Log in

Liver tumor segmentation using G-Unet and the impact of preprocessing and postprocessing methods

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Accurate liver and lesion segmentation plays a crucial role in the clinical assessment and therapeutic planning of hepatic diseases. The segmentation of the liver and lesions using automated techniques is a crucial undertaking that holds the potential to facilitate the early detection of malignancies and the effective management of patients’ treatment requirements by medical professionals. This research presents the Generalized U-Net (G-Unet), a unique hybrid model designed for segmentation tasks. The G-Unet model is capable of incorporating other models such as convolutional neural networks (CNN), residual networks (ResNets), and densely connected convolutional neural networks (DenseNet) into the general U-Net framework. The G-Unet model, which consists of three distinct configurations, was assessed using the LiTS dataset. The results indicate that G-Unet demonstrated a high level of accuracy in segmenting the data. Specifically, the G-Unet model, configured with DenseNet architecture, produced a liver tumor segmentation accuracy of 72.9% dice global score. This performance is comparable to the existing state-of-the-art methodologies. The study also showcases the influence of different preprocessing and postprocessing techniques on the accuracy of segmentation. The utilization of Hounsfield Unit (HU) windowing and histogram equalization as preprocessing approaches, together with the implementation of conditional random fields as postprocessing techniques, resulted in a notable enhancement of 3.35% in the accuracy of tumor segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Dataset is freely available and can be downloaded from [41].

References

  1. Almotairi S, Kareem G, Aouf M, Almutairi B, Salem MA-M (2020) Liver Tumor Segmentation in CT Scans Using Modified SegNet. Sensors (Basel) 20:1516. https://doi.org/10.3390/s20051516

    Article  PubMed  ADS  Google Scholar 

  2. Amin J, Anjum MA, Sharif M, Kadry S, Nadeem A, Ahmad SF (2022) Liver Tumor Localization Based on YOLOv3 and 3D-Semantic Segmentation Using Deep Neural Networks. Diagnostics 12:823. https://doi.org/10.3390/diagnostics12040823

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ayalew YA, Fante KA, Mohammed MA (2021) Modified U-Net for liver cancer segmentation from computed tomography images with a new class balancing method. BMC Biomed Eng 3:4. https://doi.org/10.1186/s42490-021-00050-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bai Z, Jiang H, Li S, Yao Y-D (2019) Liver Tumor Segmentation Based on Multi-Scale Candidate Generation and Fractal Residual Network. IEEE Access 7:82122–82133. https://doi.org/10.1109/ACCESS.2019.2923218

    Article  Google Scholar 

  5. Bi L, Kim J, Kumar A, Feng D (2017) Automatic liver lesion detection using cascaded deep residual networks. ar**v:1704.02703 [cs]

  6. Budak Ü, Guo Y, Tanyildizi E, Şengür A (2020) Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation. Med Hypotheses 134:109431. https://doi.org/10.1016/j.mehy.2019.109431

    Article  PubMed  Google Scholar 

  7. Chen G, Li Z, Wang J, Wang J, Du S, Zhou J, Shi J, Zhou Y (2023) An improved 3D KiU-Net for segmentation of liver tumor. Comput Biol Med 160:107006. https://doi.org/10.1016/j.compbiomed.2023.107006

    Article  PubMed  Google Scholar 

  8. Chi J, Han X, Wu C, Wang H, Ji P (2021) X-Net: Multi-branch UNet-like network for liver and tumor segmentation from 3D abdominal CT scans. Neurocomputing 459:81–96. https://doi.org/10.1016/j.neucom.2021.06.021

    Article  Google Scholar 

  9. Chlebus G, Meine H, Moltz JH, Schenk A (2017). Neural network-based automatic liver tumor segmentation with random forest-based candidate filtering. https://doi.org/10.48550/ar**v.1706.00842

  10. Christ PF, Elshaer MEA, Ettlinger F, Tatavarty S, Bickel M, Bilic P, Rempfler M, Armbruster M, Hofmann F, D’Anastasi M, Sommer WH, Ahmadi S-A, Menze BH (2016) Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) Medical Image computing and computer-assisted intervention – MICCAI 2016. Springer International Publishing, Cham, pp 415–423

  11. Christ PF, Ettlinger F, Grün F, Elshaera MEA, Lipkova J, Schlecht S, Ahmaddy F, Tatavarty S, Bickel M, Bilic P, Rempfler M, Hofmann F, Anastasi MD, Ahmadi S-A, Kaissis G, Holch J, Sommer W, Braren R, Heinemann V, Menze B (2017) Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. ar**v:1702.05970 [cs]

  12. Di S, Zhao Y-Q, Liao M, Zhang F, Li X (2023) TD-Net: A Hybrid End-to-End Network for Automatic Liver Tumor Segmentation From CT Images. IEEE J Biomed Health Inform 27:1163–1172. https://doi.org/10.1109/JBHI.2022.3181974

    Article  PubMed  Google Scholar 

  13. Doggalli D, Sunil Kumar BS (2022) The Efficacy of U-Net in Segmenting Liver Tumors from Abdominal CT Images. IJIES 15:151–161. https://doi.org/10.22266/ijies2022.1031.14

    Article  Google Scholar 

  14. Fan T, Wang G, Li Y, Wang H (2020) MA-Net: A Multi-Scale Attention Network for Liver and Tumor Segmentation. IEEE Access 8:179656–179665. https://doi.org/10.1109/ACCESS.2020.3025372

    Article  Google Scholar 

  15. Han X (2017) Automatic Liver Lesion Segmentation Using A Deep Convolutional Neural Network Method. Med Phys 44:1408–1419. https://doi.org/10.1002/mp.12155

    Article  CAS  PubMed  Google Scholar 

  16. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). pp 770–778

  17. Jiang H, Shi T, Bai Z, Huang L (2019) AHCNet: an application of attention mechanism and hybrid connection for liver tumor segmentation in CT volumes. IEEE Access 7:24898–24909. https://doi.org/10.1109/ACCESS.2019.2899608

    Article  Google Scholar 

  18. Jiang L, Ou J, Liu R, Zou Y, **e T, **ao H, Bai T (2023) RMAU-Net: Residual Multi-Scale Attention U-Net For liver and tumor segmentation in CT images. Comput Biol Med 158:106838. https://doi.org/10.1016/j.compbiomed.2023.106838

    Article  PubMed  Google Scholar 

  19. Kushnure DT, Talbar SN (2022) HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images. Comput Methods Programs Biomed 213:106501. https://doi.org/10.1016/j.cmpb.2021.106501

    Article  PubMed  Google Scholar 

  20. Li J, Liu K, Hu Y, Zhang H, Heidari AA, Chen H, Zhang W, Algarni AD, Elmannai H (2023) Eres-UNet++: Liver CT image segmentation based on high-efficiency channel attention and Res-UNet++. Comput Biol Med 158:106501. https://doi.org/10.1016/j.compbiomed.2022.106501

    Article  PubMed  Google Scholar 

  21. Li S, Tso GKF, He K (2020) Bottleneck feature supervised U-Net for pixel-wise liver and tumor segmentation. Expert Syst Appl 145:113131. https://doi.org/10.1016/j.eswa.2019.113131

    Article  Google Scholar 

  22. Li X, Chen H, Qi X, Dou Q, Fu C-W, Heng P-A (2018) H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes. IEEE Trans Med Imaging 37:2663–2674. https://doi.org/10.1109/TMI.2018.2845918

    Article  PubMed  Google Scholar 

  23. Li Y, Zou B, Liu Q (2021) A deep attention network via high-resolution representation for liver and liver tumor segmentation. Biocybern Biomed Eng 41:1518–1532. https://doi.org/10.1016/j.bbe.2021.08.010

    Article  Google Scholar 

  24. Liu Y, Yang F, Yang Y (2023) A partial convolution generative adversarial network for lesion synthesis and enhanced liver tumor segmentation. J Appl Clin Med Phys 24:e13927. https://doi.org/10.1002/acm2.13927

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lv P, Wang J, Wang H (2022) 2.5D lightweight RIU-Net for automatic liver and tumor segmentation from CT. Biomed Signal Process Control 75:103567. https://doi.org/10.1016/j.bspc.2022.103567

    Article  Google Scholar 

  26. Manjunath RV, Kwadiki K (2022) Modified U-NET on CT images for automatic segmentation of liver and its tumor. Biomed Eng Adv 4:100043. https://doi.org/10.1016/j.bea.2022.100043

    Article  Google Scholar 

  27. Moghbel M, Mashohor S, Mahmud R, Saripan MIB (2018) Review of liver segmentation and computer assisted detection/diagnosis methods in computed tomography. Artif Intell Rev 50:497–537. https://doi.org/10.1007/s10462-017-9550-x

    Article  Google Scholar 

  28. Rahman H, Bukht TFN, Imran A, Tariq J, Tu S, Alzahrani A (2022) A Deep Learning Approach for Liver and Tumor Segmentation in CT Images Using ResUNet. Bioengineering 9:368. https://doi.org/10.3390/bioengineering9080368

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. https://doi.org/10.48550/ARXIV.1505.04597

  30. Rumgay H, Arnold M, Ferlay J, Lesi O, Cabasag CJ, Vignat J, Laversanne M, McGlynn KA, Soerjomataram I (2022) Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol 77:1598–1606. https://doi.org/10.1016/j.jhep.2022.08.021

    Article  PubMed  PubMed Central  Google Scholar 

  31. Seo H, Huang C, Bassenne M, **ao R, **ng L (2020) Modified U-Net (mU-Net) with Incorporation of Object-Dependent High Level Features for Improved Liver and Liver-Tumor Segmentation in CT Images. IEEE Trans Med Imaging 39:1316–1325. https://doi.org/10.1109/TMI.2019.2948320

    Article  PubMed  Google Scholar 

  32. Shu X, Yang Y, Liu J, Chang X, Wu B (2023) ALVLS: Adaptive local variances-Based levelset framework for medical images segmentation. Pattern Recognit 136:109257. https://doi.org/10.1016/j.patcog.2022.109257

    Article  Google Scholar 

  33. Shu X, Yang Y, Wu B (2021) Adaptive segmentation model for liver CT images based on neural network and level set method. Neurocomputing 453:438–452. https://doi.org/10.1016/j.neucom.2021.01.081

    Article  Google Scholar 

  34. Song L, Wang H, Wang ZJ (2021) Bridging the Gap Between 2D and 3D Contexts in CT Volume for Liver and Tumor Segmentation. IEEE J Biomed Health Inform 25:3450–3459. https://doi.org/10.1109/JBHI.2021.3075752

    Article  PubMed  Google Scholar 

  35. Sun C, Guo S, Zhang H, Li J, Chen M, Ma S, ** L, Liu X, Li X, Qian X (2017) Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs. Artif Intell Med 83:58–66. https://doi.org/10.1016/j.artmed.2017.03.008

    Article  PubMed  Google Scholar 

  36. Tran S-T, Cheng C-H, Liu D-G (2021) A multiple Layer U-Net, U n -Net, for liver and liver tumor segmentation in CT. IEEE Access 9:3752–3764. https://doi.org/10.1109/ACCESS.2020.3047861

    Article  Google Scholar 

  37. Zhang C, Hua Q, Chu Y, Wang P (2021) Liver tumor segmentation using 2.5D UV-Net with multi-scale convolution. Comput Biol Med 133:104424. https://doi.org/10.1016/j.compbiomed.2021.104424

    Article  PubMed  Google Scholar 

  38. Zhang C, Lu J, Hua Q, Li C, Wang P (2022) SAA-Net: U-shaped network with Scale-Axis-Attention for liver tumor segmentation. Biomed Signal Process Control 73:103460. https://doi.org/10.1016/j.bspc.2021.103460

    Article  Google Scholar 

  39. Zhang Y, Jiang B, Wu J, Ji D, Liu Y, Chen Y, Wu EX, Tang X (2020) Deep Learning Initialized and Gradient Enhanced Level-Set Based Segmentation for Liver Tumor From CT Images. IEEE Access 8:76056–76068. https://doi.org/10.1109/ACCESS.2020.2988647

    Article  Google Scholar 

  40. Zhu Y, Yu A, Rong H, Wang D, Song Y, Liu Z, Sheng VS (2021) Multi-Resolution Image Segmentation Based on a Cascaded U-ADenseNet for the Liver and Tumors. JPM 11:1044. https://doi.org/10.3390/jpm11101044

    Article  PubMed  PubMed Central  Google Scholar 

  41. CodaLab - Competition. https://competitions.codalab.org/competitions/17094

Download references

Funding

No Funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak D J.

Ethics declarations

Conflicts of interest

The authors have no conflict of interests on the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D J, D., B S, S.K. Liver tumor segmentation using G-Unet and the impact of preprocessing and postprocessing methods. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-18759-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-18759-y

Keywords

Navigation