Log in

Morphology and Corrosion Properties of Hydroxyapatite Coating on VT6 Titanium Alloy

  • Published:
Materials Science Aims and scope

The formation of hydroxyapatite coating on BT6 titanium alloy under the combined treatment: nitriding and plasma-electrolytic oxidation in an alkaline electrolyte (hydroxyapatite + 1M potassium hydroxide) was investigated. Such treatment promotes the growth of the Ca10 (PO4 )6(OH)2 hydroxyapatite phase, that can be attributed to an increase of the centers of hydroxyapatite crystallization on the pre-nitrided surface. The hydroxyapatite coating on pre-nitrided surface provided higher hydrophilicity and better corrosion resistance in Ringer’s solution at a temperature of 37°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Le Guéhennec, A. Soueidan, P. Layrolle, and Y. Amouriq, “Surface treatments of titanium dental implants for rapid osseointegration,” Dent. Mater., 23, Is. 7, 844–854 (2007); https://doi.org/10.1016/j.dental.2006.06.025.

  2. M. C. Goiato, D. M. Dos Santos, J. F. Santiago, A. Moreno, and E. P. Pellizzer, “Longevity of dental implants in type IV bone: A systematic review,” Int. J. Oral Maxillofac. Surg., 43, Is. 9, 1108–1116 (2014); https://doi.org/10.1016/j.ijom.2014.02.016.

  3. D. P. Oliveira, A. Palmieri, F. Carinci, and C. Bolfarini, “Gene expression of human osteoblasts cells on chemically treated surfaces of Ti-6Al-4V-ELI,” Mater. Sci. Eng. C., 51, 248–255 (2015); https://doi.org/https://doi.org/10.1016/j.msec.2015.03.011.

    Article  CAS  Google Scholar 

  4. J. M. Chaves, A. L. A. Escada, A. D. Rodrigues, and A. P. R. Alves Claro, “Characterization of the structure, thermal stability and wettability of the TiO2 nanotubes growth on the Ti-7.5Mo alloy surface,” Appl. Surf. Sci., 370, 76–82 (2016); https://doi.org/10.1016/j.apsusc.2016.02.017.

  5. Jr. L. Mishnaevsky, E. Levashov, R. Z. Valiev, J. Segurado, I. Sabirov, N. Enikeev, S. Prokoshkin, A. V. Solov’yov, A. Korotitskiy, E. Gutmanas, I. Gotman, E. Rabkin, S. Psakh’e, L. Dluhoš, M. Seefeldt, and A. Smolin, “Nanostructured titanium-based materials for medical implants: Modeling and development,” Mater. Sci. and Eng. R: Reports, 81, Is. 1, 1–19 (2014); https://doi.org/10.1016/j.mser.2014.04.002.

  6. R. Bayón, A. Igartua, J. J. González, and U. Ruiz De Gopegui, “Influence of the carbon content on the corrosion and tribocorrosion performance of Ti-DLC coatings for biomedical alloys,” Tribol. Int., 88, 115–125 (2015); https://doi.org/https://doi.org/10.1016/j.triboint.2015.03.007.

    Article  CAS  Google Scholar 

  7. M. Kalisz, M. Grobelny, M. Mazur, M. Zdrojek, D. Wojcieszak, M. Winiarski, J. Judek, and D. Kaczmarek, “Comparison of mechanical and corrosion properties of graphene monolayer on Ti-Al-V and nanometric Nb2O5 layer on Ti-Al-V alloy for dental implants applications,” Thin Solid Films, 589, 356–363 (2015); https://doi.org/https://doi.org/10.1016/j.tsf.2015.05.059.

    Article  CAS  Google Scholar 

  8. Y. Shibata, and Y. Tanimoto, “A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration,” J. of Prosthodontic Res., 59, Is. 20–33 (2015); https://doi.org/10.1016/j.jpor.2014.11.007.

  9. T. Beline, I. Da Silva Vieira Marques, A. O. Matos, E. S. Ogawa, A. P. Ricomini-Filho, E. C. Rangel, N. C. Da Cruz, C. Sukotjo, M. T. Mathew, R. Landers, R. L. X. Consani, M. F. Mesquita, and V. A. R. Barão, “Production of a biofunctional titanium surface using plasma electrolytic oxidation and glow-discharge plasma for biomedical applications,” Biointerphases, 11, art. no. 011013 (2016); https://doi.org/10.1116/1.4944061.

  10. I. M. Pohrelyuk, R. V. Proskurnyak, O. V. Tкachuk, and Y. V. Obukh, “Formation of Hydroxyapatite Coatings on Titanium by Plasma-Electrolytic Oxidation in Alkaline Electrolytes,” Mater. Sci., 55, No. 4, 563–568 (2020); https://doi.org/https://doi.org/10.1007/s11003-020-00339-8.

    Article  CAS  Google Scholar 

  11. V. Hutsaylyuk, M. Student, V. Dovhunyk, V. Posuvailo, O. Student, P. Maruschak, and I. Koval’chuck, “Effect of hydrogen on the wear resistance of steels upon contact with plasma electrolytic oxidation layers synthesized on aluminum alloys,” Metals, 9, Is. 3, art. no. 280 (2019); https://doi.org/10.3390/met9030280.

  12. M. M. Student, V. V. Shmyrko, M. D. Klapkiv, I. M. Lyasota, and L. N. Dobrovol’ska, “Evaluation of the mechanical properties of combined metal-oxide-ceramic layers on aluminum alloys,” Mater. Sci., 50, Is. 2, 290–295 (2014); https://doi.org/10.1007/s11003-014-9720-9.

  13. I. M. Pohrelyuk, O. V. Tkachuk, and R. V. Proskurnyak, “Corrosion resistance of the Ti-6Al-4V titanium alloy with nitride coatings in 0.9 % NaCl,” JOM, 63, Is. 6, 35–40 (2011); https://doi.org/10.1007/s11837-011-0090-6.

  14. F. Yildiz, A. F. Yetim, A. Alsaran, and I. Efeoglu, “Wear and corrosion behaviour of various surface treated medical grade titanium alloy in bio-simulated environment,” Wear, 267, Is. 5–8, 695–701 (2009); https://doi.org/https://doi.org/10.1016/j.wear.2009.01.056.

    Article  CAS  Google Scholar 

  15. T. M. Manhabosco, S. M. Tamborim, C. B. dos Santos, and I. L. Müller, “Tribological, electrochemical and tribo-electrochemical characterization of bare and nitrided Ti6Al4V in simulated body fluid solution,” Corr. Sci., 53, Is. 5, 1786–1793 (2011); https://doi.org/10.1016/j.corsci.2011.01.057.

  16. I. M. Pohrelyuk, S. M. Lavrys, O. M. Sakharuk, I. V. Stasyshyn, and O. V. Penkovyi, “Pretreatment Influence on Titanium Surface Properties After Gas Nitriding,” J. Mat. Eng. Perform., 26, Is. 10, 5072–5078 (2017); https://doi.org/10.1007/s11665-017-2934-x.

  17. B. Subramanian, C. V. Muraleedharan, R. Ananthakumar, and M. Jayachandran, “A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants,” Surf. Coat. Techn., 205, Is. 21–22, 5014–5020 (2011); https://doi.org/10.1016/j.surfcoat.2011.05.004.

  18. D. K. Owens, and R. C. Wendt, “Estimation of the surface free energy of polymers,” J. Appl. Polym. Sci., 13, Is. 8, 1741–1747 (1969); https://doi.org/10.1002/app.1969.070130815.

  19. B. Čolović, D. Kisić, B. Jokanović, Z. Rakočević, I. Nasov, A. T. Petkoska, and V. Jokanović, “Wetting properties of titanium oxides, oxynitrides and nitrides obtained by DC and pulsed magnetron sputtering and cathodic arc evaporation,” Mater. Sci.–Poland, 37, Is. 2, 173–181 (2019); https://doi.org/10.2478/msp-2019-0031.

  20. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, “Understanding TiO2 photocatalysis: Mechanisms and materials,” Chem. Rev., 114, Is. 19, 9919–9986 (2014); https://doi.org/10.1021/cr5001892.

  21. K.-X. Zhang, W. Wang, J.-L. Hou, J.-H. Zhao, Y. Zhang, and Y.-C. Fang, “Oxygen plasma induced hydrophilicity of TiO2 thin films,” Vacuum, 85, Is. 11, 990–993 (2011); https://doi.org/https://doi.org/10.1016/j.vacuum.2011.02.006.

    Article  CAS  Google Scholar 

  22. D. Kuscer, J. Kovač, M. Kosec, and R. Andriesen, “The effect of the valence state of titanium ions on the hydrophilicity of ceramics in the titanium-oxygen system,” J. of the European Ceramic Soc., 28, Is. 3, 577–584 (2008); https://doi.org/10.1016/j.jeurceramsoc.2007.07.014.

  23. S. V. Dudiy, and B. I. Lundqvist, “Wetting of TiC and TiN by metals,” Phys. Rev. B - Condensed Matter and Materials Physics, 69, Is. 12, art. no. 125421 (2004); https://doi.org/10.1103/PhysRevB.69.125421.

  24. L. Orazi, I. Gnilitskyi, and A. P. Serro, “Laser nanopatterning for wettability applications,” J. of Micro and Nano-Manufacturing, 5, Is. 2, art. no. 021008 (2017); https://doi.org/10.1115/1.4035956.

  25. A. B. D. Cassie, and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc., 40, 546–551 (1944); https://doi.org/https://doi.org/10.1039/tf9444000546.

    Article  CAS  Google Scholar 

  26. D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart, and J. Breme, “Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization,” J. Biomed. Mater. Res., 59, Is. 1, 18–28 (2002); https://doi.org/10.1002/jbm.1212.

  27. H. Anawati, H. Tanigawa, H. Asoh, T. Ohno, M. Kubota, and S. Ono, “Electrochemical corrosion and bioactivity of titanium-hydroxyapatite composites prepared by spark plasma sintering,” Corr. Sci., 70, 212–220 (2013); https://doi.org/https://doi.org/10.1016/j.corsci.2013.01.032.

    Article  CAS  Google Scholar 

  28. H.-J. Song, M.-G. Kim, W.-J. Moon, and Y.-J. Park, “Formation of hydroxyapatite nanorods and anatase TiO2 on CaTiO3 powder using hydrothermal treatment,” Mater. Sci. Eng. C., 31, Is. 3, 558–561 (2011); https://doi.org/10.1016/j.msec.2010.11.024.

  29. S. Durdu, M. Usta, and A. S. Berkem, “Bioactive coatings on Ti6Al4V alloy formed by plasma electrolytic oxidation,” Surf. Coat. Techn., 301, 85–93 (2016); https://doi.org/https://doi.org/10.1016/j.surfcoat.2015.07.053.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Pohrelyuk.

Additional information

Published in Fizyko-Khimichna Mekhanika Materialiv, Vol. 58, No. 6, pp. 89–95, November–December, 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pohrelyuk, I.M., Tkachuk, O.V., Proskurnyak, R.V. et al. Morphology and Corrosion Properties of Hydroxyapatite Coating on VT6 Titanium Alloy. Mater Sci 58, 781–787 (2023). https://doi.org/10.1007/s11003-023-00730-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-023-00730-1

Keywords

Navigation