Log in

Remarks on the geodesically completeness and the smoothing effect on asymptotically Minkowski spacetimes

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this note, we study a geometric property of asymptotically Minkowski spacetimes and an analytic property of the wave operator. More precisely, our first main results show that asymptotically Minkowski spacetimes are geodesically complete under a null non-trap** condition. Secondly, we prove that Sobolev index of a real principal type estimate used in a previous work is optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beem, J. K., Ehrlich, P. E., Easley, K. L.: Global lorentzian geometry. Second edition. Monographs and textbooks in pure and applied mathematics, 202. Marcel Dekker, Inc, New York, (1996)

  2. Braverman, M., Milatovich, O., Shubin, M.: Essential self-adjointness of Schrödinger-type operators on manifolds. Russian Math. Surv. 57–4, 641–692 (2002)

    Article  ADS  Google Scholar 

  3. Colin de Verdiére, Y., Bihan, C.: On essential-selfadjointness of differential operators on closed manifolds, to appear in Ann. Fac. Sci. Toulouse Math, ar**v:2004.06937, (2020)

  4. Dang, N. V., Wrochna, M.L: Complex powers of the wave operator and the spectral action on Lorentzian scattering spaces, preprint, ar**v:2012.00712, (2020)

  5. Dereziński, J., Siemssen, D.: Feynman propagators on static spacetimes. Rev. Math. Phys. 30, 1850006 (2018)

    Article  MathSciNet  Google Scholar 

  6. Dereziński, J., Siemssen, D.: An evolution equation approach to the Klein-Gordon operator on curved spacetime. Pure Appl. Anal. 1, 215–261 (2019)

    Article  MathSciNet  Google Scholar 

  7. Dereziński, J., Siemssen, D.: An Evolution Equation Approach to Linear Quantum Field Theory, preprint, ar**v:1912.10692, (2019)

  8. Sánchez, M.: An introduction to the completeness of compact semi-riemannian manifolds, Sémin. Théor. Spectr. Géom., 13, Univ. Grenoble I, Saint-Martind’Héres, 37–53 (1995)

  9. Gérard, C., Wrochna, M.: The massive Feynman propagator on asymptotically Minkowski spacetimes. Amer. J. Math. 141, 1501–1546 (2019)

    Article  MathSciNet  Google Scholar 

  10. Gérard, C., Wrochna, M.: The massive Feynman propagator on asymptotically Minkowski spacetimes II. Int. Math. Res. Notices. 20, 6856–6870 (2020)

    Article  MathSciNet  Google Scholar 

  11. Gérard, C., Wrochna, M.: The Feynman problem for the Klein-Gordon equation. ar**v:2003.14404, (2020)

  12. Hörmander, L.: Analysis of Linear Partial Differential Operators, Vol. I-IV. Springer Verlag, (1983–1985)

  13. Kamiński, W.: Non self-adjointness of the Klein-Gordon operator on globally hyperbolic and geodesically complete manifold. An example, preprint, ar**v:1904.03691, (2019)

  14. Kenig, C., Ponce, G., Rolvung, C., Vega, L.: Variable coefficient Schrödinger flows for ultrahyperbolic operators. Adv. Math. 196–2, 373–486 (2005)

    Article  Google Scholar 

  15. Nomizu, K., Ozeki, H.: The existence of complete Riemannian metrics. Proc. Amer. Math. Soc. 12, 889–891 (1961)

    Article  MathSciNet  Google Scholar 

  16. Nakamura, S., Taira, K.: Essential self-adjointness of real principal type operators. Ann. Henri Lebesgue. 4, 1035–1059 (2021)

    Article  MathSciNet  Google Scholar 

  17. Reed, M., Simon, B.: The Methods of Modern Mathematical Physics, Vol. I–IV. Academic Press, (1972–1980)

  18. Taira, K.: Equivalence of classical and quantum completeness for real principal type operators on the circle, preprint, ar**v:2004.07547, (2020)

  19. Taira, K.: Limiting absorption principle and equivalence of Feynman propagators on asymptotically Minkowski spacetimes. Commun. Math. Phys. 388, 625–655 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  20. Vasy, A.: Essential self-adjointness of the wave operator and the limiting absorption principle on Lorentzian scattering spaces. J. Spectr. Theory. 10, 439–461 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouichi Taira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A short proof of smoothing effects on the Minkowski spacetimes

A short proof of smoothing effects on the Minkowski spacetimes

In this appendix, we give a short proof of (1.1) and (1.2) using the explicit formula (3.2).

Lemma A.1

Set

$$\begin{aligned} I(t,y)=\int _{{\mathbb {R}}}e^{-i|t-s|A}f(s,y)ds. \end{aligned}$$

Then, for \(\varepsilon >0\) we have

$$\begin{aligned}&\Vert \langle t \rangle ^{-\frac{1}{2}-\varepsilon }I\Vert _{L^2({\mathbb {R}}^{n+1})}\le C\Vert \langle D_y \rangle ^{\frac{1}{2}}f\Vert _{L^2({\mathbb {R}}^{n+1})},\quad \Vert \langle t \rangle ^{-\frac{1}{2}-\varepsilon }I\Vert _{L^2({\mathbb {R}}^{n+1})}\\&\quad \le C\Vert \langle t \rangle ^{\frac{1}{2}+\varepsilon }f\Vert _{L^2({\mathbb {R}}^{n+1})} \end{aligned}$$

Proof

The second inequality immediately follows from Hölder’s inequality. Thus, we shall show the first inequality. We write \({\hat{f}}(t,\eta )={\mathcal {F}}_{y\rightarrow \eta }f(t,\eta )\) and \(a_2:=-{\mathrm{Im}\;}a=-{\mathrm{Im}\;}\sqrt{|\eta |^2-i}\), where \({\mathcal {F}}_{y\rightarrow \eta }\) denotes the Fourier transform from the variable y to the variable \(\eta \). Fourier transforming in \(y\rightarrow \eta \) and using Young’s inequality, we have

$$\begin{aligned} |{\hat{I}}(t,\eta )|&\le |\int _{{\mathbb {R}}} e^{-(t-s)a_2}|{\hat{f}}(s,\eta )|ds|\le \Vert e^{-sa_2}\Vert _{L^2({\mathbb {R}}_s)} \Vert {\hat{f}}(s,\eta )\Vert _{L^2({\mathbb {R}}_s)}\\&\quad \le C\Vert a_2^{-\frac{1}{2}}{\hat{f}}(s,\eta )\Vert _{L^2({\mathbb {R}}_s)}. \end{aligned}$$

This calculation gives \(\Vert \langle t \rangle ^{-\frac{1}{2}-\varepsilon }{\hat{I}}(t,\eta )\Vert _{L^2_t}\le \Vert \langle t \rangle ^{-\frac{1}{2}-\varepsilon }\Vert _{L^2_t}\Vert {\hat{I}}(t,\eta )\Vert _{L^{\infty }_t}\le C\Vert a_2^{-\frac{1}{2}}{\hat{f}}(t,\eta )\Vert _{L^2_t}\). Plancherel’s theorem and (3.1) imply

$$\begin{aligned} \Vert \langle t \rangle ^{-\frac{1}{2}-\varepsilon }I\Vert _{L^2({\mathbb {R}}^{n+1}_{t,y})}\le C\Vert a_2^{-\frac{1}{2}}{\hat{f}}\Vert _{L^2({\mathbb {R}}^{n+1}_{t,\eta })}\le C\Vert \langle D_y \rangle ^{\frac{1}{2}}f\Vert _{L^2({\mathbb {R}}^{n+1}_{t,y})}. \end{aligned}$$

\(\square \)

Now we shall prove (1.1) or a stronger bound: \(\Vert \langle t \rangle ^{-\frac{1}{2}-\varepsilon }\langle D_x \rangle ^{\frac{1}{2}}(P-i)^{-1}f\Vert _{L^2({\mathbb {R}}^{n+1})}\le C\Vert f\Vert _{L^2({\mathbb {R}}^{n+1})}\). To do this, it suffices to prove

$$\begin{aligned} \Vert \langle t \rangle ^{-\frac{1}{2}-\varepsilon }\langle D_y \rangle ^{\frac{1}{2}}(P-i)^{-1}f\Vert _{L^2({\mathbb {R}}^{n+1})}\le C\Vert f\Vert _{L^2({\mathbb {R}}^{n+1})}. \end{aligned}$$
(4.1)

where we recall \(x=(t,y)\in {\mathbb {R}}\times {\mathbb {R}}^n\). In fact, we take \(\varphi (D_x)=\psi (P/(-\Delta _x+1))\), where \(\psi \!\in \! C_c^{\infty }({\mathbb {R}};[0,1])\) satisfies \(\psi (s)\!=\!1\) on \(|s|\!\le \! \frac{1}{4}\) and \({\mathrm{supp}\;}\psi \!\subset \! \{|s|\!\le \! \frac{1}{2}\}\). Moreover, we set \(\chi (D_x)=\varphi (D_x)\langle D_x \rangle ^{\frac{1}{2}}\langle D_y \rangle ^{-\frac{1}{2}}\). Since P is elliptic on the essential support of \(1-\varphi (D_{x})\), we have \(\Vert (1-\varphi (D_x))\langle D_x \rangle ^{\frac{1}{2}}(P-i)^{-1}f\Vert _{L^2({\mathbb {R}}^{n+1})}\le C\Vert f\Vert _{L^2({\mathbb {R}}^{n+1})}\). Moreover, since \(c^{-1}|\xi |\le |\eta |\le c|\xi |\) on the essential support of \(\varphi (D_x)\) with a constant \(c\ge 1\), it turns out that \(\chi (D_x)\) is bounded in \(L^2({\mathbb {R}}^{n+1})\). Hence,

$$\begin{aligned} \Vert \langle t \rangle ^{-\frac{1}{2}-\varepsilon }\varphi (D_x)\langle D_x \rangle ^{\frac{1}{2}}(P-i)^{-1}f\Vert _{L^2({\mathbb {R}}^{n+1})}\!=&\Vert \langle t \rangle ^{-\frac{1}{2}-\varepsilon }\chi (D_x)\langle D_y \rangle ^{\frac{1}{2}}(P-i)^{-1}f\Vert _{L^2({\mathbb {R}}^{n+1})}\\ \le&C\Vert \chi (D_x)f\Vert _{L^2({\mathbb {R}}^{n+1})}\le C\Vert f\Vert _{L^2({\mathbb {R}}^{n+1})}, \end{aligned}$$

due to (4.1). Combining these inequalities with (4.2), we obtain (1.1). Now we turn to the proof of (4.1). Lemma A.1 with the formula (3.2) immediately implies

$$\begin{aligned} \Vert \langle t \rangle ^{-\frac{1}{2}-\varepsilon }(P-i)^{-1}f\Vert _{L^2({\mathbb {R}}^{n+1})}\le C\Vert A^{-1}\langle D_y \rangle ^{\frac{1}{2}}f\Vert _{L^2({\mathbb {R}}^{n+1})}\le C\Vert \langle D_y \rangle ^{-\frac{1}{2}}f\Vert _{L^2({\mathbb {R}}^{n+1})}, \end{aligned}$$
(4.2)

which shows (4.1).

Finally, we prove (1.2) or a stronger bound: \(\Vert \langle t \rangle ^{-\frac{1}{2}-\varepsilon }\langle D_x \rangle (P\!-i)^{-1}\langle t \rangle ^{-\frac{1}{2}-\varepsilon } f \Vert _{L^2({\mathbb {R}}^{n+1})}\le C\Vert f\Vert _{L^2({\mathbb {R}}^{n+1})}\). Lemma A.1 with the formula (3.2) implies

$$\begin{aligned} \Vert \langle t \rangle ^{-\frac{1}{2}-\varepsilon }\langle D_y \rangle (P-i)^{-1}\langle t \rangle ^{-\frac{1}{2}-\varepsilon }f \Vert _{L^2({\mathbb {R}}^{n+1})}\le C\Vert f\Vert _{L^2({\mathbb {R}}^{n+1})}, \end{aligned}$$

where we recall \(x=(t,y)\in {\mathbb {R}}\times {\mathbb {R}}^n\). Let \(\varphi \) be as in the proof of (4.1) and set \(\chi _1(D_x)=\varphi (D_x)\langle D_x \rangle \langle D_y \rangle ^{-1}\). We repeat an argument similar to the proof of (4.1): Since P is elliptic on the essential support of \(1-\varphi (D_{x})\), we have \(\Vert (1-\varphi (D_x))\langle D_x \rangle (P-i)^{-1}f\Vert _{L^2({\mathbb {R}}^{n+1})}\le C\Vert f\Vert _{L^2({\mathbb {R}}^{n+1})}\). Moreover, since \(c^{-1}|\xi | \le |\eta |\le c|\xi |\) on the essential support of \(\varphi (D_x)\) with a constant \(c\ge 1\), it turns out that \(\chi _1(D_x)\) is bounded in \(L^2({\mathbb {R}}^{n+1})\). Since \(\chi _1(D_x)\) is a pseudodifferential operator of order 0, then \([\langle t \rangle ^{-\frac{1}{2}-\varepsilon },\chi _1(D_x)]\) is a pseudodifferential operator of order \(-1\). Hence, \([\langle t \rangle ^{-\frac{1}{2}-\varepsilon },\chi _1(D_x)]\langle D_y \rangle \) is bounded on \(L^2({\mathbb {R}}^{n+1})\). Thus, we have

$$\begin{aligned}&\Vert \langle t \rangle ^{-\frac{1}{2}-\varepsilon }\varphi (D_x)\langle D_x \rangle (P-i)^{-1}\langle t \rangle ^{-\frac{1}{2} -\varepsilon }f\Vert _{L^2({\mathbb {R}}^{n+1})}\\&=\Vert \langle t \rangle ^{-\frac{1}{2}-\varepsilon }\chi _1(D_x)\langle D_y \rangle (P-i)^{-1}\langle t \rangle ^{-\frac{1}{2} -\varepsilon }f\Vert _{L^2({\mathbb {R}}^{n+1})}\\&\le \Vert [\langle t \rangle ^{-\frac{1}{2}-\varepsilon },\chi _1(D_x)]\langle D_y \rangle \Vert _{L^2\rightarrow L^2} \Vert (P-i)^{-1}f\Vert _{L^2({\mathbb {R}}^{n+1})}\\&+C \Vert \langle t \rangle ^{-\frac{1}{2}-\varepsilon }\langle D_y \rangle (P-i)^{-1}\langle t \rangle ^{-\frac{1}{2}-\varepsilon }f \Vert _{L^2({\mathbb {R}}^{n+1})}\\&\le C\Vert f\Vert _{L^2({\mathbb {R}}^{n+1})}, \end{aligned}$$

This completes the proof of (1.2). See also the proof of [4, Theorem C.1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taira, K. Remarks on the geodesically completeness and the smoothing effect on asymptotically Minkowski spacetimes. Lett Math Phys 112, 22 (2022). https://doi.org/10.1007/s11005-022-01517-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-022-01517-2

Keywords

Mathematics Subject Classification

Navigation