Log in

Flexural uplift and magmatic underplating anomaly on the Argentine continental margin: profile at 43.5°S

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

Magmatic underplating can be defined as the addition of mafic magma to the lower crust and uppermost mantle around the Moho. This phenomenon plays an important role in continental margins and other compressional and extensional tectonic environments. We have modeled the magmatic underplating effect using Process-Oriented Gravity Modeling (POGM) along a profile at 43.5°S on the Argentine continental margin, which re-thickens the crust and causes uplift. In POGM, the gravity anomaly is formed by the rift, sedimentation, and magmatic underplating anomaly. This work focuses on the flexural uplift produced by the magmatic underplating and its gravity anomaly, rarely investigated in margins since seismic refraction data is generally unavailable to the scientific community. Particularly, it has not been calculated in the volcanic sector of the Argentine continental margin before this work. The results yield an average maximum flexural uplift associated with magmatic underplating, which is um = 140.32 m ± 22.12 m, an average density of the underplated body of ρx = 3133.89 kg/m3 ± 22.71 kg/m3, and an average density of the sediment ρs = 2207.78 kg/m3 ± 42.58 kg/m3 and an average oceanic crustal thickness of 6.36 km. The average elastic thickness leaving out the magmatic underplating effect is Te = 24 km ± 2.02 km, and including it is Te = 33.89 km ± 2.35 km. The magmatic underplating anomaly has an opposite contribution to the typical free-air gravity edge-effect for the Airy and flexural cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Modified from Figures 2 and 3 (Watts and Fairhead 1999)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bauer K, Neben S, Schreckenberger B, Emmermann R, Hinz K, Fechner N, Gohl K, Schulze A, Trumbull RB, Weber K (2000) Deep structure of the Namibia continental margin as derived from integrated geophysical studies. J Geophys Res 105:25829–25853

    Google Scholar 

  • Beard J, Ragland C (2005) Reactive bulk assimilation: a model for crust-mantle mixing in silicic magmas. Geology 33(8):681–684. https://doi.org/10.1130/G21470AR.1

    Article  Google Scholar 

  • Blaich OA, Faleide JI, Tsikalas F, Franke D, Léon E (2009) Crustal-scale architecture and segmentation of the Argentine margin and its conjugate off South Africa. Geophys J Int 178:85–105

    Google Scholar 

  • Blaich OA, Faleide JI, Tsikalas F (2011) Crustal breakup and continent-ocean transition at South Atlantic conjugate margins. J Geophys Res 116:B01402

    Google Scholar 

  • Burov EB, Watts AB (2006) The long-term strength of continental lithosphere: “jelly sandwelich” “crème brulée”? Gsa Today 16(1):4–10

  • Caminos R, González PD (1996) Mapa Geológico de la República Argentina. Servicio Geológico Minero Argentino (SEGEMAR), Buenos Aires, Argentina. https://repositorio.segemar.gov.ar/handle/308849217/1542

  • Coscia CA (2000) Aprovechamiento de los datos sísmicos preexistentes para el análisis del espesor sedimentario en el margen continental argentino. En: Seminario de la Plataforma Continental, Buenos Aires, publicación del Consejo Argentino para las Relaciones Internacionales (CARI), pp 249–265

  • Clemson J, Cartwright J, Swart J (1999) The Namib rift: a rift system of possible Karoo age, offshore Namibia. In: Cameron NR, Bate RH, Clure VS (eds) The oil and gas habitats of the South Atlantic. Geological Society, London, Special Publication, London, pp 381–402

  • Cornwell DG, McKenzie D, England RW, Maguire PKH, Asfaw LM, Oluma B (2006) Northern Main Ethiopian Rift crustal structure from new high-precision gravity data. Geol Soc Lond Spec Publ 259:307–321

    Google Scholar 

  • Cox KG (1993) Continental magmatic underplating. Philos Trans R Soc 342(1663):155–166

    Google Scholar 

  • Cunha T (2008) Gravity anomalies, flexure and the thermo-mecanical evolution of the West Iberia Margin and its Conjugate of Newfoundland. PhD Thesis, University of Oxford, Wolfson College & Department of Earth Sciences, p. 344

  • Ebinger CJ, Casey M (2001) Continental breakup in magmatic provinces: an Ethiopian example. Geology 29:527–530

    Google Scholar 

  • Eldholm O, Gladczenko TP, Skogseid J, Planke S (2000) Atlantic volcanic margins: a comparative study. In: Nøttvedt A, Larsen BT, Olaussen S, Tørudbakken B, Skogseid J, Gabnelson RH, Brekke H, Birkeland O (eds) Dynamics of the Norwegian margin. Geological Society of London Special Publication 167. The Geological Society, London, pp 411–428

    Google Scholar 

  • Esedo R, van Wijk J, Coblentz D, Meyer R (2012) Uplift prior continental breakup: indication form removal of mantle lithosphere? Geosphere 8:1078–1085

    Google Scholar 

  • Fernández M, Afonso JC, Ranalli G (2010) The deep lithospheric structure of the Namibian volcanic margin. Tectonophysics 481:68–81

    Google Scholar 

  • Fowler SR, White RS, Spence GD, Westbrook GK (1989) The Hatton Bank continental margin. 2. Deep-structure from 2-ship expanding spread seismic profiles. Geophys J R Astron Soc 96:295–309

    Google Scholar 

  • Franke D (2013) Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins. Mar Pet Geol 43:43–67

    Google Scholar 

  • Franke D, Hinz K, Oncken O (2001) The Laptev Sea rift. Mar Pet Geol 18:1083–1127

    Google Scholar 

  • Franke D, Neben S, Hinz K, Meyer H, Schreckenberger B (2002) Hidrocarbon habitat of volcanic rifted passive margins. APGHedberg conference

  • Franke D, Neben S, Schreckenberger B, Schulze A, Stiller M, Krawczyk CM (2006) Crustal structure across the Colorado Basin, offshore Argentina. Geophys J Int 165:850–864

    Google Scholar 

  • Franke D, Neben S, Ladage S, Schreckenberger B, Hinz K (2007) Margin segmentation and volcano-tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic. Mar Geol 244:46–67

    Google Scholar 

  • Franke D, Ladage S, Schnabel M, Schreckenberger B, Reichert C, Hinz K, Paterlini M, de Abelleyra J, Siciliano M (2010) Birth of a volcanic margin off Argentina, South Atlantic. Geochem Geophys Geosyst 11:Q0AB04. https://doi.org/10.1029/2009GC002715

    Article  Google Scholar 

  • Ghidella ME, Schreckenberger B, Paterlini CM, Abraham DA (2006) Anomalías magnéticas en el margen argentino. Actas en CD-ROM de la XIIIa. Reunión de Tectónica (San Luis, 16–20 octubre 2006), 4 pp. ISBN 978-987-1031-49–8

  • Ghidella ME, Lawver LA, Gahagan LM (2007) Break-up of gondwana and opening of the south atlantic: review of existing plate tectonic models. U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 055. https://doi.org/10.3133/of2007-1047.srp055

  • Ghidella M, Pedraza De Marchi AC, Paterlini M, Abraham D (2017) Anomalías magnéticas en el margen argentino (MARARG), ISSN: 2007-9656-LatinMagLetters, Universidad Nacional autónoma de México. http://www.geofisica.unam.mx/LatinmagLetters/LL17-01-SP/LM17-0101SP.html

  • Gladczenko TP, Hinz K, Eldholm O, Meyer H, Neben S, Skogseid J (1997) South Atlantic volcanic margins. J Geol Soc 154:465–470

    Google Scholar 

  • Gladczenko TP, Skogseid J, Eldhom O (1998) Namibia volcanic margin. Mar Geophys Res 20:313–341

    Google Scholar 

  • Granser H (1987) Three-dimensional interpretation of gravity data from sedimentary basins using an exponential density-depth function. Geophys Prospect 35:1030–1041

    Google Scholar 

  • Götze HJ, Pail R (2017) Insights from recent gravity satellite missions in the density structure of continental margins. With focus on the passive margins of the South Atlantic. Gondwana Res. https://doi.org/10.1016/j.gr.2017.04.015

    Article  Google Scholar 

  • Hayes DE, LaBrecque JL (1991) Sediment isopachs: circum-Antarctic to 30°S. In: Hayes DE (eds) Marine geological and geophysical atlas of the circum-antarctic to 30°S. Antarctic Research Series. AGU, Washington DC, USA

  • Hinz K (1981) A hypothesis on terrestrial catastrophes: wedges of very thick oceanward dip** layers beneath passive continental margins-their origin and paleoenvironmental significance. Geologisches Jahrbuch Reihe E, 3–28

  • Hinz K, Popovici A, Ronda C, Beisner HD (1988) On a multichannel seismic reconnaissance survey of the Argentine eastern continental margin by R/V xplora. Bundesantalt fur Geowissenschaften und Rohsthoffe, Hannover, Internal Report 102.371, 66 p

  • Hinz K, Neben S, Schreckenberger B, Roeser HA, Block M, Souza KGD, Meyer H (1999) The Argentine continental margin north of 48 S: sedimentary successions, volcanic activity during breakup. Mar Pet Geol 16:1–25

    Google Scholar 

  • Hirsch KK et al (2009) Deep structure of the western South African passive margin-results of a combined approach of seismic, gravity and isostatic investigations. Tectonophysics 470:57–70. https://doi.org/10.1016/j.tecto.2008.04.028

    Article  Google Scholar 

  • Introcaso A (2003) Significativa descomposicón isostática en la Cuenca del Colorado (República Argentina). Rev Asoc Geol Arg 58(3):474–478

  • Jackson MPA, Cramez C, Fonck JM (2000) Role of subaerial volcanic rocks and mantle plumes in creation of South Atlantic margins: implications for salt tectonics and source rocks. Mar Pet Geol 17:477–498

    Google Scholar 

  • Jokat W, Boebel T, König M, Meyer U (2003) Timing and geometry of early Gondwana breakup. J Geophys Res 108(B9):2428. https://doi.org/10.1029/2002JB001802

  • Ludwig WJ, Carpenter G, Houtz RE, Lonardi AG, Ríos FF (1978) Sediment isopach map of the Argentine Continental Margin, Argentine Shelf, Argentine Basin and Falkland Plateau. American Association of Petroleum Geologists, Tulsa, Oklahoma 74101

  • McKenzie DP (1978) Some remarks on the development of sedimentary basins, Earth planet. Sci Lett 40:25–32

    Google Scholar 

  • Mckenzie D (1984) A possible mechanism for epeirogenic uplift. Nature 307:616–618

    Google Scholar 

  • Maclennan J, Lovell B (2002) Control of regional sea level by surface uplift and subsidence caused by magmatic underplating of Earth’s crust. Geology 30:675–678. https://doi.org/10.1130/00917613(2002)030%3c0675:CORSLB%3e2.0.CO;2

    Article  Google Scholar 

  • Menzies MA, Klemperer SL, Ebinger CJ, Baker J (2002) Characteristics of volcanic rifted margins. In: Menzies MA, Klemperer SL, Ebinger CJ, Baker J (eds) Volcanic rifted margins. Geological Society of America Special Paper 362, Boulder, pp 1–14

    Google Scholar 

  • Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43

    Google Scholar 

  • Neben A, Franke D, Hinz K, Schreckenberger B, Meyer H, Roeser HA (2002) Early opening of the South Atlantic: pre-rift extension and episodicity of seaward dip** reflector sequence (SDRS), emplacement on the conjugate Argentine amd Namibia continental margins. AAPG Hedberg Conference: Hydrocarbon Habitat of Volcanic Rifted Passive Margins. Stavanger, Noruega. Actas

  • Nürnberg D, Müller RD (1991) The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics 191:27–53

    Google Scholar 

  • Parker C, Paterlini M, Violante RA (1996) Compilación de datos sísmicos y determinación de isopacas en el Mar Argentino. Unpublished work, contribution to the Geological Map of the Argentine Republic

  • Pedraza De Marchi AC (2015) Caracterización isostática del sector volcánico del margen continental argentino, PhD Thesis. Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, La Plata, p 174

  • Pedraza De Marchi AC, Tocho C, Ghidella M (2012) Comparación de anomalías de gravedad derivadas de altimetría satelital con datos de gravedad marina en el margen continental argentino. Boletim de Ciencias Geodésicas 18(1):22–39

    Google Scholar 

  • Pedraza De Marchi AC, Ghidella M, Tocho C (2017) 3D process oriented gravity modelling of the Argentine continental margin. J S Am Earth Sci. https://doi.org/10.1016/j.jsames.2017.11.015

    Article  Google Scholar 

  • Pérez-Gussinyé M, Lowry MR, Watts AB (2007) Effective elastic thikness of South America and its implications for intracontinental deformation. Geochem Geophys Geosyst 8:Q05009. https://doi.org/10.1029/2006gc001511

    Article  Google Scholar 

  • Rabinowitz PD, Labrecque JL (1979) The Mesozoic South Atlantic Ocean and evolution of its continental margins. J Geophys Res 84:5973–6002

    Google Scholar 

  • Richards MA, Duncan RA, Courtillot VE (1989) Flood basalts and hot-spot tracks: plume heads and tails. Science 246:103–107

    Google Scholar 

  • Royden L, Keen CE (1980) Rifting process and thermal evolution of the continental margin of Eastern Canada determined from subsidence curves, Earth planet. Sci Lett 51:343–361

    Google Scholar 

  • Scheck-Wenderoth M, SAMPLE Group (2011) South Atlantic margin processes and links with onshore evolution. AAPG European Region Newsletter, September 2010

  • Sandwell DT, Smith WHF (1997) Marine gravity from Geosat and ERS 1 satellite altimetry. J Geophys Res 102(B5):10039–10054

    Google Scholar 

  • Sandwell DT, Smith WHF, Gille S, Steven J, Khalid S, Coakley B (2001) Bathymetry from Space: white paper in support of a higth-resolution, ocean altimeter mission, Sandwell 2001 Bathymetry FS. https://topex.ucsd.edu/

  • Schnabel M, Franke D, Engels M, Hinz K, Neben S, Damm V, Grassmann S, Pelliza H, Dos Santos PR (2008) The structure of the lower crust at the Argentine continental margin, South Atlantic at 44S. Tectonophysics 454:14–22

    Google Scholar 

  • Shuman TK (2002) The hydrocarbon potential of the deep offshore along the Argentine volcanic rifted margin. A numerical simulation. PhD Thesis, RWTH, Aarchen Univ., Aarchen Germany, p 194

  • Stewart J, Watts AB, Bagguley JG (2000) Three-dimensional subsidence analysis and gravity modelling of the continental margin offshore Namibia. Geophys J Int 141:724–746

    Google Scholar 

  • Talwani M, Abreu V (2000) Inferences regarding initiation of oceanic crust formation from the U.S. east coast margin and conjugate South Atlantic margins. In: Mohriak W, Talwani M (eds) Atlantic rifts and continental margins. American Geophysical Union, Washington, DC, pp 211–234

    Google Scholar 

  • Thybo H, Artemieva IM (2013) Moho and magmatic underplating in continental lithosphere. Tectonophysics 609:605–619

    Google Scholar 

  • Watts AB (1988) Gravity anomalies, crustal structure and flexure of the lithosphere at the Baltimore Canyon Trough. Earth Planet Sci Lett 89:221–238

    Google Scholar 

  • Watts AB (2001a) Isostasy and flexure of the lithosphere. Cambridge University Press, New York

    Google Scholar 

  • Watts AB (2001b) Gravity anomalies, flexure and crustal structure at the Mozanbique riften margin. Mar Pet Geol 18:445–455

    Google Scholar 

  • Watts AB (2018) The use of objet-oriented and processes-oriented methods for gravity anomaly modelling of sedimentary basins. Geophys J Int 215(2):1474–1482

    Google Scholar 

  • Watts AB, Fairhead JD (1999) A process-oriented approach to modeling the gravity signature of continental margins. Lead Edge 18:258–263

    Google Scholar 

  • Watts AB, Ryan WBF (1976) Flexure of the lithosphere and continental margin basins. Tectonophysics 36:25–44

    Google Scholar 

  • Watts AB, Stewart J (1998) Gravity anomalies and segmentation of the continental margin offshore West Africa, Earth planet. Sci Lett 156:239–252

    Google Scholar 

  • Watts AB, Rodger M, Peirce C, Greenroyd CJ, Hobbs RW (2009) Seismic structure, gravity anomalies, and flexure of the Amazon continental margin, NE Brazil. J Geophys Res 114:B07103. https://doi.org/10.1029/2008JB006259,1.23

    Article  Google Scholar 

  • White R, McKenzie D (1989) Magmatism at rift zones: the generation of continental margins and flood basalts. J Geophys Res 94:7685–7729

    Google Scholar 

  • Wilson JT (1963) Evidence from islands on the spreading of the ocean floor. Nature 197:536–538

    Google Scholar 

  • Wessel P, Luis JF, Uieda L, Scharroo R, Wobbe F, Smith WHF, Tian D (2019) The generic map** tools version 6. Geochem Geophys Geosyst 20(11):5556–5564. https://doi.org/10.1029/2019GC008515

    Article  Google Scholar 

  • Zambrano JJ, Urien VM (1970) Geological outline of the basins in Southern Argentina and their continuation off the Atlantic Shore. J Geophys Res 75(8):1363–1396

    Google Scholar 

Download references

Acknowledgements

We would like to give special thanks to Dr. Julian L. Gómez for his comments and the Reviewers and editor for the valuable suggestions. The global free-air anomaly and bathymetry data used in this paper are of the public domain and have been taken from ftp://topex.ucsd.edu/pub/. The map has been plotted using the Generic Map** Tools (GMT) free software (Wessel et al. 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Pedraza De Marchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedraza De Marchi, A.C., Ghidella, M.E., Tocho, C.N. et al. Flexural uplift and magmatic underplating anomaly on the Argentine continental margin: profile at 43.5°S. Mar Geophys Res 42, 16 (2021). https://doi.org/10.1007/s11001-021-09437-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11001-021-09437-x

Keywords

Navigation