonlinear Dyn. 70(1), 111–124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Brischetto, S., Carrera, E.: Coupled thermo-mechanical analysis of one-layered and multilayered plates. Compos. Struct. 92(8), 1793–1812 (2010)

    Article  MATH  Google Scholar 

  37. Luongo, A., Paolone, A.: On the reconstitution problem in the multiple time-scale method. Nonlinear Dyn. 19(2), 135–158 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Settimi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Material properties and equation coefficients

The dynamical behavior of the thermomechanical model is investigated by considering an epoxy/carbon fiber composite plate of dimensions \(a=b=1\) m and \(h=0.01\) m. The material’s elastic and thermal properties, which are assumed to be independent of the temperature, are taken from [36], and read:

$$\begin{aligned} \begin{aligned}&Y_1=1.72\cdot 10^{11}\frac{N}{m^2}, \, \nu _{12}=0.25, \, \rho =1940\frac{kg}{m^3}, \\&\lambda _{11}=36.42\frac{W}{m\cdot K}, \\&\alpha _1=0.57 \cdot 10^{-6}\frac{1}{K}, \, Y_2=6.91\cdot 10^{9}\frac{N}{m^2}, \\&G_{12}=3.45\cdot 10^{9}\frac{N}{m^2}, \\&\lambda _{22}=0.96\frac{W}{m\cdot K}, \, \alpha _2=35.6 \cdot 10^{-6}\frac{1}{K}, \\&c_v=400\frac{J}{kg\cdot K}, \\&\delta =330\frac{N\cdot s}{m^3}, \, H=100\frac{W}{m^2\cdot K} \end{aligned} \end{aligned}$$
(19)

where \( Y_1,Y_2,G_{12}\) are longitudinal modulus of rigidity in x and y direction and shear modulus, respectively; \(\nu _{12}\) is the Poisson’s ratio; \(\rho \) and \(\delta \) are mass density and dam** coefficient; \(\lambda _{11}, \lambda _{22}, \lambda _{33}\) are the thermal conductivities along the x, y, and z directions; \(\alpha _1,\alpha _2\) are the thermal expansions along x and y directions; \(c_v\) is the specific heat at constant strain, and H is the boundary conductance. The subsequent value of the mechanical natural frequency is 286.67Hz. After nondimensionalization, the numerical coefficients of Eq. (1) are:

$$\begin{aligned}{} & {} a_{12}=0.0593, \, a_{14}=0.6859, \, a_{15}=-0.2729,\nonumber \\{} & {} a_{16}=-0.9036, \,a_{22}=7.81 \cdot 10^{-5},\nonumber \\{} & {} a_{23}=-1.2391, a_{24}=1.08\cdot 10^{-4},\nonumber \\{} & {} a_{32}=6.06 \cdot 10^{-4}, \, a_{33}=0.001195 \end{aligned}$$
(20)

Appendix B Multiple Scale analysis of the pre-buckling equilibrium

To develop the asymptotic procedure to the system (4), three time scales are introduced, i.e., \(T_{0}=t, \; T_{1}= \epsilon t, \; T_{2}=\epsilon ^2 t\), and, consistently, the time derivatives are expressed as

$$\begin{aligned} \begin{aligned}&d/dt = D_0 + \epsilon D_1 + \epsilon ^2D_2 \\&d^2/dt^2 = D^2_0 +2\epsilon D_0D_1+\epsilon ^2 D^2_1 +2\epsilon ^2D_0D_2 \end{aligned} \end{aligned}$$
(21)

where \(D_i = \partial /\partial T_i\). Due to the presence of only cubic nonlinear term in the mechanical equation, and in order to account for the different time evolution of the mechanical variable with respect to the thermal ones, variables are scaled as follows:

$$\begin{aligned}{} & {} \tilde{W}=\epsilon ^{1/2}\; \hat{W}, \qquad \tilde{T}_{R0}=\epsilon ^{3/2} \; \hat{T}_{R0},\nonumber \\{} & {} \tilde{T}_{R1}=\epsilon ^{3/2}\; \hat{T}_{R1} \end{aligned}$$
(22)

so that their expression as perturbation of the reference equilibrium reads:

$$\begin{aligned} \begin{aligned} \tilde{W}(t)&=\epsilon ^{1/2}W_0 (T_0,T_1,T_2)+\epsilon ^{3/2}W_1 (T_0,T_1,T_2)\\&\quad +\epsilon ^{5/2}W_2 (T_0,T_1,T_2) \\ \tilde{T}_{R0}(t)&=\epsilon ^{3/2}\text {T0}_0 (T_0,T_1,T_2)+\epsilon ^{5/2}\text {T0}_1 (T_0,T_1,T_2)\\&\quad +\epsilon ^{7/2}\text {T0}_2 (T_0,T_1,T_2) \\ \tilde{T}_{R1}(t)&=\epsilon ^{3/2}\text {T1}_0 (T_0,T_1,T_2) +\epsilon ^{5/2}\text {T1}_1 (T_0,T_1,T_2)\\&\quad +\epsilon ^{7/2}\text {T1}_2 (T_0,T_1,T_2) \end{aligned}\nonumber \\ \end{aligned}$$
(23)

Parameter scaling is performed by assuming small dam** and small transversal excitation, while coupling terms are scaled to properly account for the different time scale at which thermal variables evolve with respect to the mechanical one:

$$\begin{aligned} a_{12}= & {} \epsilon \; \hat{a}_{12}, \quad f=\epsilon ^{3/2} \; \hat{f},\quad a_{15}=\epsilon \;\hat{a}_{15}, \nonumber \\ a_{16}= & {} \epsilon ^{1/2}\;\hat{a}_{16}, \quad a_{24}= \epsilon ^{1/2}\;\hat{a}_{24}, \quad a_{33}=\epsilon \;\hat{a}_{33} \end{aligned}$$
(24)

To study the response around primary resonance, detuning parameter \(\sigma \) is introduced:

$$\begin{aligned} \omega ^2=\varOmega ^2+\epsilon \; \sigma \end{aligned}$$
(25)

Once scaled by \(\epsilon ^{-1/2}\), the resulting perturbation equations at each order read:

$$\begin{aligned}&\bullet \;\text {Order}\;\; \epsilon \quad \quad D_0^2W_0+\varOmega ^2 W_0\,\,\, =0 \end{aligned}$$
(26)
$$\begin{aligned}&\bullet \;\text {Order}\;\; \epsilon ^2 \quad D_0^2W_1+\varOmega ^2 W_1 =-a_{12} D_0W_0 -a_{14} W_0^3\nonumber \\&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\quad -2D_0 D_1W_0-\sigma W_0\nonumber \\&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\quad +f \cos (\varOmega T_0) \nonumber \\&~~~~~~~~~~~~~~~~~~~~~~~~D_0\text {T0}_0+a_{22} \text {T0}_0 =-a_{24} W_0 D_0W_0 \end{aligned}$$
(27)
$$\begin{aligned}&~~~~~~~~~~~~~~~~~~~~~~~~D_0\text {T1}_0+a_{32} \text {T1}_0 =-a_{33} D_0W_0 \nonumber \\&\bullet \;\text {Order}\;\; \epsilon ^3\quad D_0^2W_2+W_2 \varOmega ^2 =-a_{12} D_0W_1-a_{12} D_1W_0\nonumber \\&\quad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-3 a_{14} W_1 W_0^2-a_{15} \text {T1}_0 \nonumber \\&\quad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -a_{16} \text {T0}_0 W_0-2 D_0 D_1W_1\nonumber \\&\quad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-D_1^2W_0\nonumber \\&\quad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-2 D_0 D_2W_0-\sigma W_1 \\&~~~~~~~~~~~~~~~~~~~~~~~D_0\text {T0}_1+a_{22} \text {T0}_1=-a_{24} W_0 D_0W_1\nonumber \\&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\quad -a_{24} W_0 D_1W_0\nonumber \\&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\quad -a_{24} W_1 D_0W_0-D_1\text {T0}_0 \nonumber \\&~~~~~~~~~~~~~~~~~~~~~~~D_0\text {T1}_1+a_{32} \text {T1}_1=-a_{33} D_0W_1 \nonumber \\&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\quad -a_{33} D_1W_0-D_1\text {T1}_0 \nonumber \end{aligned}$$
(28)

At first order, the solution of the mechanical Eq. (26) reads

$$\begin{aligned} W_0 = A(T_1, T_2) \textrm{e}^{i \varOmega T_0} + c.c. \end{aligned}$$
(29)

with \(A(T_1, T_2)\) undetermined function of the slow time scales and c.c. complex conjugate terms (the overbar will denote the complex conjugate and i is the imaginary unit). Substituting \(W_0\) in the first equation of (27), and imposing the solvability condition implies

$$\begin{aligned} D_1 A=\frac{i \left( -f+2 (\sigma +i a_{12} \varOmega )A +6 a_{14} A^2 \bar{A}\right) }{4 \varOmega } \end{aligned}$$
(30)

The particular solutions at order \(\epsilon ^2\) are

$$\begin{aligned} \begin{aligned}&W_1=\frac{a_{14} A^3 \textrm{e}^{3 i \varOmega T_0 }}{8 \varOmega ^2}+c.c.\\&\text {T0}_0=\frac{a_{24} \varOmega A^2 \textrm{e}^{2 i \varOmega T_0 }}{ i a_{22}-2 \varOmega }+ c.c.\\&\text {T1}_0=\frac{ a_{33} \varOmega A \textrm{e}^{i \varOmega T_0 }}{ i a_{32}-\varOmega }+c.c. \end{aligned} \end{aligned}$$
(31)

In view of Eqs. (29), (31), the solvability condition of the mechanical problem at the third order (28) yields

$$\begin{aligned} D_2 A= & {} c_{1r}+ i c_{1i} + (c_{2r}+ i c_{2i}) A+ i c_{3i} A^2\nonumber \\{} & {} -2 i c_{3i} A \bar{A}+(c_{4r}+ i c_{4i}) A^2 \bar{A}+ i c_{5i} A^3 \bar{A}^2\nonumber \\ \end{aligned}$$
(32)

where

$$\begin{aligned} c_{1r}&= \frac{a_{12} f}{16 \varOmega ^2},\; c_{1i}= \frac{f \sigma }{16 \varOmega ^3}, \; c_{2r}= \frac{a_{15} a_{32} a_{33}}{2 \left( a_{32}^2+\varOmega ^2\right) },\nonumber \\ c_{2i}&= -\frac{a_{12}^2}{8 \varOmega }-\frac{a_{15} a_{33} \varOmega }{2 \left( a_{32}^2+\varOmega ^2\right) }-\frac{\sigma ^2}{8 \varOmega ^3},\\ c_{3i}&= -\frac{3 a_{14} f}{16 \varOmega ^3},\; c_{4r}= \frac{3 a_{12} a_{14}}{4 \varOmega ^2}+\frac{a_{16} a_{22} a_{24}}{2 \left( a_{22}^2+4 \varOmega ^2\right) },\nonumber \\ c_{4i}&= -\frac{3 a_{14} \sigma }{4 \varOmega ^3}-\frac{a_{16} a_{24} \varOmega }{a_{22}^2+4 \varOmega ^2},\; c_{5i}= -\frac{15 a_{14}^2}{16 \varOmega ^3} \nonumber \end{aligned}$$
(33)

According to the usual reconstitution procedure [37], the amplitude derivatives with respect to time t are obtained from (21)

$$\begin{aligned} \dot{A}= \epsilon D_1A + \epsilon ^2 D_2A \end{aligned}$$
(34)

The \( \epsilon \) parameter is completely reabsorbed through a backward rescaling, and recalling Eqs. (30) and (32), the complex amplitude modulation equation for the mechanical variable results

$$\begin{aligned} \dot{A}= & {} c_{1r}+ i c_{11i} + (c_{21r}+ i c_{21i}) A+ i c_{3i} A^2\nonumber \\{} & {} -2 i c_{3i} A \bar{A}+(c_{4r}+ i c_{41i}) A^2 \bar{A}+ i c_{5i} A^3 \bar{A}^2 \end{aligned}$$
(35)

where

$$\begin{aligned} c_{11i}= & {} -\frac{f}{4 \varOmega }+c_{1i},\; c_{21r}= c_{2r}-\frac{a_{12}}{2},\nonumber \\ c_{21i}= & {} c_{2i}+\frac{\sigma }{2\varOmega },\; c_{41i}= \frac{3 a_{14}}{2 \varOmega }+c_{4i} \end{aligned}$$
(36)

The complex-valued modulation equation for the mechanical amplitude A can be conveniently expressed in polar form applying the following transformation

$$\begin{aligned} A=\frac{1}{2} a(t) \textrm{e}^{i \theta (t)},\; \bar{A}=\frac{1}{2} a(t) \textrm{e}^{-i \theta (t)} \end{aligned}$$
(37)

Separating real and imaginary parts leads

$$\begin{aligned}&\dot{a}=2 (c_{11i} \sin \theta + c_{1r} \cos \theta )+c_{21r} a\nonumber \\&\quad -\frac{3 c_{3i} a^2 \sin \theta }{2}+\frac{ c_{4r} a^3}{4}\\&a\dot{\theta }=2 (c_{11i} \cos \theta - c_{1r} \sin \theta )+ c_{21i} a\nonumber \\&\quad -\frac{ c_{3i} a^2 \cos \theta }{2} +\frac{ c_{41i}a^3}{4}+\frac{ c_{5i}a^5}{16} \nonumber \end{aligned}$$
(38)

where the time dependence of a and \(\theta \) has been omitted for the sake of readability. Finally, the system asymptotic solutions can be reconstructed at second order by recalling Eq. (29) and (31). Moreover, remembering that \(W(t)=W_{e_1}+\tilde{W}\), \(T_{R0}(t)=T_{R0e_1}+\tilde{T}_{R0}\), \(T_{R1}(t)=T_{R1e_1}+\tilde{T}_{R1}\), mechanical and thermal solutions can be expressed in trigonometric form as

$$\begin{aligned}&W(t)=a \cos \psi +c_6 \; a^3 \cos (3 \psi ) \end{aligned}$$
(39)
$$\begin{aligned}&T_{R0}(t)=T_{R0e_1}+c_7 \; a^2 \cos (2 \psi )\nonumber \\&~~~~~~~~~~~~~~+c_8 \; a^2 \sin (2 \psi ) \end{aligned}$$
(40)
$$\begin{aligned}&T_{R1}(t)=c_9 \; a \cos \psi + c_{10} \; \sin \psi \end{aligned}$$
(41)

where \(\psi =\varOmega t +\theta \) and

$$\begin{aligned} c_6&=\frac{a_{14}}{32 \varOmega ^2}, \; c_7=-\frac{a_{24} \varOmega ^2}{a_{22}^2+4 \varOmega ^2}, c_8=\frac{a_{22} a_{24} \varOmega }{2 \left( a_{22}^2+4 \varOmega ^2\right) }, \\ c_9&=-\frac{a_{33} \varOmega ^2}{a_{32}^2+\varOmega ^2}, \; c_{10}=\frac{a_{32} a_{33} \varOmega }{a_{32}^2+\varOmega ^2} \end{aligned}$$

Appendix C Multiple Scale analysis of the post-buckling equilibrium

Due to the presence of quadratic and cubic nonlinear terms in the mechanical Eq. (10), five time scales are introduced, i.e., \(T_{0}=t, \; T_{1}= \epsilon t, \; T_{2}=\epsilon ^2 t,\; T_{3}=\epsilon ^3 t,\; T_{4}=\epsilon ^4 t\), so that time derivatives are expressed as

$$\begin{aligned} \begin{aligned} d/dt&= D_0 + \epsilon D_1 + \epsilon ^2D_2 +\epsilon ^3D_3+\epsilon ^4D_4\\ d^2/dt^2&= D^2_0 +2\epsilon D_0D_1+\epsilon ^2 (D^2_1 +2D_0D_2)\\&\quad +2\epsilon ^3 (D_1D_2+D_0D_3)\\&\quad +\epsilon ^4 (D_2^2+2D_1D_3+2 D_0D_4) \end{aligned} \end{aligned}$$
(42)

where \(D_i = \partial /\partial T_i\). To account for the different time evolution of the mechanical variable with respect to the thermal ones, variables are scaled as follows:

$$\begin{aligned} \tilde{W}=\epsilon \; \hat{W}, \qquad \tilde{T}_{R0}=\epsilon ^2 \; \hat{T}_{R0}, \qquad \tilde{T}_{R1}=\epsilon ^2\; \hat{T}_{R1} \end{aligned}$$
(43)

so that their expression as perturbation of the reference equilibrium reads:

$$\begin{aligned} \begin{aligned} \tilde{W}(t)&=\epsilon W_0 (T_0,T_1,T_2,T_3,T_4)\\&\quad +\epsilon ^2 W_1 (T_0,T_1,T_2,T_3,T_4)\\&\quad +\epsilon ^3 W_2 (T_0,T_1,T_2,T_3,T_4)\\&\quad +\epsilon ^4 W_3 (T_0,T_1,T_2,T_3,T_4)\\&\quad +\epsilon ^5 W_4 (T_0,T_1,T_2,T_3,T_4) \\ \tilde{T}_{R0}(t)&=\epsilon ^2 \text {T0}_0 (T_0,T_1,T_2,T_3,T_4)\\&\quad +\epsilon ^3 \text {T0}_1 (T_0,T_1,T_2,T_3,T_4)\\&\quad +\epsilon ^4 \text {T0}_2 (T_0,T_1,T_2,T_3,T_4)\\&\quad + \epsilon ^5 \text {T0}_3 (T_0,T_1,T_2,T_3,T_4)\\&\quad +\epsilon ^6 \text {T0}_4 (T_0,T_1,T_2,T_3,T_4) \\ \tilde{T}_{R1}(t)&=\epsilon ^2 \text {T1}_0 (T_0,T_1,T_2,T_3,T_4)\\&\quad +\epsilon ^3 \text {T1}_1 (T_0,T_1,T_2,T_3,T_4)\\&\quad +\epsilon ^4 \text {T1}_2 (T_0,T_1,T_2,T_3,T_4)\\&\quad + \epsilon ^5 \text {T1}_3 (T_0,T_1,T_2,T_3,T_4)\\&\quad +\epsilon ^6 \text {T1}_4 (T_0,T_1,T_2,T_3,T_4) \end{aligned} \end{aligned}$$
(44)

As for the pre-buckling resonance analysis, parameter scaling is performed by assuming small dam** and small transversal excitation, while coupling terms are scaled to properly account for the different time scale at which thermal variables evolve with respect to the mechanical one. Due to the increased number of time scales considered and to the different contributions into mechanical and membrane thermal equations, parameter scaling is adjusted as follows:

$$\begin{aligned} a_{12}= & {} \epsilon ^2 \; \hat{a}_{12}, \quad a_{15}=\epsilon ^2 \;\hat{a}_{15}, \quad a_{16}=\epsilon ^2\;\hat{a}_{16}, \nonumber \\ f= & {} \epsilon ^3 \; \hat{f},\quad a_{24}= \epsilon \;\hat{a}_{24}, \quad a_{33}=\epsilon \;\hat{a}_{33} \end{aligned}$$
(45)

To study the response around primary resonance, detuning parameter \(\sigma \) is introduced:

$$\begin{aligned} \omega ^2=\varOmega ^2+\epsilon ^2 \; \sigma \end{aligned}$$
(46)

while \(\omega \) is derived from the square root of (46) through series expansion to the first order around \(\sigma =0\): \(\omega = \varOmega +\epsilon ^2 \sigma /(2\varOmega )+\mathcal {O}(\sigma ^2)\).

The resulting perturbation equations at each order read:

$$\begin{aligned}&\bullet \;\text {Order}\;\;\epsilon{} & {} D_0^2W_0+\varOmega ^2 W_0 =0 \end{aligned}$$
(47)
$$\begin{aligned}&\bullet \;\text {Order}\;\;\epsilon ^2{} & {} D_0^2W_1+\varOmega ^2 W_1 =-2 D_0 D_1W_0 -\frac{3 \varOmega W_0^2 }{2 a_{141}} \nonumber \\{} & {} {}&D_0\text {T0}_0+a_{22} \text {T0}_0=-a_{141}a_{24} \varOmega D_0W_0 \end{aligned}$$
(48)
$$\begin{aligned}{} & {} {}&D_0\text {T1}_0+a_{32} \text {T1}_0=-_{33} D_0W_0 \nonumber \\&\bullet \;\text {Order}\;\;\epsilon ^3{} & {} D_0^2W_2+ \varOmega ^2 W_2=-a_{12} D_0W_0\nonumber \\{} & {} {}&-\frac{3 \varOmega W_1 W_0}{a_{141}} -a_{14} W_0^3 \nonumber \\{} & {} {}&-2 D_0 D_1W_1-D_1^2W_0-2 D_0 D_2W_0\nonumber \\{} & {} {}&-\sigma W_0+f \cos (\varOmega T_0) \end{aligned}$$
(49)
$$\begin{aligned}{} & {} {}&D_0\text {T0}_1+a_{22} \text {T0}_1=-a_{141} a_{24} \varOmega D_0W_1\nonumber \\{} & {} {}&-a_{141} a_{24} \varOmega D_1W_0 \nonumber \\{} & {} {}&-a_{24} W_0 D_0W_0-D_1\text {T0}_0 \nonumber \\{} & {} {}&D_0\text {T1}_1+a_{32} \text {T1}_1=-a_{33} D_0W_1\nonumber \\{} & {} {}&-a_{33} D_1W_0-D_1\text {T1}_0 \nonumber \\&\bullet \;\text {Order}\;\;\epsilon ^4{} & {} D_0^2W_3+ \varOmega ^2 W_3=-a_{12} D_0W_1-a_{12} D_1W_0\nonumber \\{} & {} {}&-3 a_{14} W_1 W_0^2-a_{141} a_{16} \text {T0}_0 \varOmega \nonumber \\{} & {} {}&-\frac{3 \sigma W_0^2}{4 a_{141} \varOmega }-\frac{3 W_2 W_0 \varOmega }{a_{141}}-\frac{3 W_1^2 \varOmega }{2 a_{141}}\nonumber \\{} & {} {}&-a_{15} \text {T1}_0-2 D_0 D_1W_2-D_1^2W_1\nonumber \\{} & {} {}&-2 D_0 D_2W_1-2 D_1 D_2W_0-2 D_0 D_3W_0\nonumber \\{} & {} {}&-\sigma W_1 \end{aligned}$$
(50)
$$\begin{aligned}{} & {} {}&D_0\text {T0}_2+a_{22} \text {T0}_2=-\frac{a_{141} a_{24} \sigma D_0W_0}{2 \varOmega }\nonumber \\{} & {} {}&-a_{141} a_{24} \varOmega D_0W_2-a_{141} a_{24} \varOmega D_1W_1\nonumber \\{} & {} {}&-a_{141} a_{24} \varOmega D_2W_0\nonumber \\{} & {} {}&-a_{24} W_0 D_0W_1-a_{24} W_0 D_1W_0-a_{24} W_1D_0W_0\nonumber \\{} & {} {}&-D_1\text {T0}_1-D_2\text {T0}_0 \nonumber \\{} & {} {}&D_0\text {T1}_2+a_{32} \text {T1}_2=-a_{33} D_0W_2-a_{33} D_1W_1\nonumber \\{} & {} {}&-a_{33} D_2W_0-D_1\text {T1}_1-D_2\text {T1}_0 \nonumber \\&\bullet \;\text {Order}\;\;\epsilon ^5{} & {} D_0^2W_4+ \varOmega ^2 W_4=-a_{12} D_0W_2\nonumber \\{} & {} {}&-a_{12} D_1W_1-a_{12} D_2W_0-3 a_{14} W_2 W_0^2\nonumber \\{} & {} {}&-3 a_{14} W_1^2 W_0-a_{141} a_{16} \text {T0}_1 \varOmega \nonumber \\{} & {} {}&-\frac{3 \sigma W_1 W_0}{2 a_{141} \varOmega }-\frac{3 W_3 W_0 \varOmega }{a_{141}}-\frac{3 W_1 W_2 \varOmega }{a_{141}}\nonumber \\{} & {} {}&-a_{15} \text {T1}_1-a_{16} \text {T0}_0 W_0-2 D_0 D_1W_3\nonumber \\{} & {} {}&-D_1^2W_2-2 D_0 D_2W_2-2 D_1 D_2W_1\nonumber \\{} & {} {}&-D_2^2W_0-2 D_0 D_3W_1\nonumber \\{} & {} {}&-2 D_1 D_3W_0-2 D_0 D_4W_0-\sigma W_2 \\{} & {} {}&D_0\text {T0}_3+a_{22} \text {T0}_3=-\frac{a_{141} a_{24} \sigma D_0W_1}{2 \varOmega }\nonumber \\{} & {} {}&-\frac{a_{141} a_{24} \sigma D_1W_0}{2 \varOmega }-a_{141} a_{24} \varOmega D_0W_3 \nonumber \\{} & {} {}&-a_{141} a_{24} \varOmega D_1W_2-a_{141} a_{24} \varOmega D_2W_1\nonumber \\{} & {} {}&-a_{141} a_{24} \varOmega D_3W_0-a_{24} W_0 D_0W_2 \nonumber \\{} & {} {}&-a_{24} W_0 D_1W_1-a_{24} W_0 D_2W_0\nonumber \\{} & {} {}&-a_{24} W_1 D_0W_1-a_{24} W_1 D_1W_0 \nonumber \\{} & {} {}&-a_{24} W_2 D_0W_0-D_1\text {T0}_2-D_2\text {T0}_1-D_3\text {T0}_0 \nonumber \\{} & {} {}&D_0\text {T1}_3+a_{32} \text {T1}_3=-a_{33} D_0W_3\nonumber \\{} & {} {}&-a_{33} D_1W_2-a_{33} D_2W_1-a_{33} D_3W_0 \nonumber \\{} & {} {}&-D_1\text {T1}_2-D_2\text {T1}_1-D_3\text {T1}_0 \nonumber \end{aligned}$$
(51)

At first order, the solution of the mechanical equation (47) reads

$$\begin{aligned} W_0 = A(T_1, T_2, T_3, T_4) \textrm{e}^{i \varOmega T_0} + c.c. \end{aligned}$$
(52)

with \(A(T_1, T_2, T_3, T_4)\) undetermined function of the slow time scales. Substituting \(W_0\) in the first equation of (48), and imposing the solvability condition implies

$$\begin{aligned} D_1 A=0 \end{aligned}$$
(53)

The particular solutions at order \(\epsilon ^2\) are

$$\begin{aligned} \begin{aligned}&W_1=-\frac{3 A \bar{A}}{a_{141} \varOmega }+\frac{A^2 \textrm{e}^{2 i \varOmega T_0} }{2 a_{141} \varOmega }+c.c.\\&\text {T0}_0=\frac{ a_{141} a_{24} \varOmega ^2 A\textrm{e}^{i \varOmega T_0} }{i a_{22}-\varOmega }+ c.c.\\&\text {T1}_0=\frac{a_{33} \varOmega A e^{i \varOmega T_0}}{i a_{32}-\varOmega }+c.c. \end{aligned} \end{aligned}$$
(54)

Moving to the third order, Eqs. (52), (54) are substituted into Eq. (49); removing secular terms into the mechanical equation leads to

$$\begin{aligned} D_2A= \frac{i \left( -f+2 (\sigma +i a_{12} \varOmega )A-24 a_{14} A^2 \bar{A}\right) }{4 \varOmega } \end{aligned}$$
(55)

Mechanical and thermal solutions at third-order result

$$\begin{aligned}&W_2=\left( \frac{a_{14}}{8 \varOmega ^2}+\frac{3}{16 a_{141}^2 \varOmega ^2}\right) A^3 \textrm{e}^{3 i \varOmega T_0 } +c.c. \nonumber \\&\text {T0}_1=\frac{2 a_{24} \varOmega }{+i a_{22}-2 \varOmega }A^2 \textrm{e}^{2 i \varOmega T_0 }+c.c.\\&\text {T1}_1=\frac{ a_{33} }{a_{141}(i a_{32}-2 \varOmega )}A^2\textrm{e}^{2 i \varOmega T_0 }+c.c. \nonumber \end{aligned}$$
(56)

At fourth order, after substitution of solvability conditions and particular solutions at the previous orders, eliminating secular terms implies

$$\begin{aligned} D_3A=\frac{i}{2}\left( \frac{ a_{141}^2 a_{16} a_{24} \varOmega ^2}{i a_{22}-\varOmega }+\frac{a_{15} a_{33}}{i a_{32}-\varOmega }\right) A \end{aligned}$$
(57)

Particular solutions at fourth order read

$$\begin{aligned}&W_3= \frac{3 \sigma A \bar{A}}{4 a_{141} \varOmega ^3}+\frac{3 \left( 20 a_{14} a_{141}^2-19\right) }{8 a_{141}^3 \varOmega ^3}A^2 \bar{A}^2\nonumber \\&+\left( \frac{ f A}{3 a_{141}\varOmega ^3}+\frac{7 \left( 14 a_{14} a_{141}^2-3\right) }{16 a_{141}^3 \varOmega ^3}A^3 \bar{A}\right. \nonumber \\&\quad \left. -\frac{3 \sigma +4 i a_{12} \varOmega }{12 a_{141} \varOmega ^3}A^2 \right) \textrm{e}^{2i \varOmega T_0}\nonumber \\&+\frac{2 a_{14} a_{141}^2+1}{16 a_{141}^3 \varOmega ^3}A^4 \textrm{e}^{4 i \varOmega T_0 }+c.c.\\&\text {T0}_2=\left( \frac{i a_{141} a_{22} a_{24} f}{4 (a_{22}+i \varOmega )^2}\right. \nonumber \\&\left. +\frac{ a_{141} a_{24} (a_{12} a_{22} \varOmega -2 i a_{22} \sigma +\sigma \varOmega )A}{2 (a_{22}+i \varOmega )^2} \right. \nonumber \\&\left. +\frac{i a_{24} \left( a_{22} \left( 12 a_{14} a_{141}^2+5\right) +5 i \varOmega \right) A^2\bar{A} }{2 a_{141} (a_{22}+i \varOmega )^2}\right) \textrm{e}^{i \varOmega T_0 }\nonumber \\&-\frac{3 i a_{24} \left( 2 a_{14} a_{141}^2+11\right) A^3 \textrm{e}^{3 i \varOmega T_0}}{16 a_{141} (a_{22}+3 i \varOmega )}+c.c. \nonumber \\&\text {T1}_2=\left( \frac{i a_{32} a_{33} f}{4 \varOmega (a_{32}+i \varOmega )^2}+\frac{ a_{32} a_{33} (a_{12} \varOmega -i \sigma )A}{2 \varOmega (a_{32}+i \varOmega )^2}\right. \nonumber \\&\left. +\frac{6 i a_{14} a_{32} a_{33} A^2\bar{A}}{\varOmega (a_{32}+i \varOmega )^2}\right) \textrm{e}^{i \varOmega T_0 } \nonumber \\&-\frac{3 i a_{33} \left( 2 a_{14} a_{141}^2+3\right) A^3 \textrm{e}^{3i \varOmega T_0 }}{16 a_{141}^2 \varOmega (a_{32}+3 i \varOmega )}+c.c. \nonumber \end{aligned}$$
(58)

Finally, at fifth order, solvability condition for the mechanical equation of (51) provides

$$\begin{aligned} D_4A&=\frac{f (a_{12} \varOmega +i \sigma )}{16 \varOmega ^3} -\frac{i\left( a_{12}^2 \varOmega ^2+\sigma ^2\right) A}{8 \varOmega ^3}\nonumber \\&\quad +\frac{3 i a_{14} f A^2 }{4 \varOmega ^3} -\frac{i a_{14} f A \bar{A}}{2 \varOmega ^3}\\&\quad +\frac{ a_{14}(-2 a_{12} \varOmega +3 i \sigma ) A^2\bar{A} }{\varOmega ^3} -\frac{27 i a_{14}^2 A^3\bar{A}^2}{\varOmega ^3} \nonumber \end{aligned}$$
(59)

According to the usual reconstitution procedure [37], the amplitude derivatives with respect to time t are obtained from (21)

$$\begin{aligned} \dot{A}= \epsilon D_1A + \epsilon ^2 D_2A+\epsilon ^3 D_3A+\epsilon ^4 D_4 A \end{aligned}$$
(60)

The \( \epsilon \) parameter is completely reabsorbed through a backward rescaling, and recalling Eqs. (53), (55), (57), (59), the complex amplitude modulation equation for the mechanical variable results

$$\begin{aligned} \dot{A}= & {} c_{1r}+ i c_{1i} + (c_{2r}+ i c_{2i}) A+ i c_{3i} A \bar{A}\nonumber \\{} & {} -\frac{3}{2} i c_{3i} A^2+(c_{4r}+ i c_{4i}) A^2 \bar{A}+ i c_{5i} A^3 \bar{A}^2 \end{aligned}$$
(61)

where

$$\begin{aligned} c_{1r}&= \frac{a_{12} f}{16 \varOmega ^2}, \; c_{1i}= \frac{f \left( \sigma -4 \varOmega ^2\right) }{16 \varOmega ^3},\; \nonumber \\ c_{2r}&= -\frac{a_{12}}{2}+\frac{a_{16} a_{22} a_{24} \varOmega ^2}{4 a_{14} \left( a_{22}^2+\varOmega ^2\right) }+\frac{a_{15} a_{32} a_{33}}{2 \left( a_{32}^2+\varOmega ^2\right) },\nonumber \\ c_{2i}&= -\frac{a_{12}^2 \varOmega ^2+\sigma ^2-4 \sigma \varOmega ^2}{8 \varOmega ^3}-\frac{a_{16} a_{24} \varOmega ^3}{4 a_{14} \left( a_{22}^2+\varOmega ^2\right) }\nonumber \\&\quad -\frac{a_{15} a_{33} \varOmega }{2 \left( a_{32}^2+\varOmega ^2\right) },\; c_{3i}= -\frac{a_{14} f}{2 \varOmega ^3},\nonumber \\ c_{4r}&= -\frac{2 a_{12} a_{14}}{\varOmega ^2},\; c_{4i}= \frac{3 a_{14} \left( \sigma -2 \varOmega ^2\right) }{\varOmega ^3},\nonumber \\ c_{5i}&= -\frac{27 a_{14}^2}{\varOmega ^3} \end{aligned}$$
(62)

The complex-valued modulation equation for the mechanical amplitude A can be conveniently expressed in polar form applying the following transformation

$$\begin{aligned} A=\frac{1}{2} a(t) \textrm{e}^{i \theta (t)},\; \bar{A}=\frac{1}{2} a(t) \textrm{e}^{-i \theta (t)} \end{aligned}$$
(63)

Separating real and imaginary parts leads

$$\begin{aligned} \dot{a}&=+2(c_{1i} \sin \theta +c_{1r} \cos \theta )+c_{2r} a\nonumber \\&\quad +\frac{5 c_{3i} a^2 \sin \theta }{4} +\frac{c_{4r} a^3}{4} \end{aligned}$$
(64)
$$\begin{aligned} a\dot{\theta }&=2( c_{1i} \cos \theta - c_{1r} \sin \theta )+c_{2i} a\nonumber \\&\quad -\frac{c_{3i} a^2 \cos \theta }{4} +\frac{c_{4i} a^3}{4} +\frac{ c_{5i} a(t)^5}{16} \end{aligned}$$
(65)

where the time dependence of a and \(\theta \) has been omitted for the sake of readability. Finally, the system asymptotic solutions can be reconstructed at fourth order by recalling Eqs. (52), (54), (56), (58). Moreover, remembering that \(W(t)=W_{e_2}+\tilde{W}\), \(T_{R0}(t)=T_{R0e_2}+\tilde{T}_{R0}\), \(T_{R1}(t)=T_{R1e_2}+\tilde{T}_{R1}\), mechanical and thermal solutions can be expressed in trigonometric form as

$$\begin{aligned} W(t)&=W_{e_2}-3 c_{6} a^2-27 c_{7} a^4+a \cos \psi \nonumber \\&\quad +c_{8} a \cos (2 \psi -\theta ) +(c_{6} a^2 +14 c_{7} a^4 ) \cos (2 \psi ) \nonumber \\&\quad +c_{9} a^2 \sin (2 \psi )+c_{10} a^3 \cos (3 \psi )\nonumber \\&\quad +c_{7} a^4 \cos (4 \psi ) \end{aligned}$$
(66)
$$\begin{aligned} T_{R0}(t)&=T_{R0e_2}+c_{11} \cos (\psi -\theta )+c_{12} a \cos \psi \nonumber \\&\quad +c_{13} a^3 \cos \psi +c_{14} a^2 \cos (2 \psi )+c_{15} a^3 \cos (3 \psi )\nonumber \\&\quad +c_{16} \sin (\psi -\theta ) +c_{17} a \sin \psi \nonumber \\&\quad +c_{18} a^3 \sin \psi +c_{19} a^3 \sin (3 \psi ) +c_{20} a^2 \sin (2 \psi ) \end{aligned}$$
(67)
$$\begin{aligned} T_{R1}(t)&=c_{21} \cos (\psi -\theta )+c_{22} a \cos \psi \nonumber \\&\quad +c_{23} a^3 \cos \psi +c_{24} a^2 \cos (2 \psi )+c_{25}a^3 \cos (3 \psi )\nonumber \\&\quad +c_{26} \sin (\psi -\theta ) +c_{27} a \sin \psi \nonumber \\&\quad +c_{28} a^3 \sin \psi +c_{29} a^2 \sin (2 \psi )+c_{30} a^3 \sin (3 \psi ) \end{aligned}$$
(68)

where \(\psi =\varOmega t +\theta \) and

$$\begin{aligned} c_{6}&=\frac{\sqrt{a_{14}}}{2 \sqrt{2} \varOmega }-\frac{\sqrt{a_{14}} \sigma }{4 \sqrt{2} \varOmega ^3},\qquad c_{7}=\frac{\sqrt{a_{14}^3}}{16 \sqrt{2} \varOmega ^3}, \\ c_{8}&= \frac{\sqrt{2} \sqrt{a_{14}} f}{3 \varOmega ^3},\qquad c_{9}= \frac{a_{12} \sqrt{a_{14}}}{3 \sqrt{2} \varOmega ^2}, \qquad c_{10}= \frac{a_{14}}{8 \varOmega ^2}, \\ c_{11}&= \frac{a_{22}^2 a_{24} \varOmega f }{\sqrt{2} \sqrt{a_{14}} \left( a_{22}^2+\varOmega ^2\right) ^2}, \\ c_{12}&=-\frac{a_{24} \varOmega \left( -a_{12} a_{22}^3+a_{12} a_{22} \varOmega ^2+3 a_{22}^2 \sigma +2 a_{22}^2 \varOmega ^2+\sigma \varOmega ^2+2 \varOmega ^4\right) }{2 \sqrt{2}\sqrt{a_{14}} \left( a_{22}^2+\varOmega ^2\right) ^2}, \\ c_{13}&= \frac{\sqrt{a_{14}} a_{24} \varOmega \left( 17 a_{22}^2+5 \varOmega ^2\right) }{4 \sqrt{2} \left( a_{22}^2+\varOmega ^2\right) ^2}, \qquad c_{14}= -\frac{2 a_{24} \varOmega ^2}{a_{22}^2+4\varOmega ^2}, \\ c_{15}&= -\frac{27 \sqrt{a_{14}} a_{24} \varOmega }{8 \sqrt{2} \left( a_{22}^2+9 \varOmega ^2\right) }, \\ c_{16}&=-\frac{a_{22} a_{24} \left( a_{22}^2-\varOmega ^2\right) f}{2 \sqrt{2} \sqrt{a_{14}} \left( a_{22}^2+\varOmega ^2\right) ^2}, \\ c_{17}&= \frac{a_{22} a_{24} \left( a_{12} a_{22} \varOmega ^2+a_{22}^2 \left( \sigma +\varOmega ^2\right) +\varOmega ^4\right) }{\sqrt{2} \sqrt{a_{14}} \left( a_{22}^2+\varOmega ^2\right) ^2}, \\ c_{18}&= -\frac{\sqrt{a_{14}} a_{22} a_{24} \left( 11 a_{22}^2-\varOmega ^2\right) }{4 \sqrt{2} \left( a_{22}^2+\varOmega ^2\right) ^2}, \\ c_{19}&= \frac{9 \sqrt{a_{14}} a_{22} a_{24}}{8\sqrt{2} \left( a_{22}^2+9 \varOmega ^2\right) }, \qquad c_{20}= \frac{a_{22} a_{24} \varOmega }{a_{22}^2+4 \varOmega ^2}, \\ c_{21}&= \frac{a_{32}^2 a_{33} f}{\left( a_{32}^2+\varOmega ^2\right) ^2}, \\ c_{22}&= \frac{a_{33} \left( a_{12} a_{32} (a_{32}-\varOmega ) (a_{32}+\varOmega )-2 \left( a_{32}^2 \left( \sigma +\varOmega ^2\right) +\varOmega ^4\right) \right) }{2\left( a_{32}^2+\varOmega ^2\right) ^2}, \\ c_{23}&= \frac{3 a_{14} a_{32}^2 a_{33}}{\left( a_{32}^2+\varOmega ^2\right) ^2}, \qquad c_{24}= -\frac{\sqrt{2} \sqrt{a_{14}} a_{33} \varOmega }{a_{32}^2+4 \varOmega ^2}, \\ c_{25}&= -\frac{9 a_{14} a_{33}}{8\left( a_{32}^2+9\varOmega ^2\right) }, \\ c_{26}&=- \frac{a_{32} a_{33} (a_{32}-\varOmega ) (a_{32}+\varOmega ) f}{2 \varOmega \left( a_{32}^2+\varOmega ^2\right) ^2}, \\ c_{27}&= \frac{a_{32} a_{33} \left( \varOmega ^2 (2 a_{32}(a_{12}+a_{32})-\sigma )+a_{32}^2 \sigma +2 \varOmega ^4\right) }{2 \varOmega \left( a_{32}^2+\varOmega ^2\right) ^2}, \\ c_{28}&= \frac{3 a_{14} a_{32} a_{33} \left( \varOmega ^2-a_{32}^2\right) }{2 \varOmega \left( a_{32}^2+\varOmega ^2\right) ^2}, \qquad c_{29}= \frac{\sqrt{a_{14}} a_{32} a_{33}}{\sqrt{2} \left( a_{32}^2+4 \varOmega ^2\right) }, \\ c_{30}&= \frac{3 a_{14} a_{32} a_{33}}{8 a_{32}^2 \varOmega +72 \varOmega ^3} \end{aligned}$$

As alternative asymptotic procedure aimed at improving the description of the membrane temperature dynamics, resonance condition is imposed only to the terms related to W and \(W^2\) in the mechanical Eq. (10). Using the same asymptotic scheme as the one previously described, the analytical response of the membrane temperature, which is formally identical to (67), shows different expressions of the following coefficients:

$$\begin{aligned} \begin{aligned}&c_{11}= -\frac{a_{17} a_{22}^2 a_{24} \omega }{\sqrt{2} \sqrt{a_{14}} \left( a_{22}^2+\varOmega ^2\right) ^2},\\&c_{12}= \frac{a_{24} \omega \left( a_{12} \left( a_{22}^3-a_{22} \varOmega ^2\right) -2 \left( a_{22}^2 \left( \sigma +\varOmega ^2\right) +\varOmega ^4\right) \right) }{2 \sqrt{2} \sqrt{a_{14}} \left( a_{22}^2+\varOmega ^2\right) ^2},\\&c_{13}= \frac{\sqrt{a_{14}} a_{24} \left( a_{22}^2 (12 \omega +5 \varOmega )+5 \varOmega ^3\right) }{4 \sqrt{2} \left( a_{22}^2+\varOmega ^2\right) ^2}, \\&c_{14}= -\frac{a_{24} \varOmega (\omega +\varOmega )}{a_{22}^2+4 \varOmega ^2},\\&c_{15}= -\frac{9 \sqrt{a_{14}} a_{24} (\omega +2 \varOmega )}{8 \sqrt{2} \left( a_{22}^2+9 \varOmega ^2\right) }, \\&c_{16}= \frac{a_{17} a_{22} a_{24} \omega \left( a_{22}^2-\varOmega ^2\right) }{2 \sqrt{2} \sqrt{a_{14}} \varOmega \left( a_{22}^2+\varOmega ^2\right) ^2},\\&c_{17}= \frac{a_{22} a_{24} \omega \left( 2 a_{12} a_{22} \varOmega ^2+a_{22}^2 \left( \sigma +2 \varOmega ^2\right) -\sigma \varOmega ^2+2 \varOmega ^4\right) }{2 \sqrt{2} \sqrt{a_{14}} \varOmega \left( a_{22}^2+\varOmega ^2\right) ^2},\\&c_{18}= -\frac{\sqrt{a_{14}} a_{22} a_{24} \left( a_{22}^2 (6 \omega +5 \varOmega )+\varOmega ^2 (5 \varOmega -6 \omega )\right) }{4 \sqrt{2} \varOmega \left( a_{22}^2+\varOmega ^2\right) ^2},\\&c_{19}= \frac{3 \sqrt{a_{14}} a_{22} a_{24} (\omega +2 \varOmega )}{8 \sqrt{2} \varOmega \left( a_{22}^2+9 \varOmega ^2\right) }, \; \qquad c_{20}= \frac{a_{22} a_{24} (\omega +\varOmega )}{2 \left( a_{22}^2+4 \varOmega ^2\right) } \end{aligned} \end{aligned}$$
(69)

In turn, the coefficients of mechanical and bending thermal solutions are identical to those of the fully resonant asymptotic procedure, apart from a very minor difference. Thus, they are not reported here, for the sake of brevity.

Appendix D Multiple Scale analysis around double-zero bifurcation

Analysis near the bifurcation point is performed by introducing fractional power series expansions to study Eq. (4). Accordingly, three time scales have been introduced, i.e., \(T_{0}=t, \; T_{1}= \epsilon ^{1/2} t, \; T_{2}=\epsilon t\), and consistently, the time derivatives are expressed as

$$\begin{aligned} \begin{aligned}&d/dt = D_0 + \epsilon ^{1/2} D_1 + \epsilon D_2 \\&d^2/dt^2 = D^2_0 +2\epsilon ^{1/2} D_0D_1+\epsilon D^2_1 +2\epsilon D_0D_2 \end{aligned} \end{aligned}$$
(70)

where \(D_i = \partial /\partial T_i\). In order to account for the different time evolution of the mechanical variable with respect to the thermal ones, variables are scaled as follows:

$$\begin{aligned} \tilde{W}=\epsilon ^{1/2}\; \hat{W}, \qquad \tilde{T}_{R0}=\epsilon \; \hat{T}_{R0}, \qquad \tilde{T}_{R1}=\epsilon \; \hat{T}_{R1} \end{aligned}$$
(71)

so that their expression as perturbation of the reference equilibrium reads:

$$\begin{aligned} \begin{aligned} \tilde{W}(t)\,\,\,&=\epsilon ^{1/2}W_0 (T_0,T_1,T_2)+\epsilon W_1 (T_0,T_1,T_2)\\&\quad +\epsilon ^{3/2}W_2 (T_0,T_1,T_2) \\ \tilde{T}_{R0}(t)&=\epsilon \text {T0}_0 (T_0,T_1,T_2)+\epsilon ^{3/2}\text {T0}_1 (T_0,T_1,T_2)\\&\quad +\epsilon ^{2}\text {T0}_2 (T_0,T_1,T_2) \\ \tilde{T}_{R1}(t)&=\epsilon \text {T1}_0 (T_0,T_1,T_2)\\&\quad +\epsilon ^{3/2}\text {T1}_1 (T_0,T_1,T_2)+\epsilon ^{2}\text {T1}_2 (T_0,T_1,T_2) \end{aligned} \end{aligned}$$
(72)

Since analysis is developed far from resonance regions (nonresonance condition), the forcing term is scaled to the generating order, i.e. \(f=\epsilon ^{1/2} \; \hat{f}\), while the other parameters are scaled as follows:

$$\begin{aligned} \omega ^2= & {} \epsilon \; \hat{\omega }^2, \quad a_{12}=\epsilon \; \hat{a}_{12}, \quad a_{15}=\epsilon ^{1/2} \;\hat{a}_{15}, \nonumber \\ a_{33}= & {} \epsilon ^{1/2} \;\hat{a}_{33} \end{aligned}$$
(73)

The resulting perturbation equations at each order read:

$$\begin{aligned}&\bullet \;\text {Order}\;\;\epsilon{} & {} D_0^2W_0 = f \cos (\varOmega T_0) \end{aligned}$$
(74)
$$\begin{aligned}&\bullet \;\text {Order}\;\;\epsilon ^{3/2}{} & {} D_0^2W_1 = -2 D_0 D_1W_0 \nonumber \\{} & {} {}&D_0\text {T0}_0+a_{22} \text {T0}_0=-a_{24} W_0 D_0W_0 \end{aligned}$$
(75)
$$\begin{aligned}{} & {} {}&D_0\text {T1}_0+a_{32} \text {T1}_0=-a_{33} D_0W_0 \nonumber \\&\bullet \;\text {Order}\;\;\epsilon ^2{} & {} D_0^2W_2=-\omega ^2 W_0-a_{14} W_0^3\nonumber \\{} & {} {}&-a_{12} D_0W_0-2 D_0D_1W_1-D_1^2W_0 \nonumber \\{} & {} {}&-2D_0D_2W_0-a_{15} \text {T1}_0-a_{16} \text {T0}_0 W_0 \\{} & {} {}&D_0\text {T0}_1+a_{22} \text {T0}_1=-a_{24} W_0 D_0W_1\nonumber \\{} & {} {}&-a_{24} W_0 D_1W_0-a_{24} W_1 D_0W_0-D_1\text {T0}_0\nonumber \\{} & {} {}&D_0\text {T1}_1+a_{32} \text {T1}_1=-a_{33} D_0W_1\nonumber \\{} & {} {}&-a_{33} D_1W_0-D_1\text {T1}_0 \nonumber \end{aligned}$$
(76)

At first order, the solution of the mechanical Eq. (74) is combination of complementary and particular solution and reads

$$\begin{aligned} W_0 = A(T_1, T_2)-\frac{f}{2\varOmega ^2} \textrm{e}^{i \varOmega T_0} + c.c. \end{aligned}$$
(77)

with \(A(T_1, T_2)\) undetermined real amplitude which is function of the slow time scales, and c.c. complex conjugate terms.

At order \(\epsilon ^{3/2}\), substituting \(W_0\) in the first equation of (75) implies \(D_0^2W_1 = 0\), which furnishes null contribution to the modulation equation and to the mechanical solution, as well. In turn, solving the thermal equations yields the following particular solutions:

$$\begin{aligned} \begin{aligned}&\text {T0}_0=-\frac{a_{24} f A \textrm{e}^{ i \varOmega T_0 }}{ 2 i a_{22}\varOmega -2 \varOmega ^2}-\frac{a_{24} f^2 \textrm{e}^{2 i \varOmega T_0 }}{ 4 i a_{22}\varOmega ^3-8 \varOmega ^4}+ c.c.\\&\text {T1}_0=-\frac{ a_{33}f \textrm{e}^{i \varOmega T_0 }}{2 i a_{32}\varOmega -2 \varOmega ^2}+c.c. \end{aligned} \end{aligned}$$
(78)

In view of Eqs. (77), (78), the solvability condition of the mechanical problem at the order \(\epsilon ^2\) (76) yields

$$\begin{aligned} D_1^2A=c_{1}A+c_3A^3 \end{aligned}$$
(79)

where

$$\begin{aligned}&c_{1}= -\omega ^2+\frac{3 a_{14} f^2}{2\varOmega ^4}-\frac{2a_{16} a_{24}f^2}{4a_{22}^2\varOmega ^2+4\varOmega ^4},\; c_{3}= -a_{14} \end{aligned}$$

Moving to the real time scale t, the resulting amplitude modulation equation is

$$\begin{aligned} \ddot{A}=c_{1}A+c_3A^3 \end{aligned}$$
(80)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Settimi, V., Rega, G. Asymptotic formulation of the nonlinear bifurcation scenarios in thermomechanically coupled plates. Nonlinear Dyn 111, 5941–5962 (2023). https://doi.org/10.1007/s11071-022-08176-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08176-x

Keywords

Navigation