Log in

Decision support for infrastructure planning: a comprehensive location–allocation model for fire station in complex urban system

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Infrastructures are the most important aspect of any urban system. Properly planned infrastructures are critical for ensuring services and protecting an urban system from disasters. The fire resilience of an urban system depends on the number and location of it’s fire stations. To support urban resilience through properly planned critical infrastructures, this research attempted to develop a decision support model to solve the location–allocation problem of fire stations in complex urban settings. The developed model combined geographical information system, multi-criteria analysis, and set cover algorithm to utilize global knowledge and local experience. The findings of the research found aligned with other observations. Results revealed that systematic planning can significantly increase the level of outputs from the same input and absorb local constraints with minimum compromise in development goals. The importance of expert opinion in decision making was found very critical. Integration of science and local experience, and involvement of practitioners, decision makers, and scholars could significantly increase the problem solving of the complex world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmed I (2014) Factors in building resilience in urban slums of Dhaka, Bangladesh. Procedia Econ Finance 18:745–753. https://doi.org/10.1016/S2212-5671(14)00998-8

    Article  Google Scholar 

  • Alam MJ, Baroi GN (2004) Fire hazard categorization and risk assessment for Dhaka City in GIS framework. J Civ Eng 32(1):35–45

    Google Scholar 

  • American Planning Association (APA) (2006) Planning and urban design standards. Wiley, Hoboken

    Google Scholar 

  • Ansary MA, Noor MA, Rashid MA (2004) Site amplification characteristics of Dhaka City. J Civ Eng (IEB) 32(1):1–6

    Google Scholar 

  • Arogundade OT, Akinwale AT, Adekoya AF, Awe Oludare G (2005) A 0–1 model for fire and emergency service facility location selection: a case study in Nigeria. J Theor Appl Inf Technol 9:50–59

    Google Scholar 

  • Bach L (1980) Locational models for systems of private and public facilities based on concepts of accessibility and access opportunity. Environ Plan A 12(3):301–320. https://doi.org/10.1068/a120301

    Article  Google Scholar 

  • Badri MA (1999) Combining the analytic hierarchy process and goal programming for global facility location–allocation problem. Int J Prod Econ 62(3):237–248. https://doi.org/10.1016/S0925-5273(98)00249-7

    Article  Google Scholar 

  • Badri MA, Mortagy AK, Alsayed CA (1998) A multi-objective model for locating fire stations. Eur J Oper Res 110(2):243–260. https://doi.org/10.1016/S0377-2217(97)00247-6

    Article  Google Scholar 

  • Barr RC, Caputo AP (2003) Planning fire station locations in organizing for fire and rescue services. National Fire Protection Agency, Quincy

    Google Scholar 

  • Blum EH (1971) Urban fire protection: studies of the operations of the New York City Fire Department. The New York City RAND Institute, New York

    Google Scholar 

  • Boin A, McConnell A (2007) Preparing for critical infrastructure breakdowns: the limits of crisis management and the need for resilience. J Conting Crisis Manag 15(1):50–59. https://doi.org/10.1111/j.1468-5973.2007.00504.x

    Article  Google Scholar 

  • Bolouri S, Vafaeinejad A, Alesheikh AA, Aghamohammadi H (2018) The ordered capacitated multi-objective location–allocation problem for fire stations using spatial optimization. ISPRS Int J Geo-Inf 7(2):44

    Article  Google Scholar 

  • Borodin A, Nielsen MN, Rackoff C (2003) (Incremental) Priority algorithms. Algorithmica 37(4):295–326

    Article  Google Scholar 

  • Chevalier P, Thomas I, Geraets D, Goetghebeur E, Janssens O, Peeters D, Plastria F (2012) Locating fire stations: an integrated approach for Belgium. Socio-Econ Plan Sci 46(2):173–182. https://doi.org/10.1016/j.seps.2012.02.003

    Article  Google Scholar 

  • Chowdhury MS (2014) Sustainable transportation systems for Dhaka Metropolitan City: issues and opportunities. In: International conference on sustainable infrastructure, American Society of Engineers, California, pp 448–459. https://doi.org/10.1061/9780784478745.040

  • Chung RM (1996) January 17, 1995 Hyogoken–Nanbu (Kobe) earthquake: performance of structures, lifelines, and fire protection systems (NIST SP 901). US Department of Commerce, Technology Administration, National Institute of Standards and Technology

  • Chvatal V (1979) A greedy heuristic for the set-covering problem. Math Oper Res 4(3):233–235

    Article  Google Scholar 

  • Combs TE, Moore JT (2004) A hybrid tabu search/set partitioning approach to tanker crew scheduling. Mil Oper Res 1:43–56

    Article  Google Scholar 

  • Cooper L (1963) Location–allocation problems. Oper Res 11(3):331–343. https://doi.org/10.1287/opre.11.3.331

    Article  Google Scholar 

  • Elkarmi F, Mustafa I (1993) Increasing the utilization of solar energy technologies (SET) in Jordan: analytic hierarchy process. Energy Policy 21(9):978–984. https://doi.org/10.1016/0301-4215(93)90186-J

    Article  Google Scholar 

  • Federal Emergency Management Agency (FEMA) (2006) HAZUS-MH MR2: technical manual. Federal Emergency Management Agency, Washington, DC

    Google Scholar 

  • Frankel AD, Petersen MD, Mueller CS, Haller KM, Wheeler RL, Leyendecker EV, Wesson RL, Harmsen SC, Cramer CH, Perkins DM, Rukstales KS (2002) Documentation for the 2002 update of the national seismic hazard maps. US Geological Survey Open-File Report

  • Garey MR, Johnson DS (1979) Computers and intractability, vol 174. Freeman, San Francisco

    Google Scholar 

  • Garfinkel RS, Nemhauser GL (1970) Optimal political districting by implicit enumeration techniques. Manag Sci 16(8):B-495

    Article  Google Scholar 

  • Goodman WI, Freund EC (1968) Principles and practice of urban planning. International City Managers’ Association, Washington, DC

    Google Scholar 

  • Guild RD, Rollin JE (1972) A fire station placement model. Fire Technol 8(1):33–43. https://doi.org/10.1007/BF02590587

    Article  Google Scholar 

  • Habib KMN, Alam JB (2003) Effects of alternative transportation options on congestion and air pollution in Dhaka City. J Civ Eng 31(2):165–175

    Google Scholar 

  • Habibi K, Lotfi S, Koohsari MJ (2008) Spatial analysis of urban fire station locations by integrating AHP model and IO logic using GIS (a case study of zone 6 of Tehran). J Appl Sci 8(19):3302–3315. https://doi.org/10.3923/jas.2008.3302.3315

    Article  Google Scholar 

  • Hamada M, Wakamatsu K (1992) Liquefaction-induced ground deformations during the 1923 Kanto Earthquake. In: Case studies liquefaction and lifeline performance during past earthquakes: Japanese case studies. US National Center for Earthquake Engineering Research (NCEER), p 50

  • Hogg JM (1968) The siting of fire stations. J Oper Res Soc 19(3):275–287. https://doi.org/10.1057/jors.1968.71

    Article  Google Scholar 

  • Ignall EJ, Kolesar P, Swersey AJ, Walker WE, Blum EH, Carter G, Bishop H (1975) Improving the deployment of New York City fire companies. Interfaces 2(2):48–61. https://doi.org/10.1287/inte.5.2pt2.48

    Article  Google Scholar 

  • Islam MM, Adri N (2008) Fire hazard management of Dhaka City: addressing issues relating to institutional capacity and public perception. Jahangirnagar Plan Rev 6:57–67

    Google Scholar 

  • Johnson R (2008) GIS technology and applications for the fire services. In: Zlatanova S, Li J (eds) Geospatial information technology for emergency response. Taylor & Francis Ltd, London, pp 351–372

    Google Scholar 

  • Khan SM, Hoque MS (2013) Traffic flow interruptions in Dhaka City: is smooth traffic flow possible? J Pres Univ 2(2):46–54

    Google Scholar 

  • Khan T, Islam MR (2013) Estimating costs of traffic congestion in Dhaka City. Int J Eng Sci Innov Technol 2(3):281–289

    Google Scholar 

  • Kolesar P, Blum EH (1973) Square root laws for fire engine response distances. Manag Sci 19(12):1368–1378. https://doi.org/10.1287/mnsc.19.12.1368

    Article  Google Scholar 

  • Lee S, Davidson R, Ohnishi N, Scawthorn C (2008) Fire following earthquake—reviewing the state-of-the-art of modeling. Earthq Spectra 24(4):933–967. https://doi.org/10.1193/1.2977493

    Article  Google Scholar 

  • Liang S, Wey WM (2013) Resource allocation and uncertainty in transportation infrastructure planning: a study of highway improvement program in Taiwan. Habitat Int 39:128–136. https://doi.org/10.1016/j.habitatint.2012.11.004

    Article  Google Scholar 

  • Liu N, Huang B, Chandramouli M (2006) Optimal siting of fire stations using GIS and ANT algorithm. J Comput Civ Eng. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:5(361)

    Article  Google Scholar 

  • Magar CS (2010) Seven principles for interconnectivity: achieving sustainability in design and construction. In: Clark W (ed) Sustainable communities design handbook. Butterworth-Heinemann, Boston, pp 165–179

    Chapter  Google Scholar 

  • Min H, Melachrinoudis E, Wu X (1997) Dynamic expansion and location of an airport: a multiple objective approach. Transp Res Part A Policy Pract 31(5):403–417. https://doi.org/10.1016/S0965-8564(96)00037-7

    Article  Google Scholar 

  • Monarchi DE, Hendrick TE, Plane DR (1977) Simulation for fire department deployment policy analysis. Decis Sci 8(1):211–227. https://doi.org/10.1111/j.1540-5915.1977.tb01078.x

    Article  Google Scholar 

  • Moteff J, Parfomak P (2004) Critical infrastructure and key assets: definition and identification. CRS Report for Congress, Washington, DC

    Google Scholar 

  • Mousalli MS, Fredrick HB, Sanli HI, Al-Tamimitoward FM (1999) An optimal deployment of fire stations in Riyadh, Saudi Arabia. J King Abdulaziz Univ 11(1):227–242

    Article  Google Scholar 

  • Murray AT (2013) Optimising the spatial location of urban fire stations. Fire Saf J 62:64–71. https://doi.org/10.1016/j.firesaf.2013.03.002

    Article  Google Scholar 

  • Murray AT, Grubesic TH (eds) (2007) Overview of reliability and vulnerability in critical infrastructure. In: Critical infrastructure. Advances in spatial science. Springer, Berlin, Heidelberg

    Chapter  Google Scholar 

  • Murray AT, Tong D (2009) GIS and spatial analysis in the media. Appl Geogr 29(2):250–259

    Article  Google Scholar 

  • Navitas P (2014) Improving resilience against urban fire hazards through environmental design in dense urban areas in Surabaya, Indonesia. Procedia Soc Behav Sci 135:178–183. https://doi.org/10.1016/j.sbspro.2014.07.344

    Article  Google Scholar 

  • Neely A (1998) Three modes of measurement: theory and practice. Int J Bus Perform Manag 1(1):47–64

    Article  Google Scholar 

  • Nisanci R (2010) GIS based fire analysis and production of fire-risk maps: the Trabzon experience. Sci Res Essays 5(9):970–977

    Google Scholar 

  • Oh JY, Hessami A, Yang HJ (2019) Minimizing response time with optimal fire station allocation. Stud Eng Technol 6(1):47–58

    Article  Google Scholar 

  • Olympia Fire Department (OFD) (2016) Hazard identification and vulnerability analysis. Olympia Fire Department, Olympia

    Google Scholar 

  • Ontario (2004) Public fire safety guidelines. The office of the Fire Marshal, Ontario. http://www.ofm.gov.on.ca/english/fireprotection/munguide/04-87-13.asp. Accessed 19 July 2016

  • Plane DR, Hendrick TE (1977) Mathematical programming and the location of fire companies for the Denver fire department. Oper Res 25(4):563–578. https://doi.org/10.1287/opre.25.4.563

    Article  Google Scholar 

  • Quadir F, Al Ameen MF, Momen S (2014) Visualization and queuing analysis of spatio-temporal traffic data. In: The 17th international conference on computer and information technology (ICCIT), Dhaka, pp 223–228

  • Rahman M (2008) Future mass rapid transit in Dhaka City: options, issues and realities. Jahangirnagar Plan Rev 6(1):69–81

    Google Scholar 

  • Rahman N, Ansary MA, Islam I (2015) GIS based map** of vulnerability to earthquake and fire hazard in Dhaka City, Bangladesh. Int J Disaster Risk Reduct 13:291–300. https://doi.org/10.1016/j.ijdrr.2015.07.003

    Article  Google Scholar 

  • Rahmawati D, Pamungkas A, Aulia BU, Larasati KD, Rahadyan GA, Dito AH (2016) Participatory map** for urban fire risk reduction in high-density urban settlement. Procedia Soc Behav Sci 227:395–401. https://doi.org/10.1016/j.sbspro.2016.06.091

    Article  Google Scholar 

  • Ramanathan R (2001) A note on the use of the analytic hierarchy process for environmental impact assessment. J Environ Manag 63(1):27–35. https://doi.org/10.1006/jema.2001.0455

    Article  Google Scholar 

  • Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281. https://doi.org/10.1016/0022-2496(77)90033-5

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    Google Scholar 

  • Saaty TL (1990) Multicriteria decision making: the analytic hierarchy process. RWS Publications, Pittsburgh

    Google Scholar 

  • Saaty TL (2006) Fundamentals of decision making and priority theory with the analytical hierarchy process. RWS Publications, Pittsburgh

    Google Scholar 

  • Saaty TL (2012) Decision making for leaders: the analytic hierarchy process for decisions in a complex world, third revised edition. RWS Publications, Pittsburgh. http://deltarevision.com/2002_docs/2002OFR-02-420.pdf. Accessed 26 Feb 2017

  • Sarkis J, Sundarraj RP (2006) Evaluation of enterprise information technologies: a decision model for high-level consideration of strategic and operational issues. IEEE Trans Syst Man Cybern Part C 36(2):260–273. https://doi.org/10.1109/TSMCC.2004.843245

    Article  Google Scholar 

  • Sayeeduzzaman M, Islam MA (1992) A fire hazard assessment model and fire hazard zones in Dhaka Statistical Metropolitan Area. Orient Geogr 36(1):3–23

    Google Scholar 

  • Scawthorn CR (2008) The shakeout scenario supplemental study: fire following earthquake. SPA Risk LLC, Berkeley

    Google Scholar 

  • Scawthorn C, Eidinger JM, Schiff A (eds) (2005) Fire following earthquake. ASCE Publications, Reston

    Google Scholar 

  • Scawthorn C, O’rourke TD, Blackburn FT (2006) The 1906 San Francisco earthquake and fire—enduring lessons for fire protection and water supply. Earthq Spectra 22(2_suppl):135–158

    Article  Google Scholar 

  • Schilling DA, Revelle C, Cohon J, Elzinga DJ (1980) Some models for fire protection locational decisions. Eur J Oper Res 5(1):1–7. https://doi.org/10.1016/0377-2217(80)90067-3

    Article  Google Scholar 

  • Schniederjans MJ, Garvin T (1997) Using the analytic hierarchy process and multi-objective programming for the selection of cost drivers in activity-based costing. Eur J Oper Res 100(1):72–80. https://doi.org/10.1016/S0377-2217(96)00302-5

    Article  Google Scholar 

  • Schreuder JA (1981) Application of a location model to fire stations in Rotterdam. Eur J Oper Res 6(2):212–219. https://doi.org/10.1016/0377-2217(81)90210-1

    Article  Google Scholar 

  • Soho DM (2007) What is “fire hazard”? Department of Forestry and Fire Protection, Sacramento California. http://ceres.ca.gov/foreststeward/html/firehazard.html. Accessed 27 Oct 2016

  • Steele W, Hussey K, Dovers S (2017) What’s critical about critical infrastructure? Urban Policy Res 35(1):74–86. https://doi.org/10.1080/08111146.2017.1282857

    Article  Google Scholar 

  • Tali JA, Malik MM, Divya S, Nusrath A, Mahalingam B (2017) Location–allocation model applied to urban public services: spatial analysis of fire stations in Mysore urban area Karnataka, India. Int J Adv Res Dev 2(5):795–801

    Google Scholar 

  • Tang CS, Zhou S (2012) Research advances in environmentally and socially sustainable operations. Eur J Oper Res 223(3):585–594. https://doi.org/10.1016/j.ejor.2012.07.030

    Article  Google Scholar 

  • Tillander K (2004) Utilisation of statistics to assess fire risks in buildings. PhD Dissertation, Helsinki University of Technology

  • Toregas C, Swain R, ReVelle C, Bergman L (1971) The location of emergency service facilities. Oper Res 19(6):1363–1373. https://doi.org/10.1287/opre.19.6.1363

    Article  Google Scholar 

  • Toronto Fire Service (TSF) (2005) Annual Report Toronto: Toronto Fire Services Division. http://www.toronto.ca/fire/annual_report/pdf/tfs_2005_annual_report.pdf. Accessed 20 July 2010

  • Uddin MS, Ahmad MM, Warnitchai P (2018) Surge dynamics of disaster displaced populations in temporary urban shelters: future challenges and management issues. Nat Hazards 94(1):201–225

    Article  Google Scholar 

  • Uddin MS, Routray JK, Warnitchai P (2019) Systems thinking approach for resilient critical infrastructures in urban disaster management and sustainable development. In: Noroozinejad Farsangi E, Takewaki I, Yang T, Astaneh-Asl A, Gardoni P (eds) Resilient structures and infrastructure. Springer, Singapore

    Google Scholar 

  • Weiss EN, Rao VR (1987) AHP design issues for large-scale systems. Decis Sci 18(1):43–61. https://doi.org/10.1111/j.1540-5915.1987.tb01502.x

    Article  Google Scholar 

  • Wismadi A (2015) Equity-based resource allocation for infrastructure development. PhD Dissertation, University of Twente

  • Yan Y, Qingsheng G, **nming T (2005) Gradual optimization of urban fire station locations based on geographical network model. In: Proceedings of international symposium on spatio-temporal modeling, spatial reasoning, analysis, data mining and data fusion, Peking University, China

  • Yang L, Jones BF, Yang SH (2007) A fuzzy multi-objective programming for optimization of fire station locations through genetic algorithms. Eur J Oper Res 181(2):903–915. https://doi.org/10.1016/j.ejor.2006.07.003

    Article  Google Scholar 

  • Zahedi F (1986) The analytic hierarchy process—a survey of the method and its applications. Interfaces 16(4):96–108. https://doi.org/10.1287/inte.16.4.96

    Article  Google Scholar 

  • Zhao S (2010) GisFFE—an integrated software system for the dynamic simulation of fires following an earthquake based on GIS. Fire Saf J 45(2):83–97. https://doi.org/10.1016/j.firesaf.2009.11.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Shahab Uddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, M.S., Warnitchai, P. Decision support for infrastructure planning: a comprehensive location–allocation model for fire station in complex urban system. Nat Hazards 102, 1475–1496 (2020). https://doi.org/10.1007/s11069-020-03981-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-020-03981-2

Keywords

Navigation