Log in

Novel function of a putative TaCOBL ortholog associated with cold response

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The plant COBRA protein family plays an important role in secondary cell wall biosynthesis and the orientation of cell expansion. The COBRA gene family has been well studied in Arabidopsis thaliana, maize, rice, etc., but no systematic studies were conducted in wheat. In this study, the full-length sequence of TaCOBLs was obtained by homology cloning from wheat, and a conserved motif analysis confirmed that TaCOBLs belonged to the COBRA protein family. qRT-PCR results showed that the TaCOBL transcripts were induced by abiotic stresses, including cold, drought, salinity, and abscisic acid (ABA). Two haplotypes of TaCOBL-5B (Hap5B-a and Hap5B-b), harboring one indel (----/TATA) in the 5′ flanking region (− 550 bp), were found on chromosome 5BS. A co-dominant marker, Ta5BF/Ta5BR, was developed based on the polymorphism of the two TaCOBL-5B haplotypes. Significant correlations between the two TaCOBL-5B haplotypes and cold resistance were observed under four environmental conditions. Hap5B-a, a favored haplotype acquired during wheat polyploidization, may positively contribute to enhanced cold resistance in wheat. Based on the promoter activity analysis, the Hap5B-a promoter containing a TATA-box was more active than that of Hap5B-b without the TATA-box under low temperature. Our study provides valuable information indicating that the TaCOBL genes are associated with cold response in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim DH, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol 25:277–299

    Article  CAS  PubMed  Google Scholar 

  2. Fowler DB, Breton G, Limin AE, Mahfoozi S, Sarhan F (2001) Photoperiod and temperature interactions regulate low-temperature-induced gene expression in barley. Plant Physiol 127:1676–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dhillon T, Pearce SP, Stockinger EJ, Distelfeld A, Li C, Knox AK et al (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol 153:1846–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deng W, CasaoMC WP, Sato K, Hayes PM, Finnegan EJ et al (2015) Direct links between the vernalization response and other key traits of cereal crops. Nat Commun 6:5882

    Article  PubMed  Google Scholar 

  5. Strejčková B, Milec Z, Holušová K, Cápal P, Vojtková T, Čegan R et al (2021) In-depth sequence analysis of bread wheat VRN1 genes. Int J Mol Sci 22(22):12284–12284

    Article  PubMed  PubMed Central  Google Scholar 

  6. Galiba G, Vagujfalvi A, Li CX, Soltesz A, Dubcovsky J (2009) Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci 176:12–19

    Article  CAS  Google Scholar 

  7. Alonso-Peral MM, Oliver SN, Casao MC, Greenup AA, Trevaskis B (2011) The promoter of the cereal VERNALIZATION1 gene is sufficient for transcriptional induction by prolonged cold. PLoS ONE 6:e29456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  9. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55(395):225–236

    Article  CAS  PubMed  Google Scholar 

  10. Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR (2004) Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiol 135(3):1710–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang L, Wang S, Tong R, Wang S, Yao JN, Jiao J et al (2022) Overexpression of PgCBF3 and PgCBF7 transcription factors from pomegranate enhances freezing tolerance in arabidopsis under the promoter activity positively regulated by PgICE1. Int J Mol Sci 23(16):9439–9439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi Y, Ding Y, Yang S (2015) Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant Cell Physiol 56:7–15

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi F, Takumi S, Kume S, Ishibashi M, Ohno R, Murai K et al (2005) Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF-mediated Cor/Lea gene expression and freezing tolerance in common wheat. J Exp Bot 56:887–895

    Article  CAS  PubMed  Google Scholar 

  14. Zhu J, Pearce S, Burke A, See DR, Skinner DZ, Dubcovsky J et al (2014) Copy number and haplotype variation at the vrn-a1 and central fr-a2 loci are associated with frost tolerance in hexaploid wheat. Theor Appl Genet 127(5):1183–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Teng Y, Li AD, Hao ZY, Zhang HL, Zhang LM, Cai GJ (2018) Anatomical structure of Passiflora caerulea L. and relationship between leaf structure and cold resistance under low temperature stress. Acta Agri Zhejiangensis 30:1849–1858

    Google Scholar 

  16. Wu LQ, Cai ZH, Zhang GL, Liu YT, Zhao R (2018) Effects of low temperature on physiological characteristics of rice seedlings with different cold tolerance and anatomical structure of root tip. Chin J Agrometeorol 39:805–813

    Google Scholar 

  17. Bilska-Kos A, Pietrusińska A, Suski S, Niedziela A, Linkiewicz AM, Włodzimierz Majtkowski W et al (2022) Cell wall properties determine genotype-specific response to cold in Miscanthus × giganteus plants. Cells 11(3):547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kutsuno T, ChowhanS KotakeT, Takahashi D (2022) Temporal cell wall changes during cold acclimation and deacclimation and their potential involvement in freezing tolerance and growth. Physiol Plant 3:e13837

    Google Scholar 

  19. Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC, Derbyshire P et al (2001) COBRA encodes a putative GPI-anchored protein, which is polarlylocalized and necessary for oriented cell expansion in Arabidopsis. Gene Dev 15:1115–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown DM, Zeef LAH, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brady SM, Song S, Dhugga KS, Rafalski JA, Benfey PN (2007) Combining expression and comparative evolutionary analysis. The COBRA gene family. Plant Physiol 143:172–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li ZZ, Sun PY, Sun P, Liang YK, Ge SC (2021) OsBC1L1 and OsBC1L8 function in stomatal development in rice. Biochem Biophys Res Commun 576:40–47

    Article  CAS  PubMed  Google Scholar 

  23. Dai XX, You CJ, Wang L, Chen GX, Zhang QF, Wu CY (2009) Molecular characterization, expression pattern, and function analysis of the OsBC1L family in rice. Plant Mol Biol 71:469–481

    Article  CAS  PubMed  Google Scholar 

  24. Sindhu A, Langewisch T, Olek A, Multani DS, McCann MC, Vermerris W et al (2007) Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiol 145:1444–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Julius BT, Mccubbin TJ, Mertz RA, Baert N, Knoblauch J, Grant DG (2021) Maize Brittle Stalk2 -Like3, encoding a COBRA protein, functions in cell wall formation and carbohydratepartitioning. Plant Cell 33(10):3348–3366

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jones MA, Raymond MJ, Smirnoff N (2006) Analysis of the roothair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. Plant J 45:83–100

    Article  CAS  PubMed  Google Scholar 

  27. Sato K, Suzuki R, Nishikubo N, Takenouchi S, Ito S, Nakano Y et al (2010) Isolation of a novel cell wall architecture mutant of rice with defective Arabidopsis COBL4 ortholog BC1 required for regulated deposition of secondary cell wall components. Planta 232:257–270

    Article  CAS  PubMed  Google Scholar 

  28. Dai XX, You CJ, Chen GX, Li XH, Zhang QF, Wu CY (2011) OsBC1L4 encodes a COBRA-like protein that affects cellulose synthesis in rice. Plant Mol Biol 75:333–345

    Article  CAS  PubMed  Google Scholar 

  29. Kotake T, Aohara T, Hirano K, Sato A, Kaneko Y, Tsumuraya Y et al (2011) Rice Brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. J Exp Bot 62:2053–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu LF, Shang GK, Zhang BC, Liu XL, Yan MX, Zhang LJ et al (2013) Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils. Plos Genet 9:e1003704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hochholdinger F, Wen TJ, Zimmermann R, Chimot-Marolle P, Silva ODE, Bruce W et al (2008) The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield. Plant J 54:888–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roudier F, Schindelman G, DeSalle R, Benfey PN (2002) The COBRA family of putative GPI-anchored proteins in Arabidopsis. A new fellowship in expansion. Plant Physiol 130:538–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pakseresht N, Alako B, Amid C, Cleland I, Gibson R, Goodgame N et al (2014) Assembly information services in the European Nucleotide Archive. Nucleic Acids Res 42:D38–D43

    Article  CAS  PubMed  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2DDCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  35. Horsch R, Fry J, Hoffman N, Eichholz D, Rogers S, Fraley R (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  36. Cao Y, Tang XF, Liu YS (2012) Cloning, expression pattern and bioinformation analyses of COBRA gene in tomato (Solanum lycopersicum). Bull Bot Res 32:304–310

    CAS  Google Scholar 

  37. Gao ZM, Chen Y, Hu T, Zhao HS (2013) Molecular characteristics and expression analysis of BoCOBL gene from green bamboo (Bambusa oldhamii). J Trop Subtrop Bot 21:560–565

    CAS  Google Scholar 

  38. Zhuang QS (2003) Chinese wheat improvement and pedigree analysis. Agricultural Press, Bei**g

    Google Scholar 

  39. Ling HQ, Zhao SC, Liu DC, Wang JY, Wang J (2013) The Draft genome of the wheat A-Genome progenitor Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  40. Ling HQ, Ma B, Shi XL, Liu H, Liang CZ (2018) Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557:424–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR et al (2017) Genome sequence of the progenitor of the wheat D genome Aegilopst auschii. Nature 551:498–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao GY, Zou C, Li K, Wang K, Li TB, Gao LF et al (2017) The Aegilopst auschii genome reveals multiple impacts of transposons. Nat Plants 3:946–955

    Article  CAS  PubMed  Google Scholar 

  43. Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H et al (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357:93–97

    Article  CAS  PubMed  Google Scholar 

  44. Li TB, Wernersson R, Hansen RB (2017) A scored human protein-protein interaction network to catalyze genomic interpretation. Nat Methods 14(1):61–64

    Article  CAS  PubMed  Google Scholar 

  45. Wu FL, Liu Y, Jiang HW (2017) The Ser/thr protein kinase protein–protein interaction map of M. tuberculosis. Mol Cell Proteomics 16(8):1491–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang CX, Wang WQ, Jiang XN, Chen XM (2004) Review on plant gene promoters. Acta Genetica Sinica (Yichuan Xuebao) 31:1455–1464

    CAS  Google Scholar 

  47. Wu XF, Zhao KJ, Chen YQ (2004) The motifs of plant inducible promoters. China Biotech (Zhongguo Shengwu Gongcheng Zazhi) 24:14–21

    Google Scholar 

  48. Fujii M, Yokosho K, Yamaji N, Saisho D, Yamane M, Takahashi H (2012) Acquisition of aluminium tolerance by modification of a single gene in barley. Nat Commun 3:713

    Article  PubMed  Google Scholar 

  49. Espley RV, Brendolise C, Chagne D, Kutty-Amma S, Green S, Volz R et al (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bagge M, **a XC, Lübberstedt T (2007) Functional markers in wheat. Curr Opin Plant Biol 10:211–216

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Agriculture Research System (Grant No. CARS-3) and the National Key Research and Development Program of China (Grant Nos. 2016YFD0101802, 2017YFD0100804, and 2016YFD0300205). We would like to thank TopEdit (www.topeditsci.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, HS; methodology, FL and YW; validation, FL and PZ; formal analysis, FL, HS, and PZ; resources, QZ, WC, and YL; data curation, FL and YL; writing—original draft preparation, FL; writing—review and editing, FL and HS; supervision, PZ and YW.

Corresponding authors

Correspondence to **-Zhi Zhang or Hong-Qi Si.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1387 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, FF., Wan, YX., Cao, WX. et al. Novel function of a putative TaCOBL ortholog associated with cold response. Mol Biol Rep 50, 4375–4384 (2023). https://doi.org/10.1007/s11033-023-08297-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08297-5

Keywords

Navigation