Log in

An Increase in Peroxiredoxin 6 Expression Induces Neurotoxic A1 Astrocytes in the Lumbar Spinal Cord of Amyotrophic Lateral Sclerosis Mice Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with selective degeneration of motor neurons. It has been reported that an increase in the levels of inflammatory cytokines and glial cells such as reactive astrocytes is closely involved in the pathological progression of ALS. Recently, the levels of neuropathic cytotoxic (A1) astrocytes among reactive astrocytes have reportedly increased in the central nervous system of ALS mice, which induce motor neuron degeneration through the production of inflammatory cytokines and secretion of neuropathic factors. Hence, elucidating the induction mechanism of A1 astrocytes in ALS is important to understand the mechanism of disease progression in ALS. In this study, we observed that the expression of peroxiredoxin 6 (PRDX6), a member of the peroxiredoxin family, was markedly upregulated in astrocytes of the lumbar spinal cord of SOD1G93A mice model for ALS. Additionally, when PRDX6 was transiently transfected into the mouse astrocyte cell line C8-D1A and human astrocytoma cell line U-251 MG, the mRNA expression of complement C3 (a marker for A1 astrocyte phenotype) and inflammatory cytokines was increased. Furthermore, the mRNA expression of C3 and inflammatory cytokine was increased in C8-D1A and U-251 MG cells stably expressing PRDX6, and the increased mRNA expression was significantly suppressed by MJ33 (lithium[1-hexadecoxy-3-(2,2,2-trifluoroethoxy) propan-2-yl] methyl phosphate), an inhibitor of the phospholipase A2 activity of PRDX6. Our results suggest that the expression of PRDX6 in astrocytes plays an important role in the induction of A1 astrocytes and expression of inflammatory cytokines in the ALS mice model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Wijesekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4:3. https://doi.org/10.1186/1750-1172-4-3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen S, Sayana P, Zhang X, Le W (2013) Genetics of amyotrophic lateral sclerosis: an update. Mol Neurodegener 8:28. https://doi.org/10.1186/1750-1326-8-28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Liu J, Wang F (2017) Role of neuroinflammation in amyotrophic lateral sclerosis: cellular mechanisms and therapeutic implications. Front Immunol 8:1005. https://doi.org/10.3389/fimmu.2017.01005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Komine O, Yamanaka K (2015) Neuroinflammation in motor neuron disease. Nagoya J Med Sci 77:537–549

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487. https://doi.org/10.1038/nature21029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Guttenplan KA, Weigel MK, Adler DI, Couthouis J, Liddelow SA, Gitler AD, Barres BA (2020) Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat Commun 11:3753. https://doi.org/10.1038/s41467-020-17514-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Izrael M, Slutsky SG, Revel M (2020) Rising stars: astrocytes as a therapeutic target for ALS disease. Front Neurosci 14:824. https://doi.org/10.3389/fnins.2020.00824

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hall A, Nelson K, Poole LB, Karplus PA (2011) Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid Redox Signal 15:795–815. https://doi.org/10.1089/ars.2010.3624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lee YJ (2020) Knockout mouse models for peroxiredoxins. Antioxid (Basel) 9:182. https://doi.org/10.3390/antiox9020182

    Article  CAS  Google Scholar 

  10. Szeliga M (2020) Peroxiredoxins in neurodegenerative diseases. Antioxid (Basel) 9:1203. https://doi.org/10.3390/antiox9121203

    Article  CAS  Google Scholar 

  11. Fisher AB (2019) Antioxidants special issue: peroxiredoxin 6 as a unique member of the peroxiredoxin family. Antioxid (Basel) 8:107. https://doi.org/10.3390/antiox8040107

    Article  CAS  Google Scholar 

  12. Arevalo JA, Vázquez-Medina JP (2018) The role of peroxiredoxin 6 in cell signaling. Antioxid (Basel) 7:172. https://doi.org/10.3390/antiox7120172

    Article  CAS  Google Scholar 

  13. **ong L, McCoy M, Komuro H, West XZ, Yakubenko V, Gao D, Dudiki T, Milo A, Chen J, Podrez EA, Trapp B, Byzova TV (2022) Inflammation-dependent oxidative stress metabolites as a hallmark of amyotrophic lateral sclerosis. Free Radic Biol Med 178:125–133. https://doi.org/10.1016/j.freeradbiomed.2021.11.031

    Article  PubMed  CAS  Google Scholar 

  14. Kasai A, Kinjo T, Ishihara R, Sakai I, Ishimaru Y, Yoshioka Y, Yamamuro A, Ishige K, Ito Y, Maeda S (2011) Apelin deficiency accelerates the progression of amyotrophic lateral sclerosis. PLoS ONE 6:e23968. https://doi.org/10.1371/journal.pone.0023968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yoshioka Y, Sugino Y, Shibagaki F, Yamamuro A, Ishimaru Y, Maeda S (2020) Dopamine attenuates lipopolysaccharide-induced expression of proinflammatory cytokines by inhibiting the nuclear translocation of NF-κB p65 through the formation of dopamine quinone in microglia. Eur J Pharmacol 866:172826. https://doi.org/10.1016/j.ejphar.2019.172826

    Article  PubMed  CAS  Google Scholar 

  16. Yamamuro A, Kishino T, Ohshima Y, Yoshioka Y, Kimura T, Kasai A, Maeda S (2011) Caspase-4 directly activates caspase-9 in endoplasmic reticulum stress-induced apoptosis in SH-SY5Y cells. J Pharmacol Sci 115:239–243. https://doi.org/10.1254/jphs.10217SC

    Article  PubMed  CAS  Google Scholar 

  17. Turner BJ, Talbot K (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol 85:94–134. https://doi.org/10.1016/j.pneurobio.2008.01.001

    Article  PubMed  CAS  Google Scholar 

  18. Alves CJ, de Santana LP, dos Santos AJ, de Oliveira GP, Duobles T, Scorisa JM, Martins RS, Maximino JR, Chadi G (2011) Early motor and electrophysiological changes in transgenic mouse model of amyotrophic lateral sclerosis and gender differences on clinical outcome. Brain Res 1394:90–104. https://doi.org/10.1016/j.brainres.2011.02.060

    Article  PubMed  CAS  Google Scholar 

  19. Dupuis L, Oudart H, René F, Gonzalez de Aguilar JL, Loeffler JP (2004) Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc Natl Acad Sci USA 101:11159–11164. https://doi.org/10.1073/pnas.0402026101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Koza LA, Winter AN, Holsopple J, Baybayon-Grandgeorge AN, Pena C, Olson JR, Mazzarino RC, Patterson D, Linseman DA (2020) Protocatechuic acid extends survival, improves motor function, diminishes gliosis, and sustains neuromuscular junctions in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Nutrients 12:1824. https://doi.org/10.3390/nu12061824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Schiffer D, Cordera S, Cavalla P, Migheli A (1996) Reactive astrogliosis of the spinal cord in amyotrophic lateral sclerosis. J Neurol Sci 139(Supplement):27–33. https://doi.org/10.1016/0022-510x(96)00073-1

    Article  PubMed  Google Scholar 

  22. Sun Q, Huo Y, Bai J, Wang H, Wang H, Yang F, Cui F, Song H, Huang X (2021) Inflammatory cytokine levels in patients with sporadic amyotrophic lateral sclerosis. Neurodegener Dis 21:87–92. https://doi.org/10.1159/000522078

    Article  PubMed  CAS  Google Scholar 

  23. Tortelli R, Zecca C, Piccininni M, Benmahamed S, Dell’Abate MT, Barulli MR, Capozzo R, Battista P, Logroscino G (2020) Plasma inflammatory cytokines are elevated in ALS. Front Neurol 11:552295. https://doi.org/10.3389/fneur.2020.552295

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kia A, McAvoy K, Krishnamurthy K, Trotti D, Pasinelli P (2018) Astrocytes expressing ALS-linked mutant FUS induce motor neuron death through release of tumor necrosis factor-alpha. Glia 66:1016–1033. https://doi.org/10.1002/glia.23298

    Article  PubMed  PubMed Central  Google Scholar 

  25. Miller SJ, Zhang PW, Glatzer J, Rothstein JD (2017) Astroglial transcriptome dysregulation in early disease of an ALS mutant SOD1 mouse model. J Neurogenet 31:37–48. https://doi.org/10.1080/01677063.2016.1260128

    Article  PubMed  CAS  Google Scholar 

  26. Drachman DB, Frank K, Dykes-Hoberg M, Teismann P, Almer G, Przedborski S, Rothstein JD (2002) Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann Neurol 52:771–778. https://doi.org/10.1002/ana.10374

    Article  PubMed  CAS  Google Scholar 

  27. Solomonov Y, Hadad N, Levy R (2016) Reduction of cytosolic phospholipase A2α upregulation delays the onset of symptoms in SOD1G93A mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 13:134. https://doi.org/10.1186/s12974-016-0602-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chhunchha B, Fatma N, Kubo E, Rai P, Singh SP, Singh DP (2013) Curcumin abates hypoxia-induced oxidative stress based-ER stress-mediated cell death in mouse hippocampal cells (HT22) by controlling Prdx6 and NF-κB regulation. Am J Physiol Cell Physiol 304:C636–C655. https://doi.org/10.1152/ajpcell.00345.2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wu X, Ji P, Zhang L, Bu G, Gu H, Wang X, **ong Y, Zuo B (2015) The expression of porcine Prdx6 gene is up-regulated by C/EBP β and CREB. PLoS ONE 10:e0144851. https://doi.org/10.1371/journal.pone.0144851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Meir O, Dvash E, Werman A, Rubinstein M (2010) C/EBP-beta regulates endoplasmic reticulum stress-triggered cell death in mouse and human models. PLoS ONE 5:e9516. https://doi.org/10.1371/journal.pone.0009516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Brasil AA, de Carvalho MDC, Gerhardt E, Queiroz DD, Pereira MD, Outeiro TF, Eleutherio ECA (2019) Characterization of the activity, aggregation, and toxicity of heterodimers of WT and ALS-associated mutant SOD1. Proc Natl Acad Sci USA 116:25991–26000. https://doi.org/10.1073/pnas.1902483116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kalmar B, Lu CH, Greensmith L (2014) The role of heat shock proteins in amyotrophic lateral sclerosis: the therapeutic potential of arimoclomol. Pharmacol Ther 141:40–54. https://doi.org/10.1016/j.pharmthera.2013.08.003

    Article  PubMed  CAS  Google Scholar 

  33. Sheng Y, Chattopadhyay M, Whitelegge J, Valentine JS (2012) SOD1 aggregation and ALS: role of metallation states and disulfide status. Curr Top Med Chem 12:2560–2572. https://doi.org/10.2174/1568026611212220010

    Article  PubMed  CAS  Google Scholar 

  34. Suzuki H, Matsuoka M (2012) TDP-43 toxicity is mediated by the unfolded protein response-unrelated induction of C/EBP homologous protein expression. J Neurosci Res 90:641–647. https://doi.org/10.1002/jnr.22777

    Article  PubMed  CAS  Google Scholar 

  35. Pansarasa O, Bordoni M, Diamanti L, Sproviero D, Gagliardi S, Cereda C (2018) SOD1 in amyotrophic lateral sclerosis: “ambivalent” behavior connected to the disease. Int J Mol Sci 19:1345. https://doi.org/10.3390/ijms19051345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Prudencio M, Durazo A, Whitelegge JP, Borchelt DR (2010) An examination of wild-type SOD1 in modulating the toxicity and aggregation of ALS-associated mutant SOD1. Hum Mol Genet 19:4774–4789. https://doi.org/10.1093/hmg/ddq408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AY-T designed the study, performed most of the experiments, and wrote the original draft. YM, WK, SZ, NM, ST, MM, YK, and YI performed some experiments. YY designed the study and reviewed and edited the manuscript.

Corresponding author

Correspondence to Yasuhiro Yoshioka.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

Approval was granted by the Safety Committee for Recombinant DNA Experiments of Setsunan University (Approval ID: K08-13/08.04.14.2.S.017) and Animal Care and Use Committee of Nihon University (Approval Nos: AP13P001 and AP19PHA026).

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 646.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamuro-Tanabe, A., Mukai, Y., Kojima, W. et al. An Increase in Peroxiredoxin 6 Expression Induces Neurotoxic A1 Astrocytes in the Lumbar Spinal Cord of Amyotrophic Lateral Sclerosis Mice Model. Neurochem Res 48, 3571–3584 (2023). https://doi.org/10.1007/s11064-023-04003-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04003-w

Keywords

Navigation