Log in

Allicin can suppress the activity of vascular endothelial cells probably by regulating JAK2/STAT3 pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Whether allicin can suppress the angiogenesis via inhibiting the activity of vascular endothelial cells (VECs) in preventing epidural hypertrophic scars remains unknown. VECs were treated by allicin at a gradient of concentrations. Cell activity was measured by CCK-8 assay, scratch assay and flow cytometry. Reverse-transcription PCR and Western Blot were used to measure the expression levels of relevant genes and proteins. After treated with allicin at concentrations of 0, 25, 50 and 100 mg/L, the viability of VECs significantly decreased at 24 h (p < 0.001*) and 48 h (p < 0.001*), and migration rate significantly decreased in scratch assay (p = 0.017*) and in Transwell assay (p = 0.021*). As the concentrations of allicin increased, the apoptosis rate of VECs rose up (p = 0.018*). There was no significant difference on cell numbers at S phase (p = 0.25), but cell numbers at G1 phase decreased (p = 0.039*) and at G2 phase increased (p = 0.047*). With the increase of allicin concentrations, the ability of tube formation for VECs significantly decreased (p < 0.001*). Comparing with control group, the expression of PCNA and BCL-2 decreased (p < 0.001*), while the expression of BAX increased significantly (p < 0.001*). Regarding to JAK2/STAT3 pathway, the expression levels of JAK3 and STAT3 decreased significantly with the increase of allicin concentrations (p < 0.001*). Allicin can suppress the activity of VECs probably by regulating JAK2/STAT3 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data and material are available.

Code availability

The statistics were performed using SPSS version 24 (IBM Corp., USA).

References

  1. Korntner S, Lehner C, Gehwolf R, Wagner A, Grutz M, Kunkel N, Tempfer H, Traweger A (2019) Limiting angiogenesis to modulate scar formation. Adv Drug Deliv Rev 146:170–189. https://doi.org/10.1016/j.addr.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  2. Bosscher HA, Heavner JE (2010) Incidence and severity of epidural fibrosis after back surgery: an endoscopic study. Pain practice : The Official Journal of World Institute of Pain 10(1):18–24. https://doi.org/10.1111/j.1533-2500.2009.00311.x

    Article  Google Scholar 

  3. Coentro JQ, Pugliese E, Hanley G, Raghunath M, Zeugolis DI (2019) Current and upcoming therapies to modulate skin scarring and fibrosis. Adv Drug Deliv Rev 146:37–59. https://doi.org/10.1016/j.addr.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  4. Song Y, Yu Z, Song B, Guo S, Lei L, Ma X, Su Y (2018) Usnic acid inhibits hypertrophic scarring in a rabbit ear model by suppressing scar tissue angiogenesis. Biomed Pharmacother 108:524–530. https://doi.org/10.1016/j.biopha.2018.06.176

    Article  CAS  PubMed  Google Scholar 

  5. Borlinghaus J, Albrecht F, Gruhlke MC, Nwachukwu ID, Slusarenko AJ (2014) Allicin: chemistry and biological properties. Molecules 19(8):12591–12618. https://doi.org/10.3390/molecules190812591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun HH, Wang JC, Feng XM, Zhu SL, Cai J (2020) Allicin inhibits proliferation and promotes apoptosis of human epidural scar fibroblasts. World Neurosurgery 136:e460–e468. https://doi.org/10.1016/j.wneu.2020.01.031

    Article  PubMed  Google Scholar 

  7. D'Argenio G, Mazzone G, Ribecco MT, Lembo V, Vitaglione P, Guarino M, Morisco F, Napolitano M, Fogliano V, Caporaso N (2013) Garlic extract attenuating rat liver fibrosis by inhibiting TGF-beta1. Clin Nutr 32(2):252–258. https://doi.org/10.1016/j.clnu.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  8. Liu C, Cao F, Tang QZ, Yan L, Dong YG, Zhu LH, Wang L, Bian ZY, Li H (2010) Allicin protects against cardiac hypertrophy and fibrosis via attenuating reactive oxygen species-dependent signaling pathways. J Nutriti Biochem 21(12):1238–1250. https://doi.org/10.1016/j.jnutbio.2009.11.001

    Article  CAS  Google Scholar 

  9. Guyer RD, Patterson M, Ohnmeiss DD (2006) Failed back surgery syndrome: diagnostic evaluation. J Am Academy Orthopaedic Surg 14(9):534–543. https://doi.org/10.5435/00124635-200609000-00003

    Article  Google Scholar 

  10. Ozkan U, Osun A, Samancioglu A, Ercan S, Firat U, Kemaloglu S (2014) The effect of bevacizumab and 5-Fluorouracil combination on epidural fibrosis in a rat laminectomy model. European Review for Medical and Pharmacological Sciences 18(1):95–100

    CAS  PubMed  Google Scholar 

  11. Wang H, Sun W, Fu D, Shen Y, Chen YY, Wang LL (2018) Update on biomaterials for prevention of epidural adhesion after lumbar laminectomy. J Orthopaedic Trans 13:41–49. https://doi.org/10.1016/j.jot.2018.02.001

    Article  CAS  Google Scholar 

  12. Wang W, Du Z, Nimiya Y, Sukamtoh E, Kim D, Zhang G (2016) Allicin inhibits lymphangiogenesis through suppressing activation of vascular endothelial growth factor (VEGF) receptor. J Nutritional Biochem 29:83–89. https://doi.org/10.1016/j.jnutbio.2015.11.004

    Article  CAS  Google Scholar 

  13. Sela U, Brill A, Kalchenko V, Dashevsky O, Hershkoviz R (2008) Allicin inhibits blood vessel growth and downregulates Akt phosphorylation and actin polymerization. Nutr Cancer 60(3):412–420. https://doi.org/10.1080/01635580701733083

    Article  CAS  PubMed  Google Scholar 

  14. Wietecha MS, DiPietro LA (2013) Therapeutic approaches to the regulation of wound angiogenesis. Advances in Wound Care 2(3):81–86. https://doi.org/10.1089/wound.2011.0348

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shi P, Cao Y, Gao J, Fu B, Ren J, Ba L, Song C, Qi H, Huang W, Guan X, Sun H (2018) Allicin improves the function of cardiac microvascular endothelial cells by increasing PECAM-1 in rats with cardiac hypertrophy. Phytomedicine 51:241–254. https://doi.org/10.1016/j.phymed.2018.10.021

    Article  CAS  PubMed  Google Scholar 

  16. Staton CA, Stribbling SM, Tazzyman S, Hughes R, Brown NJ, Lewis CE (2004) Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Pathol 85(5):233–248. https://doi.org/10.1111/j.0959-9673.2004.00396.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gruhlke MC, Nicco C, Batteux F, Slusarenko AJ (2016) The Effects of Allicin, a Reactive Sulfur Species from Garlic, on a Selection of Mammalian Cell Lines. Antioxidants 6(1):1. https://doi.org/10.3390/antiox6010001

    Article  CAS  PubMed Central  Google Scholar 

  18. Chen X, Pang S, Lin J, **a J, Wang Y (2016) Allicin prevents oxidized low-density lipoprotein-induced endothelial cell injury by inhibiting apoptosis and oxidative stress pathway. BMC Complementary and Alternative Medicine 16:133. https://doi.org/10.1186/s12906-016-1126-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen S, Tang Y, Qian Y, Chen R, Zhang L, Wo L, Chai H (2014) Allicin prevents H(2)O(2)-induced apoptosis of HUVECs by inhibiting an oxidative stress pathway. BMC Complementary and Alternative Medicine 14:321. https://doi.org/10.1186/1472-6882-14-321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang SL, Liu DS, Liang ES, Gao YH, Cui Y, Liu YZ, Gao W (2015) Protective effect of allicin on high glucose/hypoxia-induced aortic endothelial cells via reduction of oxidative stress. Experimental and Therapeutic Medicine 10(4):1394–1400. https://doi.org/10.3892/etm.2015.2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Busch C, Jacob C, Anwar A, Burkholz T, Aicha Ba L, Cerella C, Diederich M, Brandt W, Wessjohann L, Montenarh M (2010) Diallylpolysulfides induce growth arrest and apoptosis. Int J Oncol 36(3):743–749. https://doi.org/10.3892/ijo_00000550

    Article  CAS  PubMed  Google Scholar 

  22. Kelkel M, Cerella C, Mack F, Schneider T, Jacob C, Schumacher M, Dicato M, Diederich M (2012) ROS-independent JNK activation and multisite phosphorylation of Bcl-2 link diallyl tetrasulfide-induced mitotic arrest to apoptosis. Carcinogenesis 33(11):2162–2171. https://doi.org/10.1093/carcin/bgs240

    Article  CAS  PubMed  Google Scholar 

  23. Hall PA, Levison DA, Woods AL, Yu CC, Kellock DB, Watkins JA, Barnes DM, Gillett CE, Camplejohn R, Dover R et al (1990) Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms. J Pathol 162(4):285–294. https://doi.org/10.1002/path.1711620403

    Article  CAS  PubMed  Google Scholar 

  24. Prelich G, Tan CK, Kostura M, Mathews MB, So AG, Downey KM, Stillman B (1987) Functional identity of proliferating cell nuclear antigen and a DNA polymerase-delta auxiliary protein. Nature 326(6112):517–520. https://doi.org/10.1038/326517a0

    Article  CAS  PubMed  Google Scholar 

  25. Saeedi Borujeni MJ, Hami J, Haghir H, Rastin M, Sazegar G (2016) Evaluation of Bax and Bcl-2 Proteins Expression in the Rat Hippocampus due to Childhood Febrile Seizure. Iranian Journal of Child Neurology 10(1):53–60

    PubMed  PubMed Central  Google Scholar 

  26. Renault TT, Dejean LM, Manon S (2017) A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2. Mech Ageing Dev 161(Pt B):201–210. https://doi.org/10.1016/j.mad.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  27. Kang JW, Lee SM (2012) Melatonin inhibits type 1 interferon signaling of toll-like receptor 4 via heme oxygenase-1 induction in hepatic ischemia/reperfusion. J Pineal Res 53(1):67–76. https://doi.org/10.1111/j.1600-079X.2012.00972.x

    Article  CAS  PubMed  Google Scholar 

  28. Duan W, Yang Y, Yan J, Yu S, Liu J, Zhou J, Zhang J, ** Z, Yi D (2012) The effects of curcumin post-treatment against myocardial ischemia and reperfusion by activation of the JAK2/STAT3 signaling pathway. Basic Res Cardiol 107(3):263. https://doi.org/10.1007/s00395-012-0263-7

    Article  CAS  PubMed  Google Scholar 

  29. Chen H, Zhu B, Zhao L, Liu Y, Zhao F, Feng J, ** Y, Sun J, Geng R, Wei Y (2018) Allicin Inhibits Proliferation and Invasion in Vitro and in Vivo via SHP-1-Mediated STAT3 Signaling in Cholangiocarcinoma. Cell Physiol Biochem 47(2):641–653. https://doi.org/10.1159/000490019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by Jiangsu Provincial Health and Family Planning Commission (CXTDB2017004)

Funding

This study was funded by Jiangsu Provincial Health and Family Planning Commission (CXTDB2017004).

Author information

Authors and Affiliations

Authors

Contributions

H-HS cell culture and experiments, data analysis and statistics, manuscript drafting, the polish of language. X-MF cell culture and experiments, verification of statistics, manuscript revision and format setting. J-CW study design, supervision, experimental technique guidance, the polish of language. JC study design, software and verification of statistics, the polish of language.

Corresponding authors

Correspondence to **g-Cheng Wang or Jun Cai.

Ethics declarations

Conflicts of interest

All authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, HH., Feng, XM., Wang, JC. et al. Allicin can suppress the activity of vascular endothelial cells probably by regulating JAK2/STAT3 pathway. Mol Cell Biochem 476, 435–441 (2021). https://doi.org/10.1007/s11010-020-03919-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03919-z

Keywords

Navigation