Log in

Post-conditioning protects cardiomyocytes from apoptosis via PKCε-interacting with calcium-sensing receptors to inhibit endo(sarco)plasmic reticulum–mitochondria crosstalk

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The intracellular Ca2+ concentration ([Ca2+]i) is increased during cardiac ischemia/reperfusion injury (IRI), leading to endo(sarco)plasmic reticulum (ER) stress. Persistent ER stress, such as with the accumulation of [Ca2+]i, results in apoptosis. Ischemic post-conditioning (PC) can protect cardiomyocytes from IRI by reducing the [Ca2+]i via protein kinase C (PKC). The calcium-sensing receptor (CaR), a G protein-coupled receptor, causes the production of inositol phosphate (IP3) to increase the release of intracellular Ca2+ from the ER. This process can be negatively regulated by PKC through the phosphorylation of Thr-888 of the CaR. This study tested the hypothesis that PC prevents cardiomyocyte apoptosis by reducing the [Ca2+]i through an interaction of PKC with CaR to alleviate [Ca2+]ER depletion and [Ca2+]m elevation by the ER-mitochondrial associated membrane (MAM). Cardiomyocytes were post-conditioned after 3 h of ischemia by three cycles of 5 min of reperfusion and 5 min of re-ischemia before 6 h of reperfusion. During PC, PKCε translocated to the cell membrane and interacted with CaR. While PC led to a significant decrease in [Ca2+]i, the [Ca2+]ER was not reduced and [Ca2+]m was not increased in the PC and GdCl3–PC groups. Furthermore, there was no evident ∆ψm collapse during PC compared with ischemia/reperfusion (I/R) or PKC inhibitor groups, as evaluated by laser confocal scanning microscopy. The apoptotic rates detected by TUNEL and Hoechst33342 were lower in PC and GdCl3–PC groups than those in I/R and PKC inhibitor groups. Apoptotic proteins, including m-calpain, BAP31, and caspase-12, were significantly increased in the I/R and PKC inhibitor groups. These results suggested that PKCε interacting with CaR protected post-conditioned cardiomyocytes from programmed cell death by inhibiting disruption of the mitochondria by the ER as well as preventing calcium-induced signaling of the apoptotic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Braunwald E, Kloner RA (1985) Myocardial reperfusion: a double-edged sword? J Clin Invest 76:1713–1719

    Article  CAS  PubMed  Google Scholar 

  2. Rizzuto R, Duchen MR, Pozzan T (2004) Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci STKE 215:re1

    Google Scholar 

  3. Parekh AB (2003) Store-operated Ca2+ entry: dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane. J Physiol 547:333–348

    Article  CAS  PubMed  Google Scholar 

  4. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survive. Cell 131:596–610

    Article  CAS  PubMed  Google Scholar 

  5. Zhao ZQ, Vinten-Johansen J (2006) Postconditioning: reduction of reperfusion-induced injury. Cardiovasc Res 70:200–211

    Article  CAS  PubMed  Google Scholar 

  6. Yuichi N, Tetsuji M, Atsushi N, Ichikawa Y, Yano T, Kobayashi H, Ikeda Y, Miki T, Shimamoto K (2004) Role of microtubules in ischemic preconditioning against myocardial infarction. Cardiovasc Res 64:322–330

    Article  Google Scholar 

  7. Brown EM, Bai M, Pollak MR (1998) Familial benign hypocalciuric hypercalcemia and other syndromes of altered responsiveness to extracellular calcium. In: Avioli LV, Krane SM (eds) Metabolic bone disease. Academic Press, New York

    Google Scholar 

  8. Wang R, Xu CQ, Zhao WM, Zhang J, Cao K, Yang BF, Wu LY (2003) Calcium and polyamine regulated calcium-sensing receptors in cardiac tissues. Eur J Biochem 207:2680–2688

    Article  Google Scholar 

  9. Tfelt-Hansen J, Hansen JL, Smajilovic S (2006) Calcium receptor is functionally expressed in rat neonatal ventricular cardiomyocytes. Am J Physiol Heart Circ Physiol 290:H1165–H1171

    Article  CAS  PubMed  Google Scholar 

  10. Berra-Romani R, Raqeeb A, Laforenza U (2009) Cardiac microvascular endothelial cells express a functional Ca2+-sensing receptor. J Vasc Res 46:73–82

    Article  CAS  PubMed  Google Scholar 

  11. Jiang YF, Zhang ZX, Kifor O, Lane CR, Quinn SJ, Bai M (2002) Protein kinase C (PKC) phosphorylation of the Ca2+0-sensing receptor (CaR) modulates functional interaction of G proteins with the CaR cytoplasmic tail. J Biol Chem 277:50543–50549

    Article  CAS  PubMed  Google Scholar 

  12. Szabadkai G, Rizzuto R (2004) Participation of endoplasmic reticulum and mitochondrial calcium handling in apoptosis: more than just neighborhood? FEBS Lett 567:111–115

    Article  CAS  PubMed  Google Scholar 

  13. Sun HY, Wang NP, Kerendi F, Halkos M, Kin H, Guyton RA, Vinten-Johansen J, Zhao ZQ (2005) Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am J Physiol Heart Circ Physiol 288:H1900–H1908

    Article  CAS  PubMed  Google Scholar 

  14. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403:98–103

    Article  CAS  PubMed  Google Scholar 

  15. Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL (2003) Protein kinase C epsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 92:873–880

    Article  CAS  PubMed  Google Scholar 

  16. Tao J, Xu H, Yang C (2004) Effect of urocortin on L-type calcium currents in adult rat ventricular myocytes. J Pharmacol Res 50:471–476

    Article  CAS  Google Scholar 

  17. Bai M, Trivedi S, Brown EM (1998) Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR transfected HEK293 cells. J Biol Chem 273:23605–23610

    Article  CAS  PubMed  Google Scholar 

  18. Siman R, Flood DG, Thinakaran G, Neumar RW (2001) Endoplasmic reticulum stress-induced cysteine protease activation in cortical neurons. J Biol Chem 276:44736–44743

    Article  CAS  PubMed  Google Scholar 

  19. Di Lisa F, Blank PS, Colonna R, Gambass G, Silverman HS, Stern MD, Hansford RG (1995) Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J Physiol 486:1–13

    CAS  PubMed  Google Scholar 

  20. Ng FW, Nguyen M, Kwan T, Branton PE, Nicholson DW, Cromlish JA, Shore GC (1997) p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum. J Cell Biol 139:327–338

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen M, Branton PE, Roy S, Nicholson DW, Alnemri ES, Yeh WC, Mak TW, Shore GC (1998) E1A-induced processing of procaspase-8 can occur independently of FADD and is inhibited by Bcl-2. J Biol Chem 273:33099–33102

    Article  CAS  PubMed  Google Scholar 

  22. Duchen MR (2000) Mitochondria and calcium: from cell signaling to cell death. J Physiol 529:57–68

    Article  CAS  PubMed  Google Scholar 

  23. Zatta AJ, Kin H, Lee G, Wang N, Jiang R, Lust R, Reeves JG, Mykytenko J, Guyton RA, Zhao ZQ, Vinten-Johansen J (2006) Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signalling. Cardiovasc Res 70:315–324

    Article  CAS  PubMed  Google Scholar 

  24. Sakwe AM, Rask L, Gylfe E (2005) Protein kinase C modulates agonist-sensitive release of Ca2+ from internal stores in HEK293 cells overexpressing the calcium sensing receptor. J Biol Chem 280:4436–4441

    Article  CAS  PubMed  Google Scholar 

  25. Szalai G, Krishnamurthy R, Hajnoczky G (1999) Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J 18:6349–6361

    Article  CAS  PubMed  Google Scholar 

  26. Szabadkai G, Simoni AM, Chaim M, Wieckowsk MR, Youle RT, Rizzuto R (2004) Drp-1 dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against mediated apoptosis. Mol Cell 16:59–68

    Article  CAS  PubMed  Google Scholar 

  27. Frieden M, James D, Castelbou C, Danckaert A, Mrtinou JC, Demaurex N (2004) Ca2+ homeostasis during mitochondrial fragmentation and perinuclear clustering induced by hFis1. J Biol Chem 279:22704–22714

    Article  CAS  PubMed  Google Scholar 

  28. Gursahani HI, Schaefer S (2004) Acidification reduces mitochondrial calcium uptake in rat cardiac mitochondria. Am J Physiol 287:H2659–H2665

    CAS  Google Scholar 

  29. Gil-Parrado S, Popp O, Knoch TA, Zahler S, Bestvater F, Felgenträger M, Holloschi A, Fernández-Montalván A, Auerswald EA, Fritz H, Fuentes-Prior P, Machleidt W, Spiess E (2003) Subcellular localization and in vivo subunit interactions of ubiquitous μ-calpain. J Biol Chem 278:16336–16346

    Article  CAS  PubMed  Google Scholar 

  30. Kin H, Zhao ZQ, Sun HY, Wang NP, Corvera JS, Halkos ME, Kerendi F, Guyton RA, Vinten-Johansen J (2004) Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res 62:74–85

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Basic Research Program of China (973 program No. 2007CB512000), and the National Natural Science Foundation of China (No. 30700288, 30770878, 30871012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-qing Xu or Wei-hua Zhang.

Additional information

Shiyun Dong and Zongyan Teng contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, S., Teng, Z., Lu, Fh. et al. Post-conditioning protects cardiomyocytes from apoptosis via PKCε-interacting with calcium-sensing receptors to inhibit endo(sarco)plasmic reticulum–mitochondria crosstalk. Mol Cell Biochem 341, 195–206 (2010). https://doi.org/10.1007/s11010-010-0450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0450-5

Keywords

Navigation