Log in

Morphology and Corrosion Resistance of Hydroxyapatite Coatings Formed on Commercially Pure Titanium

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The porous hydroxyapatite coatings with a spherical structure were formed on commercially pure titanium (CP-Ti) by the micro-arc oxidation (MAO) in an alkaline electrolyte (hydroxyapatite + 1 M potassium hydroxide) at the applied voltage of 140, 160, 180 V and deposition time of 1 and 2 min. It was determined that by increasing voltage from 140 to 160 V the Ca/P ratio increases from 1.54 to 1.69, i.e., the composition of hydroxyapatite (HA) approaches to the biological one that accelerates formation of the interfacial bond between the implant and bone tissue. It was shown that increasing deposition time from 1 to 2 min at the voltage of 140 V promotes increasing Ca/P ratio. The corrosion resistance of CP-Ti with HA coatings was studied in Ringer's solution at a temperature of 37 °C. The best corrosion protection was observed for the coating deposited at 160 V, 1 min, when the thickness of the coating and HA formation is the highest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.M. Ríos, D. Quintero, J.G. Castaño, F. Echeverría, and M.A. Gómez, Comparison Among the Lubricated and Unlubricated Tribological Behavior of Coatings Obtained by MAO on the Ti6Al4V Alloy in Alkaline Solutions, Tribol. Int., 2018, 128, p 1–8. https://doi.org/10.1016/j.triboint.2018.07.010

    Article  CAS  Google Scholar 

  2. J.M. Hernández-López, A. Conde, J.J. de Damborenea, and M.A. Arenas, Electrochemical Response of TiO2 Anodic Layers Fabricated on Ti6Al4V Alloy with Nanoporous, Dual and Nanotubular Morphology, Corros. Sci., 2016, 112, p 194–203. https://doi.org/10.1016/j.corsci.2016.07.021

    Article  CAS  Google Scholar 

  3. P. **u, Z. Jia, J. Lv, C. Yin, H. Cai, C. Song, and Y. Cheng, Hierarchical Micropore/Nanorod Apatite Hybrids in-situ Grown from 3-D Printed Macroporous Ti6Al4V Implants with Improved Bioactivity and Osseointegration, J. Mater. Sci. Technol., 2017, 33, p 179–186. https://doi.org/10.1016/j.jmst.2016.05.013

    Article  CAS  Google Scholar 

  4. E. Urbańczyk, A. Krząkała, A. Kazek-Kęsik, J. Michalska, A. Stolarczyk, G. Dercz, and W. Simka, Electrochemical Modification of Ti-13Nb-13Zr Alloy Surface in Phosphate Based Solutions, Surf. Coat. Technol., 2016, 291, p 79–88. https://doi.org/10.1016/j.surfcoat.2016.02.025

    Article  CAS  Google Scholar 

  5. E. Ahounbar, S. Mohammad, M. Khoei, and H. Omidvar, Characteristics of in-situ Synthesized Hydroxyapatite on TiO2 Ceramic via Plasma Electrolytic Oxidation, Ceram. Int., 2019, 45, p 2909–4146. https://doi.org/10.1016/j.ceramint.2018.10.206

    Article  CAS  Google Scholar 

  6. C.A. Antônio, N.C. Cruz, E.C. Rangel, R.C.C. de Rangel, T.E.S. do Araujo, S.F. Durrant, B.A. Más, and E.A.R. Duek, Hydroxyapatite Coating Deposited on Grade 4 Titanium by Plasma Electrolytic Oxidation, Mater. Res., 2014, 17, p 1427–1433. https://doi.org/10.1590/1516-1439.286914

    Article  Google Scholar 

  7. S. Lederer, S. Sankaran, T. Smith, and W. Fürbeth, Formation of Bioactive Hydroxyapatite-Containing Titania Coatings on CP-Ti4+ Alloy Generated by Plasma Electrolytic Oxidation, Surf. Coat. Technol., 2019, 363, p 66–74. https://doi.org/10.1016/j.surfcoat.2019.02.030

    Article  CAS  Google Scholar 

  8. H.-J. Song, M.-G. Kim, W.-J. Moon, and Y.-J. Park, Formation of Hydroxyapatite Nanorods and Anatase TiO2 on CaTiO3 Powder using Hydrothermal Treatment, Mater. Sci. Eng. C, 2011, 31, p 558–561. https://doi.org/10.1016/j.msec.2010.11.024

    Article  CAS  Google Scholar 

  9. S. Durdu, M. Usta, and A.S. Berkem, Bioactive Coatings on Ti6Al4V Alloy Formed by Plasma Electrolytic Oxidation, Surf. Coat. Technol., 2016, 301, p 85–93. https://doi.org/10.1016/j.surfcoat.2015.07.053

    Article  CAS  Google Scholar 

  10. J.-Z. Chen, Y.-L. Shi, L. Wang, F.-Y. Yan, and F.-Q. Zhang, Preparation and Properties of Hydroxyapatite-Containing Titania Coating by Micro-Arc Oxidation, Mater. Lett., 2006, 60, p 2538–2543. https://doi.org/10.1016/j.matlet.2006.01.035

    Article  CAS  Google Scholar 

  11. A. Kazek-Kęsik, G. Dercz, I. Kalemba, K. Suchanek, A.I. Kukharenko, D.M. Korotin, J. Michalska, A. Krząkała, J. Piotrowski, E.Z. Kurmaev, S.O. Cholakh, and W. Simka, Surface Characterisation of Ti-15Mo Alloy Modified by a MAO Process in Various Suspensions, Mater. Sci. Eng. C, 2014, 39, p 259–272. https://doi.org/10.1016/j.msec.2014.03.008

    Article  CAS  Google Scholar 

  12. M. Montazeri, C. Dehghanian, M. Shokouhfar, and A. Baradaran, Investigation of the Voltage and Time Effects on the Formation of Hydroxyapatite-Containing Titania Prepared by Plasma Electrolytic Oxidation on Ti-6Al-4V Alloy and its Corrosion Behavior, Appl. Surf. Sci., 2011, 257, p 7268–7275. https://doi.org/10.1016/j.apsusc.2011.03.103

    Article  CAS  Google Scholar 

  13. M.-A. Faghihi-Sani, A. Arbabi, and A. Mehdinezhad-Roshan, Crystallization of Hydroxyapatite during Hydrothermal Treatment on Amorphous Calcium Phosphate Layer Coated by MAO Technique, Ceram. Int., 2013, 39, p 1793–1798. https://doi.org/10.1016/j.ceramint.2012.08.026

    Article  CAS  Google Scholar 

  14. J.-H. Ni, Y.-L. Shi, F.-Y. Yan, J.-Z. Chen, and L. Wang, Preparation of Hydroxyapatite-Containing Titania Coating on Titanium Substrate by Micro-Arc Oxidation, Mater. Res. Bull., 2008, 43, p 45–53. https://doi.org/10.1016/j.ceramint.2012.08.026

    Article  CAS  Google Scholar 

  15. A.R. Rafieerad, M.R. Ashra, R. Mahmoodian, and A.R. Bushroa, Surface Characterization and Corrosion Behavior of Calcium Phosphate-Base Composite Layer on Titanium and its Alloys via Plasma Electrolytic Oxidation: A Review Paper, Mater. Sci. Eng. C, 2015, 57, p 397–413. https://doi.org/10.1016/j.msec.2015.07.058

    Article  CAS  Google Scholar 

  16. S. Durdu, Ö.F. Deniz, I. Kutbay, and M. Usta, Characterization and Formation of Hydroxyapatite on Ti6Al4V Coated by Plasmaelectrolytic Oxidation, J. Alloys Compd., 2013, 551, p 422–429. https://doi.org/10.1016/j.jallcom.2012.11.024

    Article  CAS  Google Scholar 

  17. S.A. Adeleke, S. Ramesh, A.R. Bushroa, Y.C. Ching, I. Sopyan, M.A. Maleque, S. Krishnasamy, H. Chandran, H. Misran, and U. Sutharsini, The Properties of Hydroxyapatite Ceramic Coatings Produced by Plasma Electrolytic Oxidation, Ceram. Int., 2018, 44, p 1802–1811. https://doi.org/10.1016/j.ceramint.2017.10.114

    Article  CAS  Google Scholar 

  18. M. Shokouhfar, C. Dehghanian, and A. Baradaran, Preparation of Ceramic Coating on Ti Substrate by Plasma Electrolytic Oxidation in Different Electrolytes and Evaluation of its Corrosion Resistance, Appl. Surf. Sci., 2011, 257, p 2617–2624. https://doi.org/10.1016/j.apsusc.2011.10.064

    Article  CAS  Google Scholar 

  19. M. Shokouhfar, C. Dehghanian, M. Montazeri, and A. Baradaran, Preparation of Ceramic Coating on Ti Substrate by Plasma Electrolytic Oxidation in Different Electrolytes and Evaluation of its Corrosion Resistance: Part II, Appl. Surf. Sci., 2012, 258, p 2416–2423. https://doi.org/10.1016/j.apsusc.2011.10.064

    Article  CAS  Google Scholar 

  20. M. Okido, K. Kuroda, M. Ishikawa, R. Ichino, and O. Takai, Hydroxyapatite Coating on Titanium by Means of Thermal Substrate Method in Aqueous Solutions, Solid State Ion., 2002, 151, p 47–52. https://doi.org/10.1016/S0167-2738(02)00603-3

    Article  CAS  Google Scholar 

  21. S. Luo, Q. Wang, and R. Yeb, Chidambaram Seshadri Ramachandran, Effects of Electrolyte Concentration on the Microstructure and Properties of Plasma Electrolytic Oxidation Coatings on Ti-6Al-4V Alloy, Surf. Coat. Technol., 2019, 375, p 864–876. https://doi.org/10.1016/j.surfcoat.2019.07.053

    Article  CAS  Google Scholar 

  22. H. Anawati, H. Tanigawa, T. Asoh, M. Ohno, and S. Kubota, Ono, Electrochemical Corrosion and Bioactivity of Titanium–Hydroxyapatite Composites Prepared by Spark Plasma Sintering, Corros. Sci., 2013, 70, p 212–220. https://doi.org/10.1016/j.corsci.2013.01.032

    Article  CAS  Google Scholar 

  23. E.-J. Kim, Y.-H. Jeong, H.-C. Choe, and W.A. Brantley, Electrochemical Behavior of Hydroxyapatite/TiN Multi-layer Coatings on Ti Alloys, Thin Solid Films, 2014, 572, p 113–118. https://doi.org/10.1016/j.tsf.2014.08.035

    Article  CAS  Google Scholar 

  24. L. Benea, E. Mardare, M. Mardare, and J.-P. Celis, Preparation of Titanium Oxide and Hydroxyapatite on Ti-6Al-4V Alloy Surface and Electrochemical Behaviour in Bio-simulated Fluid Solution, Corros. Sci., 2014, 80, p 331–338. https://doi.org/10.1016/j.corsci.2013.11.059

    Article  CAS  Google Scholar 

  25. M. Kazemi, S. Ahangarani, M. Esmailian, and A. Shanaghi, Investigation on the Corrosion Behavior and Biocompatibility of Ti-6Al-4V Implant Coated with HA/TiN Dual Layer for Medical Applications, Surf. Coat. Technol., 2020, 397, p 126044. https://doi.org/10.1016/j.surfcoat.2020.126044

    Article  CAS  Google Scholar 

  26. I.M. Pohrelyuk, R.V. Proskurnyak, O.V. Tkachuk, and A. Goral, Influence of the Parameters of Plasma-electrolytic Oxidation on the Formation of Calcium-phosphate Coatings on Titanium, Mater. Sci., 2019, 54, p 789–795. https://doi.org/10.1007/s11003-019-00265-4

    Article  CAS  Google Scholar 

  27. D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart, and J. Breme, Preparation of TiO2 Layers on CP-Ti and Ti6Al4V by Thermal and Anodic Oxidation and by Sol-Gel Coating Techniques and their Characterization, J. Biomed. Mater. Res., 2002, 59, p 18–28. https://doi.org/10.1002/jbm.1212

    Article  CAS  Google Scholar 

  28. L. Kostelac, L. Pezzato, A.G. Settimi, M. Franceschi, C. Gennari, K. Brunelli, C. Rampazzo, and M. Dabala, Investigation of Hydroxyapatite (HAP) Containing Coating on Grade 2 Titanium Alloy Prepared by Plasma Electrolytic Oxidation (PEO) at Low Voltage, Surf. Interfaces, 2022, 30, p 101888. https://doi.org/10.1016/j.surfin.2022.101888

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Tkachuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachuk, O.V., Pohrelyuk, I.M., Proskurnyak, R.V. et al. Morphology and Corrosion Resistance of Hydroxyapatite Coatings Formed on Commercially Pure Titanium. J. of Materi Eng and Perform 32, 11040–11049 (2023). https://doi.org/10.1007/s11665-023-07910-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07910-9

Keywords

Navigation