Log in

Numerical investigation on magnetohydrodynamics flow of Casson fluid over a deformable porous layer with slip conditions

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The present study makes a numerical assessment of magnetohydrodynamics stream of Casson liquid over a deformable porous layer with slip conditions. The governing ordinary differential equations are settled Runge–Kutta fourth-order method along with the shooting technique. The impact of relevant parameters on the liquid velocity, the solid displacement, the temperature and the concentration are shown graphically, while the mass stream rate is contemplated numerically shown in tabular structure. The present outcomes have been great concurrence with existing assessments under some exceptional cases. We can see that the liquid velocity and solid displacements are rotted for higher estimations of magnetic parameter and the contrary nature found for the impact of Casson parameter. The effect of slip boundary conditions on the fluid velocity, the temperature and the concentration is additionally inspected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\(\mu_{\text{a}}\) :

Apparent viscosity of the fluid in the porous material

\(K\) :

Drag coefficient

\(\mu\) :

Lame constant

\(\theta\) :

Angle of inclination

\(K_{0}\) :

Thermal conductivity

\(\upsilon\) :

Fluid velocity

\(Q_{0}\) :

Constant heat source/sink

\(\phi\) :

Volume fraction of the fluid

\(u\) :

Solid displacement

\(\rho\) :

Fluid density

\(g\) :

Gravity

\(\frac{\partial p}{\partial x}\) :

Pressure gradient

\(\sigma\) :

Electrical conductivity

\(B_{0}\) :

Strength of the magnetic field

\(U\) :

Average velocity

\(\beta\) :

Casson parameter

\(L_{1}\) :

Velocity slip parameter

\(L_{2}\), \(L_{3}\) :

Temperature and concentration slip parameters

\(D_{B}\) :

Thermodiffusion coefficient

\(T\), \(C\) :

Temperature and the concentration

\(T_{\text{w}} ,C_{\text{w}}\) :

Constant temperature and concentration at the walls

\(C_{0}\) :

Ambient concentration

\(R\) :

Chemical reaction

\(\beta\) :

Casson parameter

\(\phi\) :

Volume fraction of the fluid

\(\text{Re}\) :

Reynolds number

\({\text{Fr}}\) :

Froude number

\(\theta\) :

Angle of inclination

\(\delta\) :

Viscous drag coefficient

\(M\) :

Magnetic parameter

\(P\) :

Pressure gradient

\({\text{Br}}\) :

Brinkman number

\(\beta_{1}\) :

Constant heat source parameter

\(U_{1}\), \(U_{2}\) :

Lower and upper plate velocities

\(\gamma\) :

Chemical reaction parameter,

\(\alpha_{1} = \frac{{L_{1} }}{h}\) :

Velocity slip parameter

\(\alpha_{2} = \frac{{L_{2} }}{h}\), \(\alpha_{3} = \frac{{L_{3} }}{h}\) :

Temperature and the concentration slip parameters

References

  1. S Sreenadh, G Gopi Krishna G, A N S Srinivas and E Sudhakara J. Por Media 21 523 (2018)

    Google Scholar 

  2. S Sreenadh, G Gopi Krishna and A N S Srinivas Diff. Equ. Dyn. Syst 5 1 (2018)

    Google Scholar 

  3. S Sreenadh, K V Prasad, H Vaidya, E Sudhakara, G Gopi Krishna and M Krishna Murthy Int. J. Appl. Comput. Math 3 2125 (2017)

    Google Scholar 

  4. S Sreenadh, M M Rashidi, K Kumara Swamy Naidu and A Parandhama J. Appl. Fluid. Mech. 9 2391 (2016)

    Google Scholar 

  5. M Krishna Murthy, S Sreenadh, P Lakshmi Narayana, G Sucharitha and B Rushi Kumar J. Nanofluids 8 1267 (2019)

    Google Scholar 

  6. P Devaki, A Kavitha, D Venkateswarlu Naidu and S Sreenadh Appl. Math. Sci. Comput. (2019). https://doi.org/10.1007/978-3-030-01123-9_18

    Article  Google Scholar 

  7. P Devaki, S Sreenadh, K Vajravelu, K V Prasad and Hanumesh Vaidya Appl. Math. Nonlinear Sci. 3 277 (2019)

    Google Scholar 

  8. M Krishna Murthy Def. Diffus. Forum 392 29 (2019)

    Google Scholar 

  9. M Krishna Murthy Def. Diffus. Forum 388 77 (2018)

    Google Scholar 

  10. B Madhusudhana Rao, M Krishna Murthy, N Siva Kumar, B Rushi Kumar and C S K Raju Conf. Proc. IOP Sci. Ser. 1000 1 (2018)

    Google Scholar 

  11. M Krishna Murthy, M Eswara Rao, R L V Renuka Devi and N Mahesh Babu Int. J. Mech. Eng. Technol 9 846 (2018)

    Google Scholar 

  12. M Krishna Murthy, M Eswara Rao, R.L.V. Renuka Devi and N Mahesh Babu Int. J. Mech. Eng. Technol. 9 228 (2018)

    Google Scholar 

  13. M Krishna Murthy Middle East J. Sci. Res. 24 585 (2016)

    Google Scholar 

  14. M Eswara Rao, M Krishna Murthy, S Sreenadh and E Sudhakara Middle East J. Sci. Res. 24 603 (2016)

    Google Scholar 

  15. S Sreenadh, M Krishna Murthy, E Sudhakara, G Gopi Krishna and D Venkateswarlu Naidu Global J. Pure Appl. Math. 11 3889 (2015)

    Google Scholar 

  16. S Das, H Mondal, P K Kundu and P Sibanda Mul. Model Mate. Struct. 15 398 (2019).

    Google Scholar 

  17. I Ullah, T Abdullah Alkanhal, S Shafie, K S Nisar, I Khan and O D Makinde Symmetry 11 1 (2019)

    Google Scholar 

  18. N S Shashikumar, B C Prasannakumara, M Archana and B J Gireesha J. Nanofluid 8 63 (2019)

    Google Scholar 

  19. J Raza Propuls. Power. Res Article in Press (2019)

  20. H R Kataria and H R Patel Propuls. Power Res. 8 35 (2019)

    Google Scholar 

  21. A Rauf, Z Abbas and S A Shehzad, Appl. Math.Mech. 40 837 (2019)

    Google Scholar 

  22. M Sheikholeslami, S A Shehzad, Ahmad Shafee, F M Abbasi, R Kandaswamy, Zhixiong Lii, Rev. Mex. de Fisi. 65 365 (2019)

    Google Scholar 

  23. S A Shehzad, Rev. Mex. de Fisi. 64 628 (2018)

    Google Scholar 

  24. A J Chmka Int. J. Heat Mass Trans. 45 2509 (2002)

    Google Scholar 

  25. P Sudharsana Reddy and Ali J. Chamka, Adv. Power Technol. 27 1207 (2016)

    Google Scholar 

  26. J C Umavathi, J P Kumar, A J Chamka and I Pop Trans. Porous Media. 61 315 (2005)

    Google Scholar 

  27. A J Chamka, J. Fluid Eng. 122 117 (1999)

    Google Scholar 

  28. A J Chamka Int. J. Comput. Meth. 41 65 (2010)

    Google Scholar 

  29. A J Chamka Int. J. Heat Fluid Flow. 21 740 (2000)

    Google Scholar 

  30. A J Chamka and A Abdul-Rahim Khaled Int. J. Numer. Meth. Heat Fluid Flow. 10 94 (2000).

    Google Scholar 

  31. A J Chamka, T Grosan and I Pop, Int. Commun. Heat Mass Trans. 29 1119 (2002)

    Google Scholar 

  32. J C Umavathi, A J Chamka, A Mateen and A Al-Mudhaf Heat Mass Trans. 42 81 (2005)

    ADS  Google Scholar 

  33. J Prathap Kumar, J C Umavathi, A J Chamka and I Pop Appl. Math. Model. 34 1175 (2010)

    MathSciNet  Google Scholar 

  34. A J Chamka Mech. Res. Commun. 21 281 (1994)

    Google Scholar 

  35. A J Chamka Int. J. Comput. Meth. 32 653 (2007)

    Google Scholar 

  36. J C Umavathi, A J Chamka, A Mateen and A Al-Mudhal Nonlinear Anal. Mod. Con. 14 397 (2009)

    Google Scholar 

  37. A J Chamka Int. J. Numer. Meth. Heat Fluid Flow 11 430 (2001)

    Google Scholar 

  38. A J Chamka Int. J. Eng. Sci. 33 437 (1995)

    Google Scholar 

  39. J C Umavathi, A J Chamka and K S R Sridhar Trans. Porous Media. 85 157 (2010)

    Google Scholar 

  40. A J Chamka, T Grosan and I Pop Int. J. Fluid. Mech. Res. 30 251 (2003).

    Google Scholar 

  41. A J Chamka, Mansour and A Al-Subaie Turk J. Eng. Environ. Sci. 22 127 (2009)

    Google Scholar 

  42. A J Chamka, H S Takhar and G Nath Int. J. Eng. Sci. 37 1723 (1999)

    Google Scholar 

  43. A J Chamka and A R A Khaled Int. J. Numer. Meth. Heat Fluid Flow 10 455 (2000)

    Google Scholar 

  44. R Jain and G Jayaraman J. Biomech. Eng. 109 311 (1987)

    Google Scholar 

  45. S I Barry, K H Parker and G K Aldis J. Appl. Math. Phys. 42 633 (1991)

    Google Scholar 

  46. D A Nield, A V Kuznetsov and Ming **ong Trans. Porous Media 56 351 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Krishna Murthy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna Murthy, M. Numerical investigation on magnetohydrodynamics flow of Casson fluid over a deformable porous layer with slip conditions. Indian J Phys 94, 2023–2032 (2020). https://doi.org/10.1007/s12648-019-01668-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01668-4

Keywords

PACS Nos.

Navigation