Log in

Bridging Deep Convolutional Autoencoders and Ensemble Smoothers for Improved Estimation of Channelized Reservoirs

  • Special Issue
  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

One of the main problems associated with applying data assimilation methods for facies models is the lack of geological plausibility in updates. This issue is even more acute for channelized reservoirs, knowing that, without a reliable parameterization, the geometrical structure of the channels can hardly be reproduced in the updated step of any data assimilation method. This paper presents a new methodology for estimation and uncertainty quantification of facies fields in channelized reservoirs, bridging a deep convolutional autoencoder with an ensemble-based method. The proposed methodology is suitable for any geological simulation model and does not use the resampling from the training image when using a multipoint geostatistical simulation model. Besides the channel estimation, the proposed methodology preserves the geological plausibility in the updated step of the history-matching method. The new methodology employs, inside the parameterization, a deep convolutional autoencoder to reconstruct the channel geometry. The convolutional autoencoder is used for image reconstruction purposes. The input of the training set of the autoencoder consists of images (facies fields) generated with a parameterization of the facies fields and perturbed with a Gaussian noise having spatial correlation. This procedure ensures the consistency of the method in the sense that the input fields have a similar structure with the facies fields obtained after the history matching. The methodology is tested for channelized reservoirs, with different levels of complexity, and also by comparison with previous methods that use or not resampling from the training image. The results show an improvement in the geological plausibility, estimation, and uncertainty quantification of the channel distributions while achieving a good data match.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  • Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jozefowicz R, Jia Y, Kaiser L, Kudlur M, Levenberg J, Mane D, Schuster M, Monga R, Moore S, Murray D, Olah C, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viegas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) Tensorflow: large-scale machine learning on heterogeneous systems. Software available from http://www.tensorflow.org

  • Afra S, Gildin E (2016) Tensor based geology preserving reservoir parameterization with higher order singular value decomposition (HOSVD). Comput Geosci 94:110–120

    Article  Google Scholar 

  • Agbalaka CC, Oliver DS (2008) Application of the EnKF and localization to automatic history matching of facies distribution and production data. Math Geosci 40(4):353–374

    Article  Google Scholar 

  • Al-Marridi AZ, Mohamed A, Erbad A (2018) Convolutional Autoencoder Approach for EEG Compression and Reconstruction in m-Health Systems. In: 2018, 14th International Wireless Communications & Mobile Computing Conference (IWCMC), pp 370–375. https://doi.org/10.1109/IWCMC.2018.8450511

  • Caers J, Zhang T (2004) Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs into multiple reservoir models

  • Canchumuni S, Emerick A, Pacheco M (2019a) History matching geological facies models based on ensemble smoother and deep generative models. J Pet Sci Eng 177:941–958. ISSN: 0920-4105. https://doi.org/10.1016/j.petrol.2019.02.037

  • Canchumuni S, Emerick A, Pacheco M (2019b) Towards a robust parameterization for conditioning facies models using deep variational autoencoders and ensemble smoother. Comput Geosci 128:87–102. ISSN: 0098-3004. https://doi.org/10.1016/j.cageo.2019.04.006

  • Canchumuni S, Castro J, Potratz J, Emerick A, Pacheco M (2021) Recent developments combining ensemble smoother and deep generative networks for facies history matching. Comput Geosci 25:433–466. https://doi.org/10.1007/s10596-020-10015-0

    Article  Google Scholar 

  • Cao VL, Nicolau M, McDermott J (2019) Learning neural representations for network anomaly detection. IEEE Trans Cybern 49(8):3074–3087. https://doi.org/10.1109/TCYB.2018.2838668

    Article  Google Scholar 

  • Chen C, Gao G, Ramirez B, Vink JC, Girardi AM (2016) Assisted history matching of channelized models by use of pluri-principal-component analysis, spe-173192-pa. SPE J 21:1793–1812. https://doi.org/10.2118/173192-PA

    Article  Google Scholar 

  • Chiang H, Hsieh Y, Fu S, Hung K, Tsao Y, Chien S (2019) Noise reduction in ECG signals using fully convolutional denoising autoencoders. IEEE Access 7:60806–60813

    Article  Google Scholar 

  • Chollet F et al (2015) Keras. In Internet https://www.keras.io

  • de Oliveira MLL, Bekooij MJG (2020) Deep convolutional autoencoder applied for noise reduction in range-Doppler maps of FMCW radars. In: 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA, pp 630–635. https://doi.org/10.1109/RADAR42522.2020.9114719

  • Deng L (2012) The mnist database of handwritten digit images for machine learning research. IEEE Signal Process Mag 29(6):141–142

    Article  Google Scholar 

  • Deng X, Tian X, Chen S, Harris C (2017) Deep learning based nonlinear principal component analysis for industrial process fault detection. In: Proceedings of the 2017 International Joint Conference on Neural Networks. IJCNN. https://doi.org/10.1109/IJCNN.2017.7965994

  • Deutsch CV, Wang L (1996) Hierarchical object-based stochastic modeling of fluvial reservoirs. Math Geol 28(7):857–880

    Article  Google Scholar 

  • Emerick AA (2017) Investigation on principal component analysis parameterizations for history matching channelized facies models with ensemble-based data assimilation. Math Geosci 49(1):85–120. https://doi.org/10.1007/s11004-016-9659-5

    Article  Google Scholar 

  • Emerick AA, Reynolds AC (2013) Ensemble smoother with multiple data assimilation. Comput Geosci 55:3–15. https://doi.org/10.1016/j.cageo.2012.03.011

    Article  Google Scholar 

  • Emery X, Lantuejoul C (2014) Can a training image be a substitute for a random field model? Math Geosci 46:133–147. https://doi.org/10.1007/s11004-013-9492-z

    Article  Google Scholar 

  • Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res Oceans (1978–2012) 99(C5):10143–10162

    Article  Google Scholar 

  • Fratila R, Morogan L (2021) Enhanced models in deep image steganography. In: 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pp 1–4. https://doi.org/10.1109/ECAI52376.2021.9515076

  • Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

    Google Scholar 

  • Hanea R, Ek T, Sebacher B (2015) Consistent joint updates of facies and petrophysical heterogeneities using an ensemble based assisted history matching. In: Petroleum geostatistics, 2015. EAGE. https://doi.org/10.3997/2214-4609.201413598

  • Hu L, Zhao Y, Liu Y, Scheepens C, Bouchard A (2013) Updating multipoint simulations using the ensemble Kalman filter. Comput Geosci 51:7–15

    Article  Google Scholar 

  • Insuasty E, Van den Hof P, Weiland S, Jansen J (2017) Low-dimensional tensor representations for the estimation of petrophysical reservoir parameters. In: SPE Reservoir Simulation Conference, SPE-182707-MS. SPE, Society of Petroleum Engineers, February 20–22. https://doi.org/10.2118/182707-MS

  • Jafarpour B (2011) Wavelet reconstruction of geologic facies from nonlinear dynamic flow measurements. IEEE Trans Geosci Remote Sens 49(5):1520–1535

    Article  Google Scholar 

  • Jafarpour B, Khodabakhshi M (2011) A probability conditioning method (PCM) for nonlinear flow data integration into multipoint statistical facies simulation. Math Geosci 43(2):133–164

    Article  Google Scholar 

  • Jafarpour B, McLaughlin D (2009) Estimating channelized-reservoir permeabilities with the ensemble Kalman filter: the importance of ensemble design, spe-108941-pa. SPE J 14:374–388. https://doi.org/10.2118/108941-PA

    Article  Google Scholar 

  • Jafarpour B, McLaughlin DB (2008) History matching with an ensemble Kalman filter and discrete cosine parameterization. Comput Geosci 12(2):227–244

    Article  Google Scholar 

  • Journel A (2002) Combining knowledge from diverse sources: an alternative to traditional data independence hypotheses. Math Geol 34(5):573–596

    Article  Google Scholar 

  • Jung H, Jo H, Kim S, Lee K, Choe J (2017) Recursive update of channel information for reliable history matching of channel reservoirs using EnKF with DCT. J Pet Sci Eng 154:19–37. https://doi.org/10.1016/j.petrol.2017.04.016

    Article  Google Scholar 

  • Khaninezhad MM, Jafarpour B, Li L (2012) Sparse geologic dictionaries for subsurface flow model calibration: part I. Inversion formulation. Adv Water Resour 39:106–121

    Article  Google Scholar 

  • Kiarashinejad Y, Abdollahramezani S, Adibi A (2020) Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures. npj Comput Mater Article number: 12, 6

  • Kim S, Min B, Kwon S, Chu M (2019) History matching of a channelized reservoir using a serial denoising autoencoder integrated with es-mda, article id 3280961. Geofluids. https://doi.org/10.1007/s10596-020-09978-x

    Article  Google Scholar 

  • Kim S, Lee K, Lim J, Jeong H, Min B (2020) Development of ensemble smoother-neural network and its application to history matching of channelized reservoirs. J Pet Sci Eng 191:107159. ISSN: 0920-4105. https://doi.org/10.1016/j.petrol.2020.107159

  • Krishnan S, Boucher A, Journel AG (2005) Evaluating information redundancy through the tau model. In: Geostatistics Banff 2004. Springer, pp 1037–1046

  • Laloy E, Herault R, Lee J, Jacques D, Linde N (2017) Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network. Adv Water Resour 110:387–405. ISSN: 0309-1708. https://doi.org/10.1016/j.advwatres.2017.09.029

  • Laloy E, Herault R, Jacques D, Linde N (2018) Training-image based geostatistical inversion using a spatial generative adversarial neural network. Water Resour Res 54(1):381–406. https://doi.org/10.1002/2017WR022148

    Article  Google Scholar 

  • Le Duc H, Emerick AA, Reynolds AC (2016) An adaptive ensemble smoother with multiple data assimilation for assisted history matching, spe-173214-pa. SPE J 21(60):2195–2207. https://doi.org/10.2118/173214-PA

    Article  Google Scholar 

  • Li H, Misra S (2017) Prediction of subsurface NMR T2 distributions in a shale petroleum system using variational autoencoder-based neural networks. IEEE Geosci Remote Sens Lett 14(12):2395–2397. https://doi.org/10.1109/LGRS.2017.2766130

    Article  Google Scholar 

  • Li H, Misra S (2019) Long short-term memory and variational autoencoder with convolutional neural networks for generating NMR T2 distributions. IEEE Geosci Remote Sens Lett 16(2):192–195. https://doi.org/10.1109/LGRS.2018.2872356

    Article  Google Scholar 

  • Liu Y, Sun W, Durlofsky L (2019) A deep-learning-based geological parameterization for history matching complex models. Math Geosci 51:725–766. https://doi.org/10.1007/s11004-019-09794-9

    Article  Google Scholar 

  • Lorentzen RJ, Flornes KM, Nævdal G et al (2009) History matching channelized reservoirs using the ensemble Kalman filter. In: International Petroleum Technology Conference. International Petroleum Technology Conference

  • Lorentzen RJ, Flornes KM, Nævdal G (2012) History matching channelized reservoirs using the ensemble Kalman filter. SPE J 17(1):137–151

    Article  Google Scholar 

  • Marzavan S, Sebacher B (2021) A new methodology based on finite element method (FEM) for generation of the probability field of rock types from subsurface. Arab J Geosci. https://doi.org/10.1007/s12517-021-07114-2

    Article  Google Scholar 

  • Misra S, Li H (2020) Chapter 7—Deep neural network architectures to approximate the fluid-filled pore size distributions of subsurface geological formations. In: Machine learning for subsurface characterization. Gulf Professional Publishing, pp 183–217. ISBN: 978-0-12-817736-5. https://doi.org/10.1016/B978-0-12-817736-5.00007-7

  • Patel N, Patel S, Mankad S (2021) Impact of autoencoder based compact representation on emotion detection from audio. J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-021-02979-3

    Article  Google Scholar 

  • ** J, Zhang D (2014) History matching of channelized reservoirs with vector-based level-set parameterization. SPE J 19(3):514–529

    Article  Google Scholar 

  • Remy N (2005) S-gems: the Stanford geostatistical modeling software: a tool for new algorithms development. Geostatistics Banff 2004:865–871

    Google Scholar 

  • Sarma P, Durlofsky LJ, Aziz K (2008) Kernel principal component analysis for efficient, differentiable parameterization of multipoint geostatistics. Math Geosci 40(1):3–32

    Article  Google Scholar 

  • Sarma P, Chen WH et al (2009) Generalization of the Ensemble Kalman Filter using kernels for non-Gaussian random fields. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers

  • Sebacher B, Stordal A, Hanea R (2015) Bridging multi point statistics and truncated Gaussian fields for improved estimation of channelized reservoirs with ensemble methods. Comput Geosci 19(2):341–369. https://doi.org/10.1007/s10596-014-9466-3

    Article  Google Scholar 

  • Sebacher B, Stordal A, Hanea R (2016) Complex geology estimation using the iterative adaptive Gaussian mixture filter. Comput Geosci 20(1):133–148. https://doi.org/10.1007/s10596-015-9553-0

    Article  Google Scholar 

  • Sebacher B, Hanea R, Stordal SS (2017) An adaptive pluri-gaussian simulation model for geological uncertainty quantification. J Pet Sci Eng 158:494–508. ISSN: 0920-4105. https://doi.org/10.1016/j.petrol.2017.08.038

  • Sebacher B, Hanea R (2020) Channelized reservoir estimation using a low-dimensional parameterization based on high-order singular value decomposition. Comput Geosci 24:509–531. https://doi.org/10.1007/s10596-019-09856-1

    Article  Google Scholar 

  • Sento A (2016) Image compression with auto-encoder algorithm using deep neural network (DNN). In: Management and Innovation Technology International Conference (MITicon), pp MIT-99–MIT-103

  • Stordal A, Lorentzen R (2014) An iterative version of the adaptive Gaussian mixture filter. Comput Geosci 18(3):579–595. https://doi.org/10.1007/s10596-014-9402-6

    Article  Google Scholar 

  • Stordal AS, Karlsen HA, Nævdal G, Skaug HJ, Vallès B (2011) Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter. Comput Geosci 15(2):293–305

    Article  Google Scholar 

  • Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21

    Article  Google Scholar 

  • Tahmasebi P, Sahimi M, Shirangi M (2018) Rapid learning-based and geologically consistent history matching. Transp Porous Media 122(2):279–304

    Article  Google Scholar 

  • Tavakoli R, Reynolds AC (2011) Monte Carlo simulation of permeability fields and reservoir performance predictions with SVD parameterization in RML compared with EnKF. Comput Geosci 15(1):99–116. https://doi.org/10.1007/s10596-010-9200-8

    Article  Google Scholar 

  • Vo HX, Durlofsky LJ (2014) A new differentiable parameterization based on principal component analysis for the low-dimensional representation of complex geological models. Math Geosci 46(7):775–813. https://doi.org/10.1007/s11004-014-9541-2

    Article  Google Scholar 

  • Vo HX, Durlofsky LJ (2016) Regularized kernel PCA for the efficient parameterization of complex geological models. J Comput Phys 322:859–881

    Article  Google Scholar 

  • Yin C, Zhang S, Wang J, **ong NN (2020) Anomaly detection based on convolutional recurrent autoencoder for IoT time series. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2020.2968516

    Article  Google Scholar 

  • Zhang Y, Oliver DS, Chauris H, Donno D (2015) Ensemble-based data assimilation with curvelets regularization. J Pet Sci Eng, 136:55–67. ISSN: 0920-4105. https://doi.org/10.1016/j.petrol.2015.10.026

  • Zhao Y, Reynolds AC, Li G (2008) Generating facies maps by assimilating production data with EnKF. In: SPE/DOE symposium on improvement oil recovery, Tulsa, 20-23 April 2008

  • Zhao Y, Forouzanfar F, Reynold A (2016) History matching of multi-facies channelized reservoirs using ES-MDA with common basis DCT. Comput Geosci. https://doi.org/10.1007/s10596-016-9604-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Sebacher.

Appendices

Appendix A: Statistical Measurements of the ES-MDA Updated Step

Let us consider the experiment of ES-MDA applied in four assimilation cycles with the global parameterization from Eq. (4). After performing the first assimilation cycle, the parameter fields suffer an adjustment due to the effect of observations. At the top of Fig. 29 is presented the parameter field \(\theta _{1}\) of the first member in the prior ensemble (\(\theta _{1}^{pr}\), at the left side), in the updated ensemble (\(\theta _{1}^{up}\) in the center), and the field calculated as the difference between the first two (at the right side). By applying the truncation rule for both parameter fields, we obtained the prior and updated facies fields (Fig. 29 at the left side and center, respectively). The updated facies field has lost the geological plausibility. Let \( \theta _{1}^{inv} = \theta _{1}^{up}-\theta _{1}^{pr}\), and its spatial distribution is shown in the left side of Fig. 29 (first row). Then, \( \theta _{1}^{up} = \theta _{1}^{pr}+\theta _{1}^{inv}\), and from this equation, the updated field can be seen as the perturbation of the prior with \(\theta _{1}^{inv}\).

Fig. 29
figure 29

Top: parameter field in the prior ensemble (right), the updated ensemble (center), and the innovation (left). Bottom: facies field in the prior ensemble (left), the updated ensemble (center), and the difference between first two (right)

From a statistical perspective, the field \(\theta _1^{inv}\) has the histogram from Fig. 30 which exhibits Gaussian characteristics; the mean of the field values is \(mean(\theta _1^{inv})=-0.04\), and the standard deviation is \(std(\theta _1^{inv})=0.6\).

Fig. 30
figure 30

The histogram of field \(\theta _1^{inv}\)

Considering the entire ensemble of fields \(\theta _i^{inv}\), where \(i \in \overline{1, n_e}\) (\(n_e\) is the number of ensemble members), the mean of the mean field \(mean(mean(\theta ^{inv}))=-0.01\) and the mean of the standard deviations \(mean(std(\theta ^{inv}))=0.62\) are calculated. Consequently, \(\theta ^{inv}\) is a sample from a random field, marginally Gaussian with a 0 mean and 0.6 standard deviation. This information is further used for generation of the input of training and validation sets of the deep convolutional autoencoder.

Appendix B: Architecture of the Convolutional Autoencoders

See Tables 2 and 3.

Table 2 Convolutional autoencoder architecture—small image (\(50 \times 50\))
Table 3 Convolutional autoencoder architecture—large image (\(100 \times 100\))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebacher, B., Toma, S.A. Bridging Deep Convolutional Autoencoders and Ensemble Smoothers for Improved Estimation of Channelized Reservoirs. Math Geosci 54, 903–939 (2022). https://doi.org/10.1007/s11004-022-09997-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-022-09997-7

Keywords

Navigation