Log in

A numerical model for total bending fatigue life estimation of carburized spur gears considering the hardness gradient and residual stress

  • Research
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The paper introduces a novel three-dimensional numerical model considering hardness gradient and residual stress to predict carburized gears’ total bending fatigue life. The crack initiation life was forecasted by the strain life method, considering hardness gradient and residual stress. Linear elastic stresses and strains in the tooth root fillet were corrected by Neuber’s rule for elastic–plastic material behavior. The tooth root area of the spur gear is segmented into layers using the thin slice method, and the fatigue properties of each layer are determined using the multilayer method. The crack propagation life was predicted by the extended finite element method (XFEM), considering hardness gradient and residual stress. Fracture surface analysis with electron microscopy determines the exact location where cracks initiate. The high-speed camera records the path and life of crack propagation. Single-tooth bending fatigue life (STBF) tests are conducted to validate the proposed model. The predicted fatigue lifetimes, failure locations, and crack propagation paths agree well with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and materials

The datasets and materials generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Čular I, Vučković K, Glodež S, Tonković Z (2022) Computational model for bending fatigue prediction of surface hardened spur gears based on the multilayer method. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2022.106892

    Article  Google Scholar 

  2. ISO 6336 (2022) Calculation and load capacity of spur and helical gears. ISO

  3. ANSI/AGMA 2101-D04 (2004) Fundamental rating factors and calculation methods for involute spur and helical gear teeth

  4. Hong IJ, Kahraman A, Anderson N (2020) A rotating gear test methodology for evaluation of high-cycle tooth bending fatigue lives under fully reversed and fully released loading conditions. Int J Fatigue 133:105432. https://doi.org/10.1016/j.ijfatigue.2019.105432

    Article  Google Scholar 

  5. Wagner ME, Mark WD, Isaacson AC (2021) Implementation of the Average-Log-Ratio ALR gear-damage detection algorithm on gear-fatigue-test recordings. Mech Syst Signal Process 154:107590. https://doi.org/10.1016/j.ymssp.2020.107590

    Article  Google Scholar 

  6. Bonaiti L, Monti M, Geitner M et al (2024) On the usage of pulsator data within the load spectra assessment of gears. Int J Fatigue 181:108145. https://doi.org/10.1016/j.ijfatigue.2024.108145

    Article  Google Scholar 

  7. Lan SL, Qi M, Zhu YF et al (2023) Ultrasonic rolling strengthening effect on the bending fatigue behavior of 12Cr2Ni4A steel gears. Eng Fract Mech 279:109024. https://doi.org/10.1016/j.engfracmech.2022.109024

    Article  Google Scholar 

  8. Su Y, Oikawa K, Shinohara T et al (2023) Residual stress relaxation by bending fatigue in induction-hardened gear studied by neutron Bragg edge transmission imaging and X-ray diffraction. Int J Fatigue 174:107729. https://doi.org/10.1016/j.ijfatigue.2023.107729

    Article  Google Scholar 

  9. Chen DF, Zhu JZ, Liu HJ et al (2023) Experimental investigation of the relation between the surface integrity and bending fatigue strength of carburized gears. Sci China Technol Sci 66:33–46. https://doi.org/10.1007/s11431-022-2214-x

    Article  Google Scholar 

  10. Lan W, Fan S, Fan S (2022) Effects of gear structural parameters on unsteady-state temperature field of large transmission ratio gear and tooth root thermal stress. Appl Math Model 108:701–723. https://doi.org/10.1016/j.apm.2022.04.023

    Article  Google Scholar 

  11. Huangfu Y, Dong X, Chen K, Peng Z (2023) Coupling mechanism between systematic elastic deformation and gear surface damage. Int J Mech Sci 238:107850. https://doi.org/10.1016/j.ijmecsci.2022.107850

    Article  Google Scholar 

  12. Yin F, Fatemi A (2011) Monotonic and cyclic deformations of case-hardened steels including residual stress effects. Strain 47:74–83. https://doi.org/10.1111/j.1475-1305.2008.00504.x

    Article  Google Scholar 

  13. Jo B, Sharifimehr S, Shim Y, Fatemi A (2017) Cyclic deformation and fatigue behavior of carburized automotive gear steel and predictions including multiaxial stress states. Int J Fatigue 100:454–465. https://doi.org/10.1016/j.ijfatigue.2016.12.023

    Article  Google Scholar 

  14. Čular I, Vučković K, Žeželj D, Glodež S (2020) Analytical approach for low and high cycle bending fatigue life prediction of carburized gear steel specimens. Eng Fail Anal. https://doi.org/10.1016/j.engfailanal.2019.104328

    Article  Google Scholar 

  15. Vučković K, Čular I, Mašović R et al (2021) Numerical model for bending fatigue life estimation of carburized spur gears with consideration of the adjacent tooth effect. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2021.106515

    Article  Google Scholar 

  16. Vučković K, Galić I, Božić Ž, Glodež S (2018) Effect of friction in a single-tooth fatigue test. Int J Fatigue 114:148–158. https://doi.org/10.1016/j.ijfatigue.2018.05.005

    Article  Google Scholar 

  17. Deng H, Guo Y, Liu H et al (2021) Bending fatigue life prediction model of carburized gear based on microcosmic fatigue failure mechanism. J Mater Eng Perform. https://doi.org/10.1007/s11665-021-06236-8

    Article  Google Scholar 

  18. Fuchs D, Schurer S, Tobie T, Stahl K (2022) On the determination of the bending fatigue strength in and above the very high cycle fatigue regime of shot-peened gears. Forsch im Ingenieurwesen Eng Res 86:81–92. https://doi.org/10.1007/s10010-021-00499-2

    Article  Google Scholar 

  19. Čular I, Vučković K, Galić I, Žeželj D (2023) Computational model for bending fatigue life and failure location prediction of surface-hardened running gears. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2022.107300

    Article  Google Scholar 

  20. Lin Y, Liu S, Zhao X et al (2018) Fatigue life prediction of engaging spur gears using power density. Proc Inst Mech Eng Part C J Mech Eng Sci 232:4332–4341. https://doi.org/10.1177/0954406217751557

    Article  Google Scholar 

  21. Savaria V, Bridier F, Bocher P (2016) Predicting the effects of material properties gradient and residual stresses on the bending fatigue strength of induction hardened aeronautical gears. Int J Fatigue 85:70–84. https://doi.org/10.1016/j.ijfatigue.2015.12.004

    Article  Google Scholar 

  22. Wei Y, Jiang Y (2019) Fatigue fracture analysis of gear teeth using XFEM. Trans Nonferrous Met Soc China 29:2099–2108. https://doi.org/10.1016/S1003-6326(19)65116-2

    Article  Google Scholar 

  23. Raghav MS, Singh A, Patel S (2022) Fault analysis of spur gear using XFEM. Eng Fail Anal 134:106060. https://doi.org/10.1016/j.engfailanal.2022.106060

    Article  Google Scholar 

  24. Zhang X, Li L, Qi X et al (2017) Experimental and numerical investigation of fatigue crack growth in the cracked gear tooth. Fatigue Fract Eng Mater Struct 40:1037–1047. https://doi.org/10.1111/ffe.12557

    Article  Google Scholar 

  25. Lewicki DG, Ballarini R (1997) Effect of rim thickness on gear crack propagation path. J Mech Des Trans ASME 119:88–95. https://doi.org/10.1115/1.2828793

    Article  Google Scholar 

  26. Alshoaibi AM (2022) Fatigue crack growth analysis under constant amplitude loading using finite element method. Materials (Basel). https://doi.org/10.3390/ma15082937

    Article  Google Scholar 

  27. Thirumurugan R, Gnanasekar N (2020) Influence of finite element model, load-sharing and load distribution on crack propagation path in spur gear drive. Eng Fail Anal. https://doi.org/10.1016/j.engfailanal.2020.104383

    Article  Google Scholar 

  28. Zhan Z, Hu W, Li B et al (2017) Continuum damage mechanics combined with the extended finite element method for the total life prediction of a metallic component. Int J Mech Sci 124–125:48–58. https://doi.org/10.1016/j.ijmecsci.2017.03.002

    Article  Google Scholar 

  29. Nikfam MR, Zeinoddini M, Aghebati F, Arghaei AA (2019) Experimental and XFEM modelling of high cycle fatigue crack growth in steel welded T-joints. Int J Mech Sci 153–154:178–193. https://doi.org/10.1016/j.ijmecsci.2019.01.040

    Article  Google Scholar 

  30. Farivar H, Novokshanov D, Richter S et al (2019) Core microstructure-dependent bending fatigue behavior and crack growth of a case-hardened steel. Mater Sci Eng A 762:138040. https://doi.org/10.1016/j.msea.2019.138040

    Article  Google Scholar 

  31. Zhang S, **e J, Jiang Q et al (2017) Fatigue crack growth behavior in gradient microstructure of hardened surface layer for an axle steel. Mater Sci Eng A 700:66–74. https://doi.org/10.1016/j.msea.2017.05.104

    Article  Google Scholar 

  32. Yan Y, Jiang C, Li W (2022) Simulation on coupling effects between surface wear and fatigue in spur gear. Eng Fail Anal 134:106055. https://doi.org/10.1016/j.engfailanal.2022.106055

    Article  Google Scholar 

  33. Wang X, Yang Y, Wang W, Chi W (2020) Simulating coupling behavior of spur gear meshing and fatigue crack propagation in tooth root. Int J Fatigue 134:105381. https://doi.org/10.1016/j.ijfatigue.2019.105381

    Article  Google Scholar 

  34. Meng D, Lv Z, Yang S et al (2021) A time-varying mechanical structure reliability analysis method based on performance degradation. Structures 34:3247–3256. https://doi.org/10.1016/j.istruc.2021.09.085

    Article  Google Scholar 

  35. Liu G, Yan H (2010) Experimental study on static and dynamic mechanical behavior of 20CrMnTi gear steel. In: 2010 International Conference on Measuring Technology and Mechatronics Automation ICMTMA 2010 2:191–195. https://doi.org/10.1109/ICMTMA.2010.187

  36. SIMULIA (2022) Abaqus 2022. Analysis user’s guide, Dassault systems

  37. (2022) FE Safe 2022. Dassault systems

  38. Wang W, Liu H, Zhu C et al (2019) Effect of the residual stress on contact fatigue of a wind turbine carburized gear with multiaxial fatigue criteria. Int J Mech Sci 151:263–273. https://doi.org/10.1016/j.ijmecsci.2018.11.013

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (51775315).

Author information

Authors and Affiliations

Authors

Contributions

**anshun Sun: conceptualization, writing—original draft. Jun Zhao: conceptualization, writing—review & editing, project administration. Shaokang Song: data curation, investigation. Yongliang Lu: methodology. Huiyang Sun: methodology.

Corresponding author

Correspondence to Jun Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in preparing this article.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 4.

Table 4 The material characterization parameters for each layer

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhao, J., Song, S. et al. A numerical model for total bending fatigue life estimation of carburized spur gears considering the hardness gradient and residual stress. Meccanica (2024). https://doi.org/10.1007/s11012-024-01841-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11012-024-01841-y

Keywords

Navigation