Log in

The activity of erythrocyte and brain Na+/K+ and Mg2+-ATPases in rats subjected to acute homocysteine and homocysteine thiolactone administration

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hyperhomocysteinemia is associated with various pathologies including cardiovascular disease, stroke, and cognitive dysfunctions. Systemic administration of homocysteine can trigger seizures in animals, and patients with homocystinuria suffer from epileptic seizures. Available data suggest that homocysteine can be harmful to human cells because of its metabolic conversion to homocysteine thiolactone, a reactive thioester. A number of reports have demonstrated a reduction of Na+/K+-ATPase activity in cerebral ischemia, epilepsy and neurodegeneration possibly associated with excitotoxic mechanisms. The aim of this study was to examine the in vivo effects of d,l-homocysteine and d,l-homocysteine thiolactone on Na+/K+- and Mg2+-ATPase activities in erythrocyte (RBC), brain cortex, hippocampus, and brain stem of adult male rats. Our results demonstrate a moderate inhibition of rat hippocampal Na+/K+-ATPase activity by d,l-homocysteine, which however expressed no effect on the activity of this enzyme in the cortex and brain stem. In contrast,d,l-homocysteine thiolactone strongly inhibited Na+/K+-ATPase activity in cortex, hippocampus and brain stem of rats. RBC Na+/K+-ATPase and Mg2+-ATPase activities were not affected by d,l-homocysteine, while d,l-homocysteine thiolactone inhibited only Na+/K+-ATPase activity. This study results show that homocysteine thiolactone significantly inhibits Na+/K+-ATPase activity in the cortex, hippocampus, and brain stem, which may contribute at least in part to the understanding of excitotoxic and convulsive properties of this substance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mato JM, Lu SC (2005) Homocysteine, the bad thiol. Hepatology 41:976–979. doi:10.1002/hep.20708

    Article  PubMed  CAS  Google Scholar 

  2. Budge J, Johnston C, Hogervorst E et al (2000) Plasma total homocysteine and cognitive performance in a volunteer elderly population. Ann N Y Acad Sci 903:407–410. doi:10.1111/j.1749-6632.2000.tb06392.x

    Article  PubMed  CAS  Google Scholar 

  3. Sachdev PS, Valenzuela M, Brodaty H et al (2003) Homocysteine as a risk factor for cognitive impairment in stroke patients. Dement Geriatr Cogn Disord 15:155–162. doi:10.1159/000068481

    Article  PubMed  CAS  Google Scholar 

  4. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483. doi:10.1056/NEJMoa011613

    Article  PubMed  CAS  Google Scholar 

  5. Prins ND, Den Heijer T, Hofman A, Koudstaal PJ, Jolles J, Clarke R, Breteler MM (2002) Homocysteine and cognitive function in the elderly: the Rotterdam Scan Study. Neurology 59:1375–1380

    PubMed  CAS  Google Scholar 

  6. Matte C, Scherer EBS, Stefanello FM et al (2007) Concurrent folate treatment prevents Na+, K+-ATPase activity inhibition and memory impairments caused by chronic hyperhomocysteinemia during rat development. Int J Dev Neurosci 25:545–552. doi:10.1016/j.ijdevneu.2007.10.003

    Article  PubMed  CAS  Google Scholar 

  7. Djuric D, Jakovljevic V, Rasic-Markovic A, Djuric A, Stanojlovic O (2008) Homocysteine, folic acid and coronary artery disease: possible impact on prognosis and therapy. Indian J Chest Dis Allied Sci 50:39–48

    PubMed  CAS  Google Scholar 

  8. Kruman II, Culmsee C, Chan SL et al (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20:6920–6926

    PubMed  CAS  Google Scholar 

  9. Folbergová J, Haugvicová R, Mareš P (2000) Behavioral and metabolic changes in immature rats during seizures induced by homocysteic acid: the protective effect of NMDA and non-NMDA receptor antagonists. Exp Neurol 161:336–345. doi:10.1006/exnr.1999.7264

    Article  CAS  Google Scholar 

  10. Jakubowski H (2006) Pathophysiological consequences of homocysteine excess. J Nutr 136:1741S–1749S

    PubMed  CAS  Google Scholar 

  11. Rodrigez LA, Arnaiz G, Pena C (1995) Characterization of Na+/K+-ATPase. Neurochem Int 27:319–327. doi:10.1016/0197-0186(95)00013-X

    Article  Google Scholar 

  12. Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:37–71. doi:10.1016/0301-0082(94)90015-9

    Article  PubMed  CAS  Google Scholar 

  13. Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650

    PubMed  CAS  Google Scholar 

  14. Sanui H, Rubin H (1982) The role of magnesium in cell proliferation and transformation. In: Boynton AL, MacKeehan WL, Winitfield JP (eds) Ions, cell proliferation and cancer. Academic Press, New York, pp 517–537

    Google Scholar 

  15. Vasić V, Jovanović D, Krstić D et al (1999) Prevention and recovery of CuSO4-induced inhibition of Na+/K+-ATPase in rat brain synaptosomes by EDTA. Toxicol Lett 110:95–104. doi:10.1016/S0378-4274(99)00144-7

    Article  PubMed  Google Scholar 

  16. Ekholm A, Katsura K, Kristián T, Liu M, Folbergrová J, Siesjö BK (1993) Coupling of cellular energy state and ion homeostasis during recovery following brain ischemia. Brain Res 604:185–191. doi:10.1016/0006-8993(93)90367-V

    Article  PubMed  CAS  Google Scholar 

  17. Grisar T, Guillaume D, Delgado-Escueta AV (1992) Contribution of Na+/K+-ATPase to focal epilepsy: a brief review. Epilepsy Res 12:141–149. doi:10.1016/0920-1211(92)90034-Q

    Article  PubMed  CAS  Google Scholar 

  18. Lees GJ (1993) Contributory mechanisms in the causation of neurodegenerative disorders. Neuroscience 54:287–322. doi:10.1016/0306-4522(93)90254-D

    Article  PubMed  CAS  Google Scholar 

  19. Bingami A, Palladini C, Venturini G (1966) Effect of cardiazol on sodium-potassium adenosine triphosphatase of the rat brain in vivo. Brain Res 1:413–414. doi:10.1016/0006-8993(66)90134-X

    Article  Google Scholar 

  20. Streck EL, Matte C, Vieira PS et al (2003) Impairment of energy metabolism in hippocampus of rats subjected to chemically-induced hyperhomocysteinaemia. Biochim Biophys Acta 1637:187–192

    PubMed  CAS  Google Scholar 

  21. Matte C, Monteiro SC, Calcagnotto T, Bavaresco CS, Netto CA, Wyse AT (2004) In vivo and in vitro effects of homocysteine on Na+, K+-ATPase activity in parietal, prefrontal and cingulated cortex of young rats. Int J Dev Neurosci 22:185–190. doi:10.1016/j.ijdevneu.2004.05.007

    Article  PubMed  CAS  Google Scholar 

  22. Jakubowski H (2004) Molecular basis of homocysteine toxicity in humans. Cell Mol Life Sci 61:470–487. doi:10.1007/s00018-003-3204-7

    Article  PubMed  CAS  Google Scholar 

  23. Post RI, Merit CR, Kosolving CR, Albbright CD (1960) Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem 235:1796–1802

    PubMed  CAS  Google Scholar 

  24. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  25. Cohen RS, Blomber F, Berzins K, Siekevitz P (1977) The structure of postsynaptic densities isolated from dog cerebral cortex: I. Overall morphology and protein composition. J Cell Biol 74:181–203. doi:10.1083/jcb.74.1.181

    Article  PubMed  CAS  Google Scholar 

  26. Towle AC, Sze PY (1983) Steroid binding to synaptic plasma membrane: differential binding of glucocorticoids and gonadal steroids. J Steroid Biochem 18:135–143. doi:10.1016/0022-4731(83)90079-1

    Article  PubMed  CAS  Google Scholar 

  27. Horvat A, Nikezić G, Martinović JV (1995) Estradiol binding to synaptosomal plasma membranes of rat brain regions. Experientia 51(1):11–15

    PubMed  CAS  Google Scholar 

  28. Streck EL, Zugno AI, Tagliari B, Wannmacher C, Wajner M, Wyse AT (2002) Inhibition of Na+, K+-ATPase activity by the metabolites accumulating in homocystinuria. Metab Brain Dis 17:83–91. doi:10.1023/A:1015594111778

    Article  PubMed  CAS  Google Scholar 

  29. Wyse AT, Zugno AI, Streck EL et al (2002) Inhibition of Na+, K+-ATPase activity in hippocampus of rats subjected to acute administration of homocysteine is prevented by vitamins E and C treatment. Neurochem Res 27:1685–1689. doi:10.1023/A:1021647329937

    Article  PubMed  CAS  Google Scholar 

  30. Matte C, Durigon E, Stefanello FM, Cipriani F, Wajner M, Wyse AT (2006) Folic acid pretreatment prevents the reduction of Na+, K+-ATPase and butyrylcholinesterase activities in rats subjected to acute hyperhomocysteinemia. Int J Dev Neurosci 24:3–8. doi:10.1016/j.ijdevneu.2005.12.003

    Article  PubMed  CAS  Google Scholar 

  31. Gharib A, Chabennes B, Sarda N, Pacheco H (1983) In vivo elevation of mouse brain S-adenosil-l-homocysteine after treatment with l-homocysteine. J Neurochem 40:1110–1112. doi:10.1111/j.1471-4159.1983.tb08100.x

    Article  PubMed  CAS  Google Scholar 

  32. Stanojlović O, Rašić-Marković A, Hrnčić D, Sušić V, Macut D, Radosavljević T, Djuric D (2008) Two types of seizures in homocysteine thiolactone-treated adult rats, behavioral and electroencephalographic study. Cell Mol Neurobiol [Epub ahead of print]

  33. Schulpis KH, Giannoulia-Karantana A, Papaconstantinou ED, Parthimos T, Tjamouranis I, Tsakiris S (2006) Erythrocyte membrane Na+, K+-ATPase and Mg2+-ATPase activities in subjects with methylenetetrahydrofolate reductase (MTHFR) 677 C → T genotype and moderate hyperhomocysteinemia. The role of l-phenylalanine and l-alanine. Clin Chem Lab Med 44:423–427. doi:10.1515/CCLM.2006.069

    Article  PubMed  CAS  Google Scholar 

  34. Rašić-Marković A, Krstić D, Vujović Z et al (2008) Modulations of rabbit erythrocyte ATPase activities induced by in vitro and in vivo exposure to ethanol. Mol Cell Biochem 308:111–116. doi:10.1007/s11010-007-9618-z

    Article  PubMed  CAS  Google Scholar 

  35. Shamraj OI, Lingrel JB (1994) A putative fourth Na+K+-ATPase α subunit gene is expressed in testis. Proc Natl Acad Sci USA 91:12952–12956. doi:10.1073/pnas.91.26.12952

    Article  PubMed  CAS  Google Scholar 

  36. Cameron R, Klein L, Shyjan AW, Rakic P, Levenson R (1994) Neurons and astroglia express distinct subsets of the Na+, K+-ATPase α and β subunits. Brain Res Mol Brain Res 21:333–343. doi:10.1016/0169-328X(94)90264-X

    Article  PubMed  CAS  Google Scholar 

  37. Mobasheri A, Avila J, Cozar-Castellano I, Brownleader MD, Trevan M, Francis MJO, Lamb JF, Martin-Vasallo P (2000) Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci Rep 20:51–91. doi:10.1023/A:1005580332144

    Article  PubMed  CAS  Google Scholar 

  38. Lingrel JB (1992) Na,K-ATPase: isoform structure, function, and expression. J Bioenerg Biomembr 24:263–270

    PubMed  CAS  Google Scholar 

  39. Gloor S, Antonicek H, Sweadner KJ, Pagliusi S, Frank R, Moos M, Schachner M (1990) The adhesion molecule on glia (AMOG) is a homologue of the beta subunit of the Na,K-ATPase. J Cell Biol 110:165–174. doi:10.1083/jcb.110.1.165

    Article  PubMed  CAS  Google Scholar 

  40. Watts AG, Sanchez-Watts G, Emanuel JR, Levenson R (1991) Cell-specific expression of mRNAs encoding Na+, K+-ATPase alpha- and beta-subunit isoforms within the rat central nervous system. Proc Natl Acad Sci USA 88:7425–7429. doi:10.1073/pnas.88.16.7425

    Article  PubMed  CAS  Google Scholar 

  41. Viola MS, Rodríguez de Lores Arnaiz G (2007) Brain Na+, K+-ATPase isoforms: different hypothalamus and mesencephalon response to acute desipramine treatment. Life Sci 81:228–233. doi:10.1016/j.lfs.2007.05.011

    Article  PubMed  CAS  Google Scholar 

  42. Cousin MA, Nicholls DG, Pocock JM (1995) Modulation of ion gradients and glutamate release in cultured cerebellar granule cells by oubain. J Neurochem 64:2097–2104

    Article  PubMed  CAS  Google Scholar 

  43. Lees GJ, Leong W (1994) Brain lesions induced by specific and non-specific inhibitors of sodium-potassium ATPase. Brain Res 649:225–233. doi:10.1016/0006-8993(94)91068-5

    Article  PubMed  CAS  Google Scholar 

  44. Streck EL, Zugno AI, Tagliari B et al (2002) On the mechanism of the inhibition of Na+, K+-ATPase activity caused by homocysteine. Int J Dev Neurosci 20:77–81. doi:10.1016/S0736-5748(02)00043-6

    Article  PubMed  CAS  Google Scholar 

  45. Vizi ES (1979) Presynaptic modulation of neurochemical transmission. Prog Neurobiol 12:181–290. doi:10.1016/0301-0082(79)90011-X

    Article  PubMed  CAS  Google Scholar 

  46. Vaillend C, Mason SE, Cuttle MF, Alger BE (2002) Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+/K+-ATPases in the rat CA1 hippocampal region. J Neurophysiol 88:2963–2978. doi:10.1152/jn.00244.2002

    Article  PubMed  CAS  Google Scholar 

  47. Streck EL, Vieira PS, Clovis MD et al (2003) In vitro effect of homocysteine on some parameters of oxidative stress in rat hippocampus. Metab Brain Dis 18:147–154. doi:10.1023/A:1023815119931

    Article  PubMed  CAS  Google Scholar 

  48. Hogg N (1999) The effect of cysteine on the auto-oxidation of homocysteine. Free Radic Biol Med 27:28–33. doi:10.1016/S0891-5849(99)00029-5

    Article  PubMed  CAS  Google Scholar 

  49. Folbergrova J (1994) NMDA and not non-NMDA receptor antagonists are protective against seizures induced by homocysteine in neonatal rats. Exp Neurol 130:344–350. doi:10.1006/exnr.1994.1213

    Article  PubMed  CAS  Google Scholar 

  50. Spence AM, Rasey JS, Dwyer-Hansen L et al (1995) Toxicity, biodistribution and radioprotective capacity of L-homocysteine thiolactone in CNS tissues and tumors in rodents: comparison with prior results with phosphorothioates. Radiother Oncol 35:216–226. doi:10.1016/0167-8140(95)01543-P

    Article  PubMed  CAS  Google Scholar 

  51. Sanders AP, Kramer RS, Woodhall B, Currie WD (1970) Brain adenosine triphosphate: decreased concentration precedes convulsions. Science 169:206–208. doi:10.1126/science.169.3941.206

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministry for Science, Technology, and Environment Protection of Serbia (Grants #145029B and #145014B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivera Stanojlović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rašić-Marković, A., Stanojlović, O., Hrnčić, D. et al. The activity of erythrocyte and brain Na+/K+ and Mg2+-ATPases in rats subjected to acute homocysteine and homocysteine thiolactone administration. Mol Cell Biochem 327, 39–45 (2009). https://doi.org/10.1007/s11010-009-0040-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0040-6

Keywords

Navigation