Log in

Gluing II: boundary localization and gluing formulas

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe applications of the gluing formalism discussed in the companion paper. When a d-dimensional local theory \(\hbox {QFT}_d\) is supersymmetric, and if we can find a supersymmetric polarization for \(\hbox {QFT}_d\) quantized on a \((d-1)\)-manifold W, gluing along W is described by a non-local \(\hbox {QFT}_{d-1}\) that has an induced supersymmetry. Applying supersymmetric localization to \(\hbox {QFT}_{d-1}\), which we refer to as the boundary localization, allows in some cases to represent gluing by finite-dimensional integrals over appropriate spaces of supersymmetric boundary conditions. We follow this strategy to derive a number of “gluing formulas” in various dimensions, some of which are new and some of which have been previously conjectured. First we show how gluing in supersymmetric quantum mechanics can reduce to a sum over a finite set of boundary conditions. Then we derive two gluing formulas for 3D \({\mathcal {N}}=4\) theories on spheres: one providing the Coulomb branch representation of gluing and another providing the Higgs branch representation. This allows to study various properties of their (2, 2)-preserving boundary conditions in relation to mirror symmetry. After that we derive a gluing formula in 4D \({\mathcal {N}}=2\) theories on spheres, both squashed and round. First we apply it to predict the hemisphere partition function, then we apply it to the study of boundary conditions and domain walls in these theories. Finally, we mention how to glue half-indices of 4D \({\mathcal {N}}=2\) theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The quantization in [20, 108] is achieved by placing a theory in Omega-background; such approach goes back to the work of [89] where the four-dimensional Omega background [80, 88] was used. On the other hand, the quantization of Higgs and Coulomb branches in [30, 32] was achieved by placing a theory on \(S^3\) background, which is related by conformal map to the quantization in SCFT [10, 11, 27].

  2. In principle, it should be possible to extend our formalism to complex bosonic polarizations. It would require more work because for bosonic fields, one has to care about the convergence of the path integral and the choice of integration cycle.

  3. After a SUSY variation, the partial gauge condition, whether it is \(A_t\big |=0\) or \(\partial _t A_t\big |=0\), breaks down. One needs to perform a compensating gauge transformation with parameter \(\kappa \) such that \(\kappa \big |=0\), so that it would restore the gauge condition without affecting boundary values of other field.

  4. Recall that, in a slight abuse of terminology, by “polarization” we mean both the Lagrangian distribution on the phase space and the maximal Poisson-commuting set of coordinates that parametrize the space of leaves of this distribution.

  5. Only the maximal torus of \(SU(2)_R\) is preserved on \(S^4\).

  6. Note the unusual reality condition \({{\bar{\phi }}}=- \phi ^\dagger \).

  7. For the computation of Poisson brackets, one may assume that \(A_\perp \big | =0\). However, \(A_\perp \big |\) does not carry any physical data, and any condition on it is merely part of gauge fixing. If we work in Lorenz gauge in the bulk, it enforces \({{\mathcal {D}}}_\perp A_\perp \big |=0\) at the boundary, while using temporal gauge in the vicinity of the boundary implies \(A_\perp \big | =0\).

  8. Note that the 3D chiral multiplet contribution \(Z_{\mathrm{ch}}(a)\) of (110) is often dropped in the literature. This is allowed as long as the matter representation \({{\mathcal {R}}}\) is self-conjugate. Otherwise, it is a non-trivial a-dependent phase factor that has to be included.

  9. Only for real scalars, the answer can possibly involve square roots of the determinants, such as \(\prod _{w\in {{\mathcal {R}}}}\prod _{n>0}\left[ (n + iw(a))^{-n}(n-iw(a))^{-n}\right] ^{1/2}\). However, the Dirichlet boundary conditions do not violate complex structure of the hypermultiplet scalars, thus both on \(HS^4\) and \(S^4\) one has to compute determinants for complex scalars only. This can be considered as an argument in favor of (122).

  10. One might worry that \(\frac{1}{\mu _b(a)}\delta _{{\mathfrak {t}}}(a,{\tilde{a}})\) is poorly defined at \({\tilde{a}}=0\), since \(\mu _b(a)\) vanishes at \(a=0\). In fact, it is well-defined. The wave function on the full algebra \({\mathfrak {g}}\) would be \(\frac{\det _{\mathrm{Adj}}' a}{\mu _b(a)}\delta _{{\mathfrak {g}}}(a)\), and this is clearly well-defined. Upon passing to integration over \({\mathfrak {t}}\subset {\mathfrak {g}}\), the Vandermonde factor \(\det {}_{\mathrm{Adj}}' a\) disappears. This is analogous to the delta function on \({{\mathbb {R}}}^2\) being well-defined despite having a dangerous-looking expression \(\frac{1}{2\pi r}\delta (r)\) in polar coordinates due to the Jacobian.

  11. Notice that each \(Q_{\mathrm{Loc}}\)-cohomology class determined by \(f_{{\mathcal {B}}}(a)\) contains a half-BPS boundary condition. To construct it, impose the Dirichlet boundary condition (112) parametrized by a and then integrate the result against \(\mu (a)f_{{\mathcal {B}}}(a)\). Therefore, general \(Q_{\mathrm{Loc}}\)-invariant boundary conditions, while probably highly non-trivial in the full theory, are equivalent to half-BPS boundary conditions at the level of \(Q_{\mathrm{Loc}}\)-cohomology.

  12. For \(S^3_b\), this is broken down to \(\mathfrak {su}(1|1)_\ell \oplus \mathfrak {su}(1|1)_r\).

  13. It is not obvious what is the appropriate space of physically allowed functions \(f_{{\mathcal {B}}}(a)\). However, it is very natural to conjecture that it can be identified with the \({{\mathbb {Z}}}_2\)-invariant subspace of complex tempered distributions, \(({{\mathcal {S}}}'({{\mathbb {R}}})\otimes {{\mathbb {C}}})^{{{\mathbb {Z}}}_2}\): 1) we have seen that for Dirichlet boundary conditions, \(f_{{\mathcal {B}}}(a)\) is a delta function; 2) the form of S-transformation suggests that \(\sinh (\pi a)f_{{\mathcal {B}}}(a)\) should have a Fourier transform.

  14. Since hypermultiplet takes values in the adjoint representation, which is self-conjugate, the answer for \(Z^{HS^4}_{\mathrm{hyp}}(a)\) in [54] coincides with (122) in this case.

  15. In their case, the answer does not depend on \(\beta _1\), so we might as well choose \(\beta _1=\beta _2\), which leads to \(e^{-\beta _1 R}=e^{-\beta \frac{R}{2}}\) in their equation (17). This R/2 in 3d is precisely our R in 4d.

  16. Since the flat space \({{\mathcal {N}}}=(2,2)\) SUSY has two R-symmetries, the vector and the axial one, we can turn on holonomy for either of them. This corresponds to the \(\mathfrak {su}(2|1)_A\) or \(\mathfrak {su}(2|1)_B\)-preserving background on the sphere. The cylinder with the vector R-symmetry holonomy can be glued to the hemisphere with the \(\mathfrak {su}(2|1)_A\)-background on it, while the cylinder with the axial holonomy can be glued to the hemisphere with the \(\mathfrak {su}(2|1)_B\) background on it.

References

  1. Agarwal, P., Maruyoshi, K., Song, J.: \( \cal{N}=1\) deformations and RG flows of \( \cal{N}=2\) SCFTs, part II: non-principal deformations. JHEP 12, 103 (2016). https://doi.org/10.1007/JHEP04(2017)113. [Addendum: JHEP04, 113 (2017)]. https://doi.org/10.1007/JHEP12(2016)103

  2. Argyres, P.C., Douglas, M.R.: New phenomena in SU(3) supersymmetric gauge theory. Nucl. Phys. B 448, 93–126 (1995). https://doi.org/10.1016/0550-3213(95)00281-V

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Argyres, P.C., Plesser, M.R., Seiberg, N., Witten, E.: New N = 2 superconformal field theories in four-dimensions. Nucl. Phys. B 461, 71–84 (1996). https://doi.org/10.1016/0550-3213(95)00671-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Assel, B.: Ring relations and mirror map from branes. JHEP 03, 152 (2017). https://doi.org/10.1007/JHEP03(2017)152

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Assel, B., Cremonesi, S.: The Infrared Fixed Points of 3d \({\cal{N}} =4\)\(USp(2N)\) SQCD Theories. ar**v e-prints ar**v:1802.04285 (2018)

  6. Assel, B., Gomis, J.: Mirror symmetry and loop operators. JHEP 11, 055 (2015). https://doi.org/10.1007/JHEP11(2015)055

    Article  MathSciNet  MATH  Google Scholar 

  7. Atiyah, M.: Topological quantum field theories. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 68(1), 175–186 (1988). https://doi.org/10.1007/BF02698547

    Article  MathSciNet  MATH  Google Scholar 

  8. Bawane, A., Benvenuti, S., Bonelli, G., Muteeb, N., Tanzini, A.: \({\cal{N}}=2\) gauge theories on unoriented/open four-manifolds and their AGT counterparts. ar**v e-prints ar**v:1710.06283 (2017)

  9. Beem, C., Dimofte, T., Pasquetti, S.: Holomorphic blocks in three dimensions. JHEP 12, 177 (2014). https://doi.org/10.1007/JHEP12(2014)177

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Beem, C., Lemos, M., Liendo, P., Peelaers, W., Rastelli, L., van Rees, B.C.: Infinite Chiral symmetry in four dimensions. Commun. Math. Phys. 336(3), 1359–1433 (2015). https://doi.org/10.1007/s00220-014-2272-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Beem, C., Peelaers, W., Rastelli, L.: Deformation quantization and superconformal symmetry in three dimensions. Commun. Math. Phys. 354(1), 345–392 (2017). https://doi.org/10.1007/s00220-017-2845-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Benini, F., Cremonesi, S.: Partition functions of \({\cal{N}=(2,2)}\) Gauge theories on S\(^{2}\) and vortices. Commun. Math. Phys. 334(3), 1483–1527 (2015). https://doi.org/10.1007/s00220-014-2112-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Benini, F., Eager, R., Hori, K., Tachikawa, Y.: Elliptic genera of two-dimensional N = 2 gauge theories with rank-one Gauge groups. Lett. Math. Phys. 104, 465–493 (2014). https://doi.org/10.1007/s11005-013-0673-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Benini, F., Eager, R., Hori, K., Tachikawa, Y.: Elliptic genera of 2d \({\cal{N}} = 2\) Gauge theories. Commun. Math. Phys. 333(3), 1241–1286 (2015). https://doi.org/10.1007/s00220-014-2210-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Benini, F., Le Floch, B.: Supersymmetric localization in two dimensions. J. Phys. A 50(44), 443003 (2017). https://doi.org/10.1088/1751-8121/aa77bb

    Article  MathSciNet  MATH  Google Scholar 

  16. Benvenuti, S., Pasquetti, S.: 3D-partition functions on the sphere: exact evaluation and mirror symmetry. JHEP 05, 099 (2012). https://doi.org/10.1007/JHEP05(2012)099

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Blommaert, A., Mertens, T.G., Verschelde, H.: Edge Dynamics from the Path Integral: Maxwell and Yang–Mills. ar**v e-prints ar**v:1804.07585 (2018)

  18. de Boer, J., Hori, K., Ooguri, H., Oz, Y.: Mirror symmetry in three-dimensional gauge theories, quivers and D-branes. Nucl. Phys. B 493, 101–147 (1997). https://doi.org/10.1016/S0550-3213(97)00125-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. de Boer, J., Hori, K., Ooguri, H., Oz, Y., Yin, Z.: Mirror symmetry in three-dimensional theories, SL(2, Z) and D-brane moduli spaces. Nucl. Phys. B 493, 148–176 (1997). https://doi.org/10.1016/S0550-3213(97)00115-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Bullimore, M., Dimofte, T., Gaiotto, D.: The Coulomb branch of 3d \({\cal{N}= 4}\) theories. Commun. Math. Phys. 354(2), 671–751 (2017). https://doi.org/10.1007/s00220-017-2903-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Bullimore, M., Dimofte, T., Gaiotto, D., Hilburn, J.: Boundaries, mirror symmetry, and symplectic duality in 3d \(\cal{N}=4\) gauge theory. JHEP 10, 108 (2016). https://doi.org/10.1007/JHEP10(2016)108

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Bullimore, M., Fluder, M., Hollands, L., Richmond, P.: The superconformal index and an elliptic algebra of surface defects. JHEP 10, 062 (2014). https://doi.org/10.1007/JHEP10(2014)062

    Article  ADS  Google Scholar 

  23. Cabo-Bizet, A.: Factorising the 3D topologically twisted index. JHEP 04, 115 (2017). https://doi.org/10.1007/JHEP04(2017)115

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Cabo-Bizet, A., Gava, E., Giraldo-Rivera, V.I., Muteeb, M.N., Narain, K.S.: Partition function of \(N=2\) gauge theories on a squashed \(S^4\) with \(SU(2)\times U(1)\) isometry. Nucl. Phys. B 899, 149–164 (2015). https://doi.org/10.1016/j.nuclphysb.2015.07.029

    Article  ADS  MATH  Google Scholar 

  25. Cecotti, S., Vafa, C.: Topological antitopological fusion. Nucl. Phys. B367, 359–461 (1991). https://doi.org/10.1016/0550-3213(91)90021-O

    Article  ADS  MATH  Google Scholar 

  26. Chang, C.M., Fluder, M., Lin, Y.H., Wang, Y.: Spheres, charges, instantons, and bootstrap: a five-dimensional odyssey. JHEP 03, 123 (2018). https://doi.org/10.1007/JHEP03(2018)123

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Chester, S.M., Lee, J., Pufu, S.S., Yacoby, R.: Exact correlators of BPS operators from the 3d superconformal bootstrap. JHEP 03, 130 (2015). https://doi.org/10.1007/JHEP03(2015)130

    Article  MathSciNet  MATH  Google Scholar 

  28. Chung, H.J., Okazaki, T.: (2,2) and (0,4) supersymmetric boundary conditions in 3d \(\cal{N}\) = 4 theories and type IIB branes. Phys. Rev. D 96(8), 086005 (2017). https://doi.org/10.1103/PhysRevD.96.086005

    Article  ADS  MathSciNet  Google Scholar 

  29. Dedushenko, M.: Gluing I: Integrals and Symmetries. ar**v e-prints ar**v:1807.04274 (2018)

  30. Dedushenko, M., Fan, Y., Pufu, S.S., Yacoby, R.: Coulomb branch operators and mirror symmetry in three dimensions. JHEP 04, 037 (2018). https://doi.org/10.1007/JHEP04(2018)037

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Dedushenko, M., Fan, Y., Pufu, S.S., Yacoby, R.: Coulomb branch quantization and abelianized monopole bubbling. JHEP 10, 179 (2019). https://doi.org/10.1007/JHEP10(2019)179

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Dedushenko, M., Pufu, S.S., Yacoby, R.: A one-dimensional theory for Higgs branch operators. JHEP 03, 138 (2018). https://doi.org/10.1007/JHEP03(2018)138

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Dimofte, T., Gaiotto, D., Gukov, S.: 3-Manifolds and 3d Indices. Adv. Theor. Math. Phys. 17(5), 975–1076 (2013). https://doi.org/10.4310/ATMP.2013.v17.n5.a3

    Article  MathSciNet  MATH  Google Scholar 

  34. Dimofte, T., Gaiotto, D., Gukov, S.: Gauge theories labelled by three-manifolds. Commun. Math. Phys. 325, 367–419 (2014). https://doi.org/10.1007/s00220-013-1863-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Dimofte, T., Gaiotto, D., Paquette, N.M.: Dual boundary conditions in 3d SCFT’s. JHEP 05, 060 (2018). https://doi.org/10.1007/JHEP05(2018)060

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Dimofte, T., Gaiotto, D., van der Veen, R.: RG domain walls and hybrid triangulations. Adv. Theor. Math. Phys. 19, 137–276 (2015). https://doi.org/10.4310/ATMP.2015.v19.n1.a2

    Article  MathSciNet  MATH  Google Scholar 

  37. Dimofte, T., Gukov, S.: Chern–Simons theory and S-duality. JHEP 05, 109 (2013). https://doi.org/10.1007/JHEP05(2013)109

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Dirac, P.A.M.: The Principles of Quantum Mechanics. The International Series of Monographs on Physics No. 27, 4th edn. Clarendon Press, Oxford (1967)

    Google Scholar 

  39. Doroud, N., Gomis, J.: Gauge theory dynamics and Kähler potential for Calabi–Yau complex moduli. JHEP 12, 099 (2013). https://doi.org/10.1007/JHEP12(2013)099

    Article  ADS  Google Scholar 

  40. Doroud, N., Gomis, J., Le Floch, B., Lee, S.: Exact results in D = 2 supersymmetric gauge theories. JHEP 05, 093 (2013). https://doi.org/10.1007/JHEP05(2013)093

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Drukker, N., Gaiotto, D., Gomis, J.: The virtue of defects in 4D gauge theories and 2D CFTs. JHEP 06, 025 (2011). https://doi.org/10.1007/JHEP06(2011)025

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Dumitrescu, T., Festuccia, G.: Work in progress

  43. Gadde, A., Gukov, S.: 2d index and surface operators. JHEP 03, 080 (2014). https://doi.org/10.1007/JHEP03(2014)080

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Gadde, A., Gukov, S., Putrov, P.: Walls, lines, and spectral dualities in 3d gauge theories. JHEP 05, 047 (2014). https://doi.org/10.1007/JHEP05(2014)047

    Article  ADS  Google Scholar 

  45. Gadde, A., Gukov, S., Putrov, P.: Fivebranes and 4-manifolds. Prog. Math. 319, 155–245 (2016). https://doi.org/10.1007/978-3-319-43648-7_7

    Article  MathSciNet  MATH  Google Scholar 

  46. Gadde, A., Rastelli, L., Razamat, S.S., Yan, W.: Gauge theories and macdonald polynomials. Commun. Math. Phys. 319, 147–193 (2013). https://doi.org/10.1007/s00220-012-1607-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Gaiotto, D.: Boundary F-maximization. ar**v e-prints ar**v:1403.8052 (2014)

  48. Gaiotto, D., Witten, E.: S-duality of boundary conditions in N = 4 super Yang–Mills theory. Adv. Theor. Math. Phys. 13(3), 721–896 (2009). https://doi.org/10.4310/ATMP.2009.v13.n3.a5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Gaiotto, D., Witten, E.: Supersymmetric boundary conditions in N = 4 super Yang–Mills theory. J. Stat. Phys. 135, 789–855 (2009). https://doi.org/10.1007/s10955-009-9687-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Gang, D., Koh, E., Lee, K.: Superconformal index with duality domain wall. JHEP 10, 187 (2012). https://doi.org/10.1007/JHEP10(2012)187

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Gates Jr., S.J.: Superspace formulation of new nonlinear sigma models. Nucl. Phys. B 238, 349–366 (1984). https://doi.org/10.1016/0550-3213(84)90456-5

    Article  ADS  MathSciNet  Google Scholar 

  52. Gates Jr., S.J.: Vector multiplets and the phases of N = 2 theories in 2-D: through the looking glass. Phys. Lett. B 352, 43–49 (1995). https://doi.org/10.1016/0370-2693(95)00469-2

    Article  ADS  MathSciNet  Google Scholar 

  53. Gates Jr., S.J., Hull, C.M., Rocek, M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nucl. Phys. B 248, 157–186 (1984). https://doi.org/10.1016/0550-3213(84)90592-3

    Article  ADS  Google Scholar 

  54. Gava, E., Narain, K.S., Muteeb, M.N., Giraldo-Rivera, V.I.: \(N = 2\) gauge theories on the hemisphere \(HS^4\). Nucl. Phys. B 920, 256–297 (2017). https://doi.org/10.1016/j.nuclphysb.2017.04.007

    Article  ADS  MATH  Google Scholar 

  55. Gerchkovitz, E., Gomis, J., Komargodski, Z.: Sphere partition functions and the zamolodchikov metric. JHEP 11, 001 (2014). https://doi.org/10.1007/JHEP11(2014)001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Gomis, J., Lee, S.: Exact Kahler potential from gauge theory and mirror symmetry. JHEP 04, 019 (2013). https://doi.org/10.1007/JHEP04(2013)019

    Article  ADS  MATH  Google Scholar 

  57. Gomis, J., Okuda, T., Pestun, V.: Exact results for ’t Hooft loops in gauge theories on \(S^{4}\). JHEP 05, 141 (2012). https://doi.org/10.1007/JHEP05(2012)141

    Article  ADS  MATH  Google Scholar 

  58. Gukov, S., Pei, D., Putrov, P., Vafa, C.: BPS spectra and 3-manifold invariants. ar**v e-prints ar**v:1701.06567 (2017)

  59. Hama, N., Hosomichi, K.: Seiberg–Witten theories on ellipsoids. JHEP 09, 033 (2012). https://doi.org/10.1007/JHEP10(2012)051. [Addendum: JHEP10,051(2012)] https://doi.org/10.1007/JHEP09(2012)033

  60. Hama, N., Hosomichi, K., Lee, S.: Notes on SUSY gauge theories on three-sphere. JHEP 03, 127 (2011). https://doi.org/10.1007/JHEP03(2011)127

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Hama, N., Hosomichi, K., Lee, S.: SUSY gauge theories on squashed three-spheres. JHEP 05, 014 (2011). https://doi.org/10.1007/JHEP05(2011)014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Herbst, M., Hori, K., Page, D.: Phases of \(N = 2\) theories in \(1+1\) dimensions with boundary. ar**v:hep-th/0803.2045 (2008)

  63. Honda, D., Okuda, T.: Exact results for boundaries and domain walls in 2d supersymmetric theories. JHEP 09, 140 (2015). https://doi.org/10.1007/JHEP09(2015)140

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Hori, K., Iqbal, A., Vafa, C.: D-branes and mirror symmetry. ar**v:hep-th/0005247 (2000)

  65. Hori, K., Kim, H., Yi, P.: Witten index and wall crossing. JHEP 01, 124 (2015). https://doi.org/10.1007/JHEP01(2015)124

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Hori, K., Romo, M.: Exact Results in Two-Dimensional (2,2) Supersymmetric Gauge Theories With Boundary. ar**v e-prints ar**v:1308.2438 (2013)

  67. Hosomichi, K.: A review on SUSY gauge theories on \({{\bf S}}^3\). In: Teschner, J. (ed.) New Dualities of Supersymmetric Gauge Theories, pp. 307–338 (2016). https://doi.org/10.1007/978-3-319-18769-3_10. https://inspirehep.net/record/1335341/files/ar**v:1412.7128.pdf

  68. Hosomichi, K.: \({{{\cal{N}}}=2}\) SUSY gauge theories on S\(^4\). J. Phys. A 50(44), 443010 (2017). https://doi.org/10.1088/1751-8121/aa7775

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Hosomichi, K., Lee, S., Park, J.: AGT on the S-duality wall. JHEP 12, 079 (2010). https://doi.org/10.1007/JHEP12(2010)079

    Article  ADS  MATH  Google Scholar 

  70. Imamura, Y., Yokoyama, S.: Index for three dimensional superconformal field theories with general R-charge assignments. JHEP 04, 007 (2011). https://doi.org/10.1007/JHEP04(2011)007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Intriligator, K.A., Seiberg, N.: Mirror symmetry in three-dimensional gauge theories. Phys. Lett. B 387, 513–519 (1996). https://doi.org/10.1016/0370-2693(96)01088-X

    Article  ADS  MathSciNet  Google Scholar 

  72. Jafferis, D.L.: The exact superconformal R-symmetry extremizes Z. JHEP 05, 159 (2012). https://doi.org/10.1007/JHEP05(2012)159

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Kapustin, A., Strassler, M.J.: On mirror symmetry in three-dimensional Abelian gauge theories. JHEP 04, 021 (1999). https://doi.org/10.1088/1126-6708/1999/04/021

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Kapustin, A., Willett, B.: Generalized Superconformal Index for Three Dimensional Field Theories. ar**v e-prints ar**v:1106.2484 (2011)

  75. Kapustin, A., Willett, B., Yaakov, I.: Exact results for Wilson loops in superconformal Chern–Simons theories with matter. JHEP 03, 089 (2010). https://doi.org/10.1007/JHEP03(2010)089

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Kim, H.C., Kim, J., Kim, S.: Instantons on the 5-sphere and M5-branes. ar**v e-prints ar**v:1211.0144 (2012)

  77. Le Floch, B., Turiaci, G.J.: AGT/\(\mathbb{Z}_2\). JHEP 12, 099 (2017). https://doi.org/10.1007/JHEP12(2017)099

    Article  MATH  Google Scholar 

  78. Lockhart, G., Vafa, C.: Superconformal partition functions and non-perturbative topological strings. JHEP 10, 051 (2018). https://doi.org/10.1007/JHEP10(2018)051

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Losev, A., Morozov, A., Roslyi, A., Shatashvili, S.L.: String operator formalism and functional integral in holomorphic representation. Phys. Lett. B 216, 94–96 (1989). https://doi.org/10.1016/0370-2693(89)91374-9

    Article  ADS  MathSciNet  Google Scholar 

  80. Lossev, A., Nekrasov, N., Shatashvili, S.L.: Testing Seiberg–Witten solution. In: Strings, branes and dualities. Proceedings, NATO Advanced Study Institute, Cargese, France, May 26–June 14, 1997, pp. 359–372 (1997)

  81. Maruyoshi, K., Song, J.: \( \cal{N}=1 \) deformations and RG flows of \( \cal{N}=2 \) SCFTs. JHEP 02, 075 (2017). https://doi.org/10.1007/JHEP02(2017)075

    Article  ADS  MathSciNet  Google Scholar 

  82. Maruyoshi, K., Song, J.: Enhancement of supersymmetry via renormalization group flow and the superconformal index. Phys. Rev. Lett. 118(15), 151602 (2017). https://doi.org/10.1103/PhysRevLett.118.151602

    Article  ADS  Google Scholar 

  83. Morozov, A., Roslyi, A.: On many loop calculations in the theory of open strings. Sov. J. Nucl. Phys. 49, 161 (1989). https://doi.org/10.1016/0370-2693(88)90112-8

    Article  Google Scholar 

  84. Morozov, A., Roslyi, A.: On many loop calculations in the theory of open strings. Phys. Lett. B 214, 522 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  85. Morozov, A., Roslyi, A.: Some examples of computation of the scalar determinant in open string theory. Nucl. Phys. B 326, 185–204 (1989). https://doi.org/10.1007/BF01016182

    Article  ADS  MathSciNet  Google Scholar 

  86. Morozov, A., Roslyi, A.: Some examples of computation of the scalar determinant in open string theory. Teor. Mat. Fiz. 80, 323 (1989). https://doi.org/10.1016/0550-3213(89)90439-2

    Article  Google Scholar 

  87. Morozov, A., Roslyi, A.: Strings and open Riemann surfaces. Nucl. Phys. B 326, 205–221 (1989). https://doi.org/10.1016/0550-3213(89)90440-9

    Article  ADS  MathSciNet  Google Scholar 

  88. Nekrasov, N.A.: Seiberg–Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7(5), 831–864 (2003). https://doi.org/10.4310/ATMP.2003.v7.n5.a4

    Article  MathSciNet  MATH  Google Scholar 

  89. Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories. In: Proceedings, 16th International Congress on Mathematical Physics (ICMP09): Prague, Czech Republic, August 3–8, 2009, pp. 265–289 (2009). https://doi.org/10.1142/9789814304634_0015. https://inspirehep.net/record/829640/files/ar**v:0908.4052.pdf

  90. Nishioka, T., Tachikawa, Y., Yamazaki, M.: 3d partition function as overlap of wavefunctions. JHEP 08, 003 (2011). https://doi.org/10.1007/JHEP08(2011)003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Nosaka, T., Terashima, S.: Supersymmetric Gauge theories on a squashed four-sphere. JHEP 12, 001 (2013). https://doi.org/10.1007/JHEP12(2013)001

    Article  ADS  Google Scholar 

  92. Okazaki, T., Yamaguchi, S.: Supersymmetric boundary conditions in three-dimensional N = 2 theories. Phys. Rev. D 87(12), 125005 (2013). https://doi.org/10.1103/PhysRevD.87.125005

    Article  ADS  Google Scholar 

  93. Okuda, T., Pestun, V.: On the instantons and the hypermultiplet mass of \(N=2^*\) super Yang–Mills on \(S^{4}\). JHEP 03, 017 (2012). https://doi.org/10.1007/JHEP03(2012)017

    Article  ADS  MATH  Google Scholar 

  94. Pasquetti, S.: Holomorphic blocks and the 5d AGT correspondence. J. Phys. A 50(44), 443016 (2017). https://doi.org/10.1088/1751-8121/aa60fe

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. Pestun, V.: Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. Commun. Math. Phys. 313, 71–129 (2012). https://doi.org/10.1007/s00220-012-1485-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. Segal, G.: The Definition of Conformal Field Theory. London Mathematical Society Lecture Note Series, pp. 421–577. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  97. Segal, G.: Three roles of quantum field theory. http://www.mpim-bonn.mpg.de/node/3372/abstracts (2011)

  98. Sugishita, S., Terashima, S.: Exact results in supersymmetric field theories on manifolds with boundaries. JHEP 11, 021 (2013). https://doi.org/10.1007/JHEP11(2013)021

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. Terashima, Y., Yamazaki, M.: SL(2, R) Chern-Simons, Liouville, and gauge theory on duality walls. JHEP 08, 135 (2011). https://doi.org/10.1007/JHEP08(2011)135

    Article  ADS  MATH  Google Scholar 

  100. Teschner, J.: From Liouville theory to the quantum geometry of Riemann surfaces. In: Mathematical physics. Proceedings, 14th International Congress, ICMP 2003, Lisbon, Portugal, July 28–August 2, 2003 (2003)

  101. Teschner, J.: Quantum Liouville theory versus quantized Teichmuller spaces. Fortsch. Phys. 51, 865–872 (2003). https://doi.org/10.1002/prop.200310109

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. Teschner, J.: On the relation between quantum Liouville theory and the quantized Teichmuller spaces. Int. J. Mod. Phys. A19S2, 459–477 (2004). https://doi.org/10.1142/S0217751X04020579

    Article  MathSciNet  MATH  Google Scholar 

  103. Teschner, J.: An Analog of a modular functor from quantized teichmuller theory. ar**v e-prints math/0510174 (2005)

  104. Wang, Y., **e, D.: Classification of Argyres–Douglas theories from M5 branes. Phys. Rev. D 94(6), 065012 (2016). https://doi.org/10.1103/PhysRevD.94.065012

    Article  ADS  MathSciNet  Google Scholar 

  105. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989). https://doi.org/10.1007/BF01217730

    Article  ADS  MathSciNet  MATH  Google Scholar 

  106. Witten, E.: Phases of \(N = 2\) theories in two-dimensions. AMS/IP Stud. Adv. Math. 1, 143–211 (1996). https://doi.org/10.1016/0550-3213(93)90033-L

    Article  MathSciNet  MATH  Google Scholar 

  107. Witten, E.: A Note on Boundary Conditions in Euclidean Gravity. ar**v e-prints ar**v:1805.11559 (2018)

  108. Yagi, J.: \(\Omega \)-deformation and quantization. JHEP 08, 112 (2014). https://doi.org/10.1007/JHEP08(2014)112

    Article  ADS  MATH  Google Scholar 

  109. Yoshida, Y., Sugiyama, K.: Localization of 3d \(\cal{N}=2\) Supersymmetric Theories on \(S^1 \times D^2\). ar**v e-prints ar**v:1409.6713 (2014)

Download references

Acknowledgements

The author thanks Tudor Dimofte, Yale Fan, Bruno Le Floch, Davide Gaiotto, Sergei Gukov, Victor Mikhaylov, Alexei Morozov, Natalie Paquette, Silviu Pufu, Mauricio Romo, David Simmons-Duffin, Gustavo J. Turiaci, Ran Yacoby for comments and discussions, and in particular Tudor Dimofte and Sergei Gukov for comments on the draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykola Dedushenko.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Walter Burke Institute for Theoretical Physics and the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award No. DE-SC0011632, as well as the Sherman Fairchild Foundation.

Open-ended examples

Open-ended examples

Here we would like to present a few more examples where we can explicitly describe the supersymmetric gluing theory. However, due to additional subtleties, we do not attempt localizing it and leave it for the future work and hence the name “open-ended”. One such example is on gluing 2D \({{\mathcal {N}}}=(2,2)\) theories quantized on \(S^1\), e.g., how to glue a sphere from two hemispheres. Another example is about gluing 3D \({{\mathcal {N}}}=2\) indices from half-indices.

1.1 2D \({{\mathcal {N}}}=(2,2)\) theories quantized on a circle

Let us consider 2D \({{\mathcal {N}}}=(2,2)\) theories quantized on a circle \(S^1\). In this case, it would be straightforward to simply consider a flat space theory on \(S^1\times {{\mathbb {R}}}\) and define a polarization in the phase space on \(S^1\). Alternatively, we could consider a theory on the sphere \(S^2\) in the vicinity of the equator (or on hemisphere \(HS^2\) close to the boundary). The latter approach is slightly more technical than the \(S^1\times {{\mathbb {R}}}\); however, we will follow it to point out a detail. We will comment on the \(S^1\times {{\mathbb {R}}}\) case afterward.

Theories with \({{\mathcal {N}}}=(2,2)\) SUSY on \(S^2\) are based on the algebra \(\mathfrak {su}(2|1)\). We have already encountered them before as the gluing theories in 3D. Here we consider them as standalone theories, while the gluing will be represented by certain quantum mechanics on the boundary circle. We adhere to conventions of [40]. The sphere is cut into two hemispheres at \(\theta =\pi /2\). The Killing spinor equations on \(S^2\), as usual, are:

$$\begin{aligned} \nabla _i\epsilon =+\frac{1}{2r} \gamma _i \gamma ^{{{\hat{3}}}}\epsilon ,\quad \nabla _i{{\bar{\epsilon }}}=-\frac{1}{2r}\gamma _i \gamma ^{{{\hat{3}}}}{{\bar{\epsilon }}}. \end{aligned}$$
(173)

The supercharges on \(S^2\), following [40], are denoted by \(Q_{1,2}\) and \(S_{1,2}\). We choose to preserve \(Q_2\) and \(S_1\) at the boundary. They correspond to Killing spinors:

$$\begin{aligned}&\epsilon =\exp \left( -\frac{i\theta }{2}\gamma _{{{\hat{2}}}}\right) \epsilon _o,\nonumber \\&\quad {{\bar{\epsilon }}}=\exp \left( +\frac{i\theta }{2}\gamma _{{{\hat{2}}}}\right) {{\bar{\epsilon }}}_o, \end{aligned}$$
(174)

where:

$$\begin{aligned} Q_2: \epsilon _o=\left( \begin{matrix} \alpha (\varphi )\\ 0 \end{matrix} \right) =e^{i\varphi /2}\left( \begin{matrix} a\\ 0 \end{matrix} \right) ,\quad {{\bar{\epsilon }}}_o=0,\nonumber \\ S_1: \epsilon _o=0,\quad {{\bar{\epsilon }}}_o=\left( \begin{matrix}0\\ {{\bar{\alpha }}}(\varphi ) \end{matrix} \right) =e^{-i\varphi /2}\left( \begin{matrix}0\\ {\bar{a}} \end{matrix} \right) . \end{aligned}$$
(175)

Notice that we keep the \(\varphi \)-dependent factor \(e^{\pm i\varphi /2}\) as a part of \(\epsilon _o\), \({{\bar{\epsilon }}}_o\): With such conventions, the 1D SUSY parameter \(\alpha \) is anti-periodic in \(\varphi \). We will see that it is natural in a moment.

We construct a Dirichlet polarization designed for cutting and gluing along the equator \(\theta =\pi /2\). For the 2D chiral multiplet \((\phi , {{\bar{\phi }}}, \psi , {{\bar{\psi }}}, F, {\bar{F}})\), we define the boundary fields as follows:

$$\begin{aligned} u&=\phi \big |,\quad {\bar{u}}={{\bar{\phi }}}\big |,\nonumber \\ {{\bar{\alpha }}}\chi&={{\bar{\epsilon }}}\psi \big |,\quad \alpha {{\bar{\chi }}}=\epsilon {{\bar{\psi }}}\big |, \end{aligned}$$
(176)

and for the 2D vector multiplet \((A, \sigma _1, \sigma _2, \lambda , {{\bar{\lambda }}}, D)\), the boundary fields are (note that we use the same letter for the 2D and 1D gaugini):

$$\begin{aligned} a_\varphi&=A_\varphi \big |,\quad s=\sigma _2\big |,\nonumber \\ D_{\mathrm{1d}}&=-\frac{i}{r}{{\mathcal {D}}}_\theta \sigma _1\big | + D\big |,\nonumber \\ {{\bar{\alpha }}}\lambda&={{\bar{\epsilon }}}\gamma _{{{\hat{3}}}}\lambda \big |,\quad \alpha {{\bar{\lambda }}}=\epsilon \gamma _{{{\hat{3}}}}{{\bar{\lambda }}}\big |. \end{aligned}$$
(177)

One can easily check that these fields form a polarization, which is also supersymmetric as manifested by the following SUSY transformations. We find that the boundary values of the chiral multiplet transform under \(Q_2, S_1\) as follows:

$$\begin{aligned} \delta u&={{\bar{\alpha }}}\chi ,\quad \delta {\bar{u}}=\alpha {{\bar{\chi }}},\nonumber \\ \delta \chi&=\alpha \left( \frac{1}{r} D_\varphi u + s u + i \frac{q}{2r} u\right) ,\nonumber \\ \delta {{\bar{\chi }}}&={{\bar{\alpha }}} \left( \frac{1}{r} D_\varphi {\bar{u}} - s{\bar{u}} -i\frac{q}{2r}{\bar{u}}\right) . \end{aligned}$$
(178)

The vector multiplet transformations are:

$$\begin{aligned} \delta s&= -\frac{i}{2} ({{\bar{\alpha }}}\lambda +\alpha {{\bar{\lambda }}}),\nonumber \\ \delta a_\varphi&= -\frac{r}{2} ({{\bar{\alpha }}}\lambda +\alpha {{\bar{\lambda }}}),\nonumber \\ \delta \lambda&=\alpha \left( \frac{i}{r} D_\varphi s - D_{\mathrm{1d}} \right) ,\nonumber \\ \delta {{\bar{\lambda }}}&= {{\bar{\alpha }}}\left( \frac{i}{r} D_\varphi s + D_{\mathrm{1d}} \right) ,\nonumber \\ \delta D_{\mathrm{1d}}&= -{{\bar{\alpha }}} \left( \frac{1}{2r} {{\mathcal {D}}}_\varphi \lambda - \frac{i}{4r}\lambda +\frac{1}{2} [s,\lambda ] \right) + \alpha \left( \frac{1}{2r} {{\mathcal {D}}}_\varphi {{\bar{\lambda }}} + \frac{i}{4r}{{\bar{\lambda }}} + \frac{1}{2} [s, {{\bar{\lambda }}}] \right) . \end{aligned}$$
(179)

One can immediately recognize these as SUSY transformations of the 1D \({{\mathcal {N}}}=2\) chiral and vector multiplets as described in [65], which already appeared in (8) and (5), with a small difference: Here we have an R-symmetry holonomy \(A_\varphi ^{(R)}=1/2\) turned on. This is manifested by the terms \(i\frac{q}{2r}u\) and \(-i\frac{q}{2r}{\bar{u}}\) in \(\delta \chi \) and \(\delta {{\bar{\chi }}}\), as well as \(\frac{i}{4r}{{\bar{\lambda }}}\) and \(-\frac{i}{4r}{{\bar{\lambda }}}\) in \(\delta D_{\mathrm{1d}}\).

To elaborate further on this point, notice that all fermions on \(S^2\) take values in the corresponding spinor bundle \({{\mathcal {O}}}(-1)\). When restricted to the boundary \(S^1 = \partial HS^2\), they become anti-periodic. So does the SUSY parameter \(\epsilon \), and this is the reason we defined \(\alpha \), the 1D SUSY parameter, to be anti-periodic as well. This also manifests, in yet another way, the fact that there is an R-charge holonomy 1/2 preset on \(S^1\): since \(\alpha \) has R-charge 1, it becomes anti-periodic in the presence of such a holonomy.

In fact, if we started with the flat space \({{\mathcal {N}}}=(2,2)\) SUSY on \(S^1\times {{\mathbb {R}}}\) rather than the sphere, we would get the same boundary SUSY on \(S^1\), except that these R-holonomy shifts would not be there. In this case, we would have to explicitly go to the twisted sector on \(S^1\times {{\mathbb {R}}}\), in which the periodicity of R-charge-q fields is given by \(e^{i\pi q}\), in order to the get the same boundary SUSY as in (178), (179). This observation means that if we want to glue a half-infinite cylinder \(S^1\times {{\mathbb {R}}}_+\) to the hemisphere \(HS^2\) along their \(S^1\) boundary, the \({{\mathcal {N}}}=(2,2)\) theory on \(S^1\times {{\mathbb {R}}}_+\) has to be in the twisted sector determined by the R-symmetry holonomyFootnote 16\(A^{(R)}_\varphi =1/2\). Otherwise, the boundary fields simply would not match. Note that this is specific to the \(\mathfrak {su}(2|1)\)-preserving background on \(S^2\) that we have considered. Gluing in the topological background (as in the \(tt^*\)-geometry [25]) might work differently.

To have an even better interpretation of this, let us observe yet another fact. The algebra formed by the supercharges \(Q_2\) and \(S_1\) that we preserve at the boundary of \(HS^2\) is \(\mathfrak {su}(1|1)\), with the relation:

$$\begin{aligned} \{Q_2, S_1\} = P + \frac{R}{2}, \end{aligned}$$
(180)

where R is the original U(1) R-charge of the \(S^2\) theory. Under this R-symmetry, s, \(a_\varphi \) and \(D_{\mathrm{1d}}\) are neutral, \(\lambda \) has R-charge 1, scalar \(\varphi \) has R-charge q, and \(\chi \) has R-charge \(q+1\). However, this algebra does not look like the 1D \({{\mathcal {N}}}=2\) algebra of [65]. In order to get their algebra, we have to redefine the translation generator as:

$$\begin{aligned} {\tilde{P}} = P + \frac{R}{2}, \end{aligned}$$
(181)

so that the algebra becomes \(\{Q_2, S_1\}={\tilde{P}}\), the usual \({{\mathcal {N}}}=2\) SUSY in 1D. This shift of the translation generator by R/2 is precisely due to the R-symmetry holonomy.

To recapitulate, the \(\mathfrak {su}(2|1)\)-preserving SUSY background on \(S^2\) in the vicinity of the equator looks like a twisted sector of the flat space SUSY on \(S^1\times {{\mathbb {R}}}\), with the R-symmetry holonomy turned on. The vector R-symmetry corresponds to \(\mathfrak {su}(2|1)_A\) on the sphere, while the axial R-symmetry corresponds to \(\mathfrak {su}(2|1)_B\). The gluing is possible when the two pieces have the same R-symmetry holonomy.

1.1.1 Quarter-BPS polarization

We can describe one more potentially useful polarization at the boundary of \(HS^2\): A quarter-BPS polarization that only preserves \(Q_2 + S_1\). In terms of SUSY parameters, it means that \(a={\bar{a}}\), so \(\alpha =e^{i\varphi /2}a\), \({{\bar{\alpha }}}=e^{-\varphi /2}{\bar{a}}\). For chiral multiplets, the boundary fields are defined as:

$$\begin{aligned} u&=\phi \big |,\quad {\bar{u}}={{\bar{\phi }}}\big |,\nonumber \\ a\chi&={{\bar{\epsilon }}}\psi \big |,\quad a{{\bar{\chi }}}=\epsilon {{\bar{\psi }}}\big |. \end{aligned}$$
(182)

For the vector multiplet, we use the same names for the boundary scalars as for their bulk counterparts:

$$\begin{aligned} \sigma _1&=\sigma _1\big |,\quad \sigma _2=\sigma _2\big |,\quad A_\varphi =A_\varphi \big |. \end{aligned}$$
(183)

By acting with \({{\mathcal {Q}}}=Q_2+S_1\) on these, we define the corresponding fermions:

$$\begin{aligned}{}[{{\mathcal {Q}}},\sigma _1]&=\mu _1,\quad [{{\mathcal {Q}}},\sigma _2]=\mu _2,\quad [{{\mathcal {Q}}},A_\varphi ]=-ir\mu _2, \end{aligned}$$
(184)

whose explicit expressions in terms of \(\lambda \)’s are:

$$\begin{aligned} \mu _1&=\frac{1}{2\sqrt{2}}\left[ e^{-i\varphi /2}(\lambda _1-\lambda _2) - e^{i\varphi /2}({{\bar{\lambda }}}_1 - {{\bar{\lambda }}}_2) \right] ,\nonumber \\ \mu _2&=-\frac{i}{2\sqrt{2}}\left[ e^{-i\varphi /2}(\lambda _1+\lambda _2) + e^{i\varphi /2}({{\bar{\lambda }}}_1 + {{\bar{\lambda }}}_2) \right] . \end{aligned}$$
(185)

A trivial computation shows that their Poisson bracket is zero, i.e., they define a good polarization for the fermions.

Below we summarize SUSY of the boundary fields:

$$\begin{aligned} \delta u&=a\chi ,\quad \delta {\bar{u}}=a{{\bar{\chi }}},\nonumber \\ \delta \chi&=a\left( \frac{1}{r}{{\mathcal {D}}}_\varphi u +\sigma _2 u + i\frac{q}{2r}u \right) ,\nonumber \\ \delta {{\bar{\chi }}}&=a\left( \frac{1}{r}{{\mathcal {D}}}_\varphi {\bar{u}}-{\bar{u}}\sigma _2 -i\frac{q}{2r}{\bar{u}} \right) ,\nonumber \\ \delta \sigma _1&=a\mu _1,\quad \delta \sigma _2=a\mu _2,\quad \delta A_\varphi = -i\alpha r\mu _2,\nonumber \\ \delta \mu _1&=\alpha \left( \frac{1}{r}{{\mathcal {D}}}_\varphi \sigma _1 + [\sigma _2,\sigma _1] \right) ,\nonumber \\ \delta \mu _2&=\alpha \cdot \frac{1}{r}{{\mathcal {D}}}_\varphi \sigma _2, \end{aligned}$$
(186)

where q is the R-charge of \(\phi \). These fields form a \(\frac{1}{4}\)-BPS polarization which can be used to glue \({{\mathcal {Q}}}\)-closed states in the usual way, i.e., \(\langle \varPsi _2|\varPsi _1\rangle =\int {{\mathscr {D}}}{{\mathscr {B}}}\, \langle \varPsi _2|{{\mathscr {B}}}\rangle \langle {{\mathscr {B}}}|\varPsi _1\rangle \), with \({{\mathscr {B}}}=(u, {\bar{u}}, \chi , {{\bar{\chi }}}, \sigma _1, \sigma _2, A_\varphi , \mu _1, \mu _2)\).

1.2 3D \({{\mathcal {N}}}=2\) index and half-index

Discussion of the previous subsection can be uplifted to three dimensions, for \({{\mathcal {N}}}=2\) theories quantized on \(S^1\times S^1\). The most important application would be to understanding half-indices [44], that is partition functions on \(S^1\times HS^2\), and how they are glued into full indices on \(S^1\times S^2\).

In complete analogy with the 2D \({{\mathcal {N}}}=(2,2)\) case, the vector and chiral multiplets of 3D \({{\mathcal {N}}}=2\) theory quantized on \(T^2\) give vector and chiral multiplets in the gluing theory. The gluing theory is an \({{\mathcal {N}}}=(0,2)\) gauge theory on \(T^2\), and we mostly think of it as the device to glue two half-indices on \(S^1\times HS^2\). Fields of this theory are also defined in the twisted sector. The origin of this twisted sector is twofold: On the one hand, like in the \(S^1\) case of previous subsection, it comes from the supersymmetric background on \(S^2\); on the other hand, when we study indices on \(S^1\times S^2\), \(\epsilon \) is not periodic in the \(S^1\) direction. Following [70], and as already discussed in Sect. 6, one has to turn on proper holonomies in the \(S^1\) direction that would generate appropriate fugacities in the index.

As usual, denoting the boundary multiplets collectively by \({{\mathscr {B}}}\), the gluing is performed by:

$$\begin{aligned} \int {{\mathscr {D}}}{{\mathscr {B}}}\langle \varPsi _1|{{\mathscr {B}}}\rangle \langle {{\mathscr {B}}}|\varPsi _2\rangle . \end{aligned}$$
(187)

This is a 2D \({{\mathcal {N}}}=(0,2)\) theory on the torus with appropriate holonomies turned on. The matter content of this 2D theory is uniquely determined by the matter content of the 3D theory: Each 3D \({{\mathcal {N}}}=2\) vector multiplet gives a 2D \({{\mathcal {N}}}=(0,2)\) vector multiplet, and each 3D \({{\mathcal {N}}}=2\) chiral of R-charge \(\varDelta \) gives a 2D \({{\mathcal {N}}}=(0,2)\) chiral of the same R-charge. Notice that unlike in theories with twice as many SUSY (which were discussed earlier in this paper), the R-charges of matter multiplets are not canonically fixed. The 2D theory by itself appears anomalous due to the unbalanced chiral matter; however, as a gluing theory, it is non-anomalous thanks to the bulk contribution \(\langle \varPsi _1|{{\mathscr {B}}}\rangle \langle {{\mathscr {B}}}|\varPsi _2\rangle \) providing the necessary anomaly inflow. This was discussed from the general point of view in [29].

One should further localize this theory [13, 14, 43]. The Coulomb branch localization locus is parametrized by holonomies of the gauge fields around the two 1-cycles of \(T^2\). They are combined into a single complex variable u valued in the complexified maximal torus of the gauge group. In addition to that, there are holonomies for the flavor symmetries and the R-symmetry turned on. The wavefunctions \(\langle \varPsi _1|{{\mathscr {B}}}\rangle \) and \(\langle {{\mathscr {B}}}|\varPsi _2\rangle \) evaluated at this localization locus are half-indices [44] with Dirichlet boundary conditions:

$$\begin{aligned} \langle \varPsi _1|{{\mathscr {B}}}\rangle \big |_{L.L.} = \langle {{\mathscr {B}}}|\varPsi _2\rangle \big |_{L.L.} = I_D(x;q;u). \end{aligned}$$
(188)

We leave detailed treatment of this problem for the future work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedushenko, M. Gluing II: boundary localization and gluing formulas. Lett Math Phys 111, 18 (2021). https://doi.org/10.1007/s11005-021-01355-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01355-8

Keywords

Mathematics Subject Classification

Navigation