Log in

Entropy generation in two-immiscible MHD flow of pulsating Casson fluid in a vertical porous space with Slip effects

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The unsteady two immiscible MHD free convective flow of Casson liquid through a vertical channel, with a porous medium, is studied numerically in this investigation. Using a double perturbation approach, the governing flow equations are reduced to a system of connected partial differential equations, which are then solved using the 4th-order numerical Runge–Kutta method coupled with the shooting approach in Mathematica. The velocity and thermal slip conditions have been accommodated in this model. The interaction of permeability of the porous medium, energy dissipation, Joule heating, and thermal radiation are taken into consideration. The computational upshot is also described explicitly to examine the consequences of pertinent parameters. The computational results are analyzed to investigate the effects associated with pertinent parameters which include the Hartmann number of two regions, Darcy number, a ratio of Porous medium permeability, Grashof number, Radiation parameter, heat source, and Prandtl number. The characteristics of the essential regulating parameters on flow frameworks of velocity, temperature, Entropy generation, Bejan number, and heat transfer rate are analyzed correctly via plots, and skin friction and flow rate are given in tabular form. As the radiation parameter rises both velocity and temperature of the Casson fluid decreases. The rate of entropy generation falls with a rise in the magnetic field. The Bejan number escalates as it moves forward from the lower wall to the channel’s center. In the later part of the channel, the Bejan number starts to drastically fall and reaches a minimum at the upper wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Abbreviations

\(x^*,y^*\) :

Cartesian coordinates (m )

xy :

Dimensionaless cartesian coordinates

\(u_1^*,u_2^*\) :

Dimensional velocity in \(x^*-direction\) and \(y^*-direction\) (\({m}{\text {s}^{-1}}\) )

b :

Fluid width parameter (m)

\(B_0\) :

Uniform Magnetic field

\(T_1^*,T_2^*\) :

Temperature of the fluids of both regions (K )

\(t*\) :

Time(s)

P :

Dimensionless pressure

\(k*\) :

Rosseland mean absorption coefficient

g :

Gravational acceleration (\(\text {m}{\text {s}^{-2}}\) )

t :

Dimensionless time

p :

Fluid pressure (\(\text {N}{\text {m}^{-2}}\) )

Fs :

Forchheimer number

h :

Distance of the channel (m)

\(q_r\) :

Radiative Heat flux (\(\text {Kg}{\text {s}^{-3}}\) )

Re :

Reynolds number

Gr :

Grashoff number

Rd :

Thermal Radiation

Da :

Darcy number (\({K}{{{L}^{-2}}}\))

Ec :

Eckert number

Pr :

Prandtl number

Cp :

Specififc heat (\(Jk{{g}^{-1}}{{K}^{-1}}\))

\(k_1,k_2\) :

Ratio of thermal conductivity of two regions (\(W{{m}^{-1}}{{K}^{-1}}\))

\(k_{\text{p}}\) :

Ratio of permeabilty of two regions (\({{m}^{2}}\))

\(K_1,K_2\) :

Are the permeabilty of two regions (\({{m}^{2}}\))

H :

Frequency parameter

\(Q_1,Q_2\) :

Heat sources of both regions

Nu :

Nusselt number

\(Eg_1,Eg_2\) :

Entropy generations of region I and II

\(M_1,M_2\) :

Hartmann numbers of two regions I and II

I :

Non Darcy parameter

\(Be_1,Be_2\) :

Bejan numbers of region I and II

\(\beta _1\) :

Ratio of viscosity of two regions

\({{\alpha }_{1}}\) :

Is the slip coefficient at the porous walls

\({{h}_{\text{f}}}\) :

Is the slip coefficient at the surface of the porous walls

\(\alpha \) :

Ratio of densities of both regions

\(\beta \) :

Casson fluid parameter.

\({{\pi }_{\text{c}}}\) :

Critical value of this product based on the non-Newtonian fluid.

\({{\mu }_{\text{B}}}\) :

Plastic dynamic viscosity of the non-Newtonian fluid

\({{P}_{\text{y}}}\) :

Yield stress of the fluid

\(\sigma *\) :

Stefan-Boltzmann constant

\(\rho _1,\rho _2\) :

Densities of two regions(\(\text {Kg}{{m}^{-3}}\) )

\(\nu \) :

Kinemetic viscosity (\({{m}^{2}}{{s}^{-1}}\) )

\(\theta _1,\theta _2\) :

Dimensionless temperatures of two regioms

\(u_{\text{t}}\) :

Unsteady velocity

\(\theta _{\text{t}}\) :

Unsteady temperatures

\(\sigma _1,\sigma _2\) :

Ratio of electrical conductivities (\(\Omega ^{-1}{{m}^{-1}}\) )

References

  1. Li B, Zheng L, Zhang X, Ma L. The multiple solutions of laminar flow in a uniformly porous channel with suction/injection. Adv Stud Theor Phys. 2008;2(10):473–8.

    Google Scholar 

  2. Ramesh K, Devakar M. Some analytical solutions for flows of Casson fluid with slip boundary conditions. Ain Shams Eng J. 2015;6(3):967–75.

    Article  Google Scholar 

  3. Merrill EW, Benis AM, Gilliland ER, Sherwood TK, Salzman EW. Pressure-flow relations of human blood in hollow fibers at low flow rates. J Appl Physiol. 1965;20(5):954–67.

    Article  CAS  PubMed  Google Scholar 

  4. Abd El-Aziz M, Yahya AS. Perturbation analysis of unsteady boundary layer slip flow and heat transfer of Casson fluid past a vertical permeable plate with Hall current. Appl Math Comput. 2017;307:146–64.

    Google Scholar 

  5. Chaudhry MH. Applied hydraulic transients, vol. 415. New York: Springer; 2014.

    Book  Google Scholar 

  6. Zamir M, Budwig RS. Physics of pulsatile flow. Appl Mech Rev. 2002;55(2):B35–B35.

    Article  Google Scholar 

  7. Bhargava R, Takhar HS, Rawat S, Beg TA, Beg OA. Finite element solutions for non-Newtonian pulsatile flow in a non-Darcian porous medium conduit. Nonlinear Anal Model Control. 2007;12(3):317–27.

    Article  CAS  Google Scholar 

  8. Bukhari Z, Ali A, Abbas Z, Farooq H. The pulsatile flow of thermally developed non-Newtonian Casson fluid in a channel with constricted walls. AIP Adv. 2021;11(2):025324.

    Article  Google Scholar 

  9. Ali A, Fatima A, Bukhari Z, Farooq H, Abbas Z. Non-Newtonian Casson pulsatile fluid flow influenced by Lorentz force in a porous channel with multiple constrictions: A numerical study. Korea-Australia Rheol J. 2021;33:79–90.

    Article  Google Scholar 

  10. Kataria HR, Patel HR. Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in porous medium. Alexandria Eng J. 2016;55(1):583–95.

    Article  Google Scholar 

  11. Rasheed HU, Islam S, Zeeshan Khan W, Khan J, Abbas T. Numerical modeling of unsteady MHD flow of Casson fluid in a vertical surface with chemical reaction and Hall current. Adv Mech Eng. 2022;14(3):16878132221085428.

    Article  Google Scholar 

  12. Raza J, Rohni AM, Omar Z, “Multiple solutions of mixed convective MHD Casson fluid flow in a channel." J Appl Math, 2016.

  13. Mehmood K, Hussain S, Sagheer M. Numerical simulation of MHD mixed convection in alumina?water nanofluid filled square porous cavity using KKL model: Effects of non-linear thermal radiation and inclined magnetic field. J Molecular Liquids. 2017;1(238):485–98.

    Article  Google Scholar 

  14. Makanda G, Shaw S, Sibanda P. Effects of radiation on MHD free convection of a Casson fluid from a horizontal circular cylinder with partial slip in non-Darcy porous medium with viscous dissipation. Boundary Value Prob. 2015;1:1–14.

    Google Scholar 

  15. Kumar CK, Srinivas S, Reddy AS. MHD pulsating flow of Casson nanofluid in a vertical porous space with thermal radiation and Joule heating. J Mech. 2020;36(4):535–49.

    Article  CAS  Google Scholar 

  16. Kumar CK, Srinivas S. Pulsating hydromagnetic flow of Casson fluid in a vertical channel filled with non? Darcian porous medium. Heat Transf. 2021;50(6):5225–39.

    Article  Google Scholar 

  17. Reddy CR, Rao CV, Surender O. Soret, Joule heating and Hall effects on free convection in a Casson fluid saturated porous medium in a vertical channel in the presence of viscous dissipation. Proc Eng. 2015;127:1219–26.

    Article  Google Scholar 

  18. Hussain S. Finite element solution for MHD flow of nanofluids with heat and mass transfer through a porous media with thermal radiation, viscous dissipation and chemical reaction effects. Adv Appl Math Mech. 2017;9(4):904–23.

    Article  Google Scholar 

  19. Das UJ, Majumdar NM, “An analytical study of magnetohydrodynamic Casson fluid flow in a channel with induced magnetic field, radiative heat flux and viscous dissipation.” Int J Ambient Energy, 2023;44:1-17.

    CAS  Google Scholar 

  20. Zubair M, Shah Z, Dawar A, Islam S, Kumam P, Khan A. Entropy generation optimization in squeezing magnetohydrodynamics flow of Casson nanofluid with viscous dissipation and joule heating effect. Entropy. 2019;21(8):747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lam PAK, Prakash KA. A numerical study on natural convection and entropy generation in a porous enclosure with heat sources. Int J Heat Mass Transf. 2014;69:390–407.

    Article  Google Scholar 

  22. Mansour MA, Siddiqa S, Gorla RSR, Rashad AM. Effects of heat source and sink on entropy generation and MHD natural convection of Al2O3-Cu/water hybrid nanofluid filled with square porous cavity. Therm Sci Eng Prog. 2018;6:57–71.

    Article  Google Scholar 

  23. Hussain S, Mehmood K, Sagheer M, Farooq A. Entropy generation analysis of mixed convective flow in an inclined channel with cavity with Al2O3-water nanofluid in porous medium. Int Commun Heat Mass Transf. 2017;89:198–210.

    Article  CAS  Google Scholar 

  24. Qawasmeh BR, Alrbai M, Al-Dahidi S. Forced convection heat transfer of Casson fluid in non-Darcy porous media. Adv Mech Eng. 2019;11(1):1687814018819906.

    Article  Google Scholar 

  25. Hussain S, Raizah Z, Aly AM. Thermal radiation impact on bioconvection flow of nano-enhanced phase change materials and oxytactic microorganisms inside a vertical wavy porous cavity. Int Commun Heat Mass Transf. 2022;1(139): 106454.

    Article  Google Scholar 

  26. Chamkha AJ. Flow of two-immiscible fluids in porous and nonporous channels. J Fluids Eng. 2000;122(1):117–24.

    Article  Google Scholar 

  27. Chamkha AJ. Non-Darcy fully developed mixed convection in a porous medium channel with heat generation/absorption and hydromagnetic effects. Numer Heat Transf Part A Appl. 1997;32(6):653–75.

    Article  Google Scholar 

  28. Abbas Z, Rafiq S, Sheikh M, Aly S. Oscillatory Darcy flow of non-Newtonian Casson fluid with temperature-dependent viscosity in a porous channel. Arabian J Sci Eng. 2020;45(9):7247–55.

    Article  CAS  Google Scholar 

  29. Krishna MM. Numerical investigation on magnetohydrodynamics flow of Casson fluid over a deformable porous layer with slip conditions. Indian J Phys. 2020;94:2023–32.

    Article  Google Scholar 

  30. Ramesh K, Riaz A, Dar ZA. Simultaneous effects of MHD and Joule heating on the fundamental flows of a Casson liquid with slip boundaries. Propul Power Res. 2021;10(2):118–29.

    Article  Google Scholar 

  31. Wahid NS, Arifin NM, Turkyilmazoglu M, Rahmin NAA, Hafidzuddin MEH. Effect of magnetohydrodynamic Casson fluid flow and heat transfer past a stretching surface in porous medium with slip condition. J Phys Conf Ser. 2019;1366(1):012028.

    Article  CAS  Google Scholar 

  32. Bejan A. A study of entropy generation in fundamental convective heat transfer. J Heat Transf. 1979;101(4):718–725.

    Article  Google Scholar 

  33. Gireesha BJ, Srinivasa CT, Shashikumar NS, Macha M, Singh JK, Mahanthesh B. Entropy generation and heat transport analysis of Casson fluid flow with viscous and Joule heating in an inclined porous microchannel. Proc Inst Mech Eng Part E J Process Mech Eng. 2019;233(5):1173–84.

    Article  CAS  Google Scholar 

  34. Shashikumar NS, Kumara BP, Gireesha BJ, Makinde OD. Thermodynamics analysis of MHD Casson fluid slip flow in a porous microchannel with thermal radiation. Diffus Foundations. 2018;16:120–39.

    Article  CAS  Google Scholar 

  35. Alzahrani AK, Sivasankaran S, Bhuvaneswari M. Numerical simulation on convection and thermal radiation of Casson fluid in an enclosure with entropy generation. Entropy. 2020;22(2):229.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Makinde OD, Eegunjobi AS. Entropy analysis of thermally radiating magnetohydrodynamic slip flow of Casson fluid in a microchannel filled with saturated porous media. J Porous Media, 2016, 19(9).

  37. Gireesha BJ, Sindhu S. Entropy generation analysis of Casson fluid flow through a vertical microchannel under combined effect of viscous dissipation, joule heating, Hall effect and thermal radiation. Multidiscip Model Mater Struct. 2020;16(4):713–30.

    Article  CAS  Google Scholar 

  38. Hussain S, Zeeshan M. Irreversibility analysis for the natural convection of Casson fluid in an inclined porous cavity under the effects of magnetic field and viscous dissipation. Int J Thermal Sci. 2022;1(179):107699.

    Article  Google Scholar 

  39. Kotha G, Chamkha AJ. Entropy generation on convectively heated surface of casson fluid with viscous dissipation. Phys Scr. 2020;95(11):115203.

    Article  CAS  Google Scholar 

  40. Venkateswarlu M, Bhaskar P. Entropy generation and Bejan number analysis of MHD Casson fluid flow in a micro-channel with Navier slip and convective boundary conditions. Int J Thermofluid Sci Tech. 2020;7(4):070403.

    Article  Google Scholar 

  41. Khan A, Shah Z, Alzahrani E, Islam S. Entropy generation and thermal analysis for rotary motion of hydromagnetic Casson nanofluid past a rotating cylinder with Joule heating effect. Int Commun Heat Mass Transf. 2020;119:104979.

    Article  CAS  Google Scholar 

  42. Mahmud S, Fraser RA. Flow, thermal, and entropy generation characteristics inside a porous channel with viscous dissipation. Int J Therm Sci. 2005;44(1):21–32.

    Article  Google Scholar 

  43. Casson, N., Flow equation for pigment-oil suspensions of the printing ink-type. Rheol Disperse Syst, 1959, 84–104.

  44. Bejan A. Second-law analysis in heat transfer and thermal design. In Advances in heat transfer, 1982, (Vol. 15, pp. 1-58). Elsevier.

  45. Butt AS, Ali A. Investigation of entropy generation efects in magnetohydrodynamic three-dimensional fow and heat transfer of viscous fuid over a stretching surface. J Braz Soc Mech Sci Eng. 2014;37(1):211.

    Article  Google Scholar 

  46. Jafari SS, Freidoonimehr N. Second law of thermodynamics analysis of hydro-magnetic nano-fuid slip fow over a stretching permeable surface. J Braz Soc Mech Sci Eng. 2015;37(4):1245.

    Article  Google Scholar 

  47. Tlau L, Ontela S. Entropy generation in MHD nanofluid flow with heat source/sink. SN Appl Sci. 2019;1(12):1672.

    Article  CAS  Google Scholar 

  48. Paoletti S, Rispoli F, Sciubba E. Calculation of exergetic losses in compact heat exchanger passages. Asme Aes. 1989;10(2):21–9.

    Google Scholar 

  49. Eegunjobi AS, Makinde OD. MHD mixed convection slip flow of radiating Casson fluid with entropy generation in a channel filled with porous media. In Defect and Diffusion Forum 2017, (Vol. 374, pp. 47-66). Trans Tech Publications Ltd.

Download references

Author information

Authors and Affiliations

Authors

Contributions

PThe writing up of the manuscript and completion of the work is by M. Padma Devi. Problem formulation and Analytical work by Prof. S. Srinivas, suggestion and verification of the results by Prof. K. Vajravelu.

Corresponding author

Correspondence to M. Padma Devi.

Ethics declarations

Conflict of interest

There is no Conflict of interest of any sort. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (docx 17 KB)

Appendix

Appendix

$$\begin{aligned}{} & {} {{p}_{1}}=M_{1}^{2}+\dfrac{1}{{{K}_{1}}}, {{p}_{2}}={{p}_{1}}+i\omega R, {{p}_{3}}=M_{2}^{2}+\dfrac{1}{{{K}_{2}}}, {{p}_{4}}=\dfrac{\beta {{\beta }_{1}}Gr}{\alpha }, {{p}_{5}}={{p}_{3}}+\dfrac{1}{{{K}_{2}}}+R\beta i\omega , {{p}_{6}}=1+\dfrac{4}{3}Rd,\\ {{p}_{7}} & ={{\phi }_{1}}+R\Pr i\omega , {{p}_{8}}={{\phi }_{2}}K+\dfrac{R\Pr i\omega \beta }{\alpha }, {{p}_{9}}=\dfrac{{{\phi }_{1}}}{{{p}_{6}}}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padma Devi, M., Srinivas, S. & Vajravelu, K. Entropy generation in two-immiscible MHD flow of pulsating Casson fluid in a vertical porous space with Slip effects. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13337-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13337-8

Keywords

Navigation