Log in

Thermoeconomic optimization of cascade refrigeration system using computational intelligence techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study presents the thermoeconomic optimization of LiBr-H2O, LiCl-H2O, (CaCl2-LiBr-LiNO3)-H2O with R290, R123, R1234yf, and R1234ze in the compression-absorption cascade refrigeration system. The detailed thermodynamics and economic analysis have been presented. Nonlinear objective function formulated based on the concept of energy, exergy, economic, and environmental performance is minimized by using five recent computational intelligence techniques. Optimum cascade, evaporator, absorber, generator, condenser, and overlap temperatures and the effectiveness of the solution heat exchanger have been reported for the cascade refrigeration system. The effect of decision variables on the coefficient of performance, total exergy destruction, total heat exchanger area, and the total annual cost of cascade refrigeration system has also been reported within their upper and lower bounds for all absorbent-refrigerant-refrigerant combinations. Among all the studied algorithms, the coyote optimization algorithm reports the minimum total annual cost for all considered absorbent-refrigerant-refrigerant combinations. The minimum and maximum total annual costs are reported as 13,164.76 $ year−1 and 15,406.65 $ year−1 for (CaCl2-LiBr-LiNO3)-H2O-R290 and LiBr-H2O-R1234yf, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(a^{c}\) :

Capital recovery factor

\(A\) :

Heat transfer area/m2

\(b\) :

Specific exergy/kJ kg−1

\(\dot{B}\) :

Exergy flow/kW

\(\dot{B}_{{\text{D}}}\) :

Exergy destruction/kW

\(\dot{B}_{{{\text{in}}}}\) :

Input exergy/kW

\(\dot{B}_{{{\text{out}}}}\) :

Output exergy/kW

\({\text{CCU}}\) :

Cost of cold utility/$ year−1

\({\text{COP}}\) :

Coefficient of performance

\({\text{C}}_{{{\text{CO}}_{2} }}\) :

Cost charged for CO2/$ ton−1

\(C_{{{\text{el}}}}\) :

Electricity cost/$ kW−1 h−1

\(C_{{{\text{env}}}}\) :

Penalty cost/Carbon tax/$ year−1

\(C_{{{\text{exer}}}}\) :

Cost of exergy input/$ kW−1 h−1

\(C_{P}\) :

Specific heat capacity/kJ kg−1 K−1

\(C_{T}\) :

Annual cost/$ year−1

\(\dot{E}\) :

Energy/kW

H :

Specific enthalpy/kJ kg−1

\(i_{{\text{r}}}\) :

Interest rate/%

\(\dot{m}\) :

Mass flow rate/kg s−1

\(m_{{\text{f}}}\) :

Maintenance factor

\(m_{{{\text{CO}}_{2} }}\) :

Mass of CO2 emitted/kg

\(N_{{\text{y}}}\) :

Period of repayment/years

\(P\) :

Pressure/kPa, bar

\(\dot{Q}\) :

Heat load/kW

\(s\) :

Specific entropy/kJ kg−1 K−1

\({\text{top}}\) :

Period of operation/hours

T :

Temperature/°C, K

T m :

Logarithmic mean temperature difference

\(T_{{\text{C}}}\) :

Crystallization temperature/°C

\(U\) :

Overall heat transfer coefficient /kW m−2 K−1

\(\dot{W}\) :

Work/kW

\(X,w\) :

Concentration of absorbent in solution /%

\(Z\) :

Total system capital cost/$

\(Z_{{{\text{comp}}}}\) :

Compressor cost/$

\(\varepsilon\) :

Effectiveness of solution heat exchanger

\(\eta\) :

Isentropic efficiency of compressor/pump

\(\lambda\) :

Emission factor/kg kW–1 h–1

\(\rho\) :

Density/kg m−3

\(0\) :

Reference value

\({\text{abs}}\) :

Absorber

\(c\) :

Compressor

\({\text{cascade}}\,\,{\text{con}}\) :

Cascade condenser

\({\text{cond}}\) :

Condenser

\({\text{env}}\) :

Environment

\({\text{evp}}\) :

Evaporator

\({\text{gen}}\) :

Generator

\({\text{hx}}\) :

Solution heat exchanger

\({\text{isen}}\) :

Isentropic

\({\text{mix}}\) :

Mixture

\(P\) :

Pump

\(r\) :

Real

\({\text{ref}}_{1}\) :

Refrigerant in VCRC

\({\text{ref}}_{2}\) :

Refrigerant in VARC

salt:

Absorbent

\(T\) :

Total

CRS:

Cascaded refrigeration system

VARC:

Vapour absorption refrigeration cycle

VCRC:

Vapour compression refrigeration cycle

1, 2, 3:

State points

yr:

Year

References

  1. Sheikholeslami M, Farshad SA, Ebrahimpour Z, Said Z. Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: a review. J Clean Prod. 2021;293:126119. https://doi.org/10.1016/J.JCLEPRO.2021.126119.

    Article  CAS  Google Scholar 

  2. Said Z, Sundar LS, Tiwari AK, Ali HM, Sheikholeslami M, Bellos E, et al. Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Phys Rep. 2021. https://doi.org/10.1016/J.PHYSREP.2021.07.002.

    Article  Google Scholar 

  3. Bhatti MM, Michaelides EE. Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate. J Therm Anal Calorim. 2021;143:2029–38. https://doi.org/10.1007/S10973-020-09492-3.

    Article  CAS  Google Scholar 

  4. Zhang L, Bhatti MM, Michaelides EE. Thermally developed coupled stress particle-fluid motion with mass transfer and peristalsis. J Therm Anal Calorim. 2021;143:2515–24. https://doi.org/10.1007/s10973-020-09871-w.

    Article  CAS  Google Scholar 

  5. Turkyilmazoglu M. Nanoliquid film flow due to a moving substrate and heat transfer. Eur Phys J Plus. 2020;135:781. https://doi.org/10.1140/epjp/s13360-020-00812-y.

    Article  Google Scholar 

  6. Turkyilmazoglu M. Cooling of particulate solids and fluid in a moving bed heat exchanger. J Heat Transf. 2019;141:114501. https://doi.org/10.1115/1.4044590.

    Article  CAS  Google Scholar 

  7. Conor G, Fisher DH, Haider SA, Eve L, Devika S, Sara C, et al. The cooling imperative forecasting the size and source of future cooling demand. Econ Intell Unit. 2019;1–69. http://www.eiu.com/graphics/marketing/pdf/TheCoolingImperative2019.pdf

  8. Sachar S, Campbell I, Kalanki A. Solving the global cooling challenge how to counter the climate threat from room air conditioners. Rocky Mt Inst. 2018;1–50. www.rmi.org/insight/solving_the_global_cooling_challenge

  9. UNEP. Handbook for the montreal protocol on substances that deplete the ozone layer. 14th ed. Nairobi: Ozone Secr; 2020.

    Google Scholar 

  10. Polonara F, Kuijpers LJM, Peixoto RA. Potential impacts of the montreal protocol kigali amendment to the choice of refrigerant alternatives. Int J Heat Technol. 2017;35:S1-8. https://doi.org/10.18280/ijht.35Sp0101.

    Article  Google Scholar 

  11. Salmi W, Vanttola J, Elg M, Kuosa M, Lahdelma R. Using waste heat of ship as energy source for an absorption refrigeration system. Appl Therm Eng. 2017;115:501–16. https://doi.org/10.1016/J.APPLTHERMALENG.2016.12.131.

    Article  CAS  Google Scholar 

  12. Nami H, Arabkoohsar A, Anvari-Moghaddam A. Thermodynamic and sustainability analysis of a municipal waste-driven combined cooling, heating and power (CCHP) plant. Energy Convers Manag. 2019;201:112158. https://doi.org/10.1016/J.ENCONMAN.2019.112158.

    Article  Google Scholar 

  13. Bellos E, Tzivanidis C, Antonopoulos KA. Exergetic and energetic comparison of LiCl-H2O and LiBr-H2O working pairs in a solar absorption cooling system. Energy Convers Manag. 2016;123:453–61. https://doi.org/10.1016/J.ENCONMAN.2016.06.068.

    Article  CAS  Google Scholar 

  14. Li N, Luo C, Su Q. A working pair of CaCl2–LiBr–LiNO3/H2O and its application in a single-stage solar-driven absorption refrigeration cycle. Int J Refrig. 2018;86:1–13. https://doi.org/10.1016/J.IJREFRIG.2017.11.004.

    Article  Google Scholar 

  15. Tripp JT. The UNEP montreal protocol: industrialized and develo** countries sharing the responsibility for protecting the stratospheric ozone layer. NYU J Int Law Polit. 1988;20:733.

    Google Scholar 

  16. Liang Y, Shu G, Tian H, Liang X, Wei H, Liu L. Analysis of an electricity–cooling cogeneration system based on RC–ARS combined cycle aboard ship. Energy Convers Manag. 2013;76:1053–60. https://doi.org/10.1016/J.ENCONMAN.2013.08.056.

    Article  CAS  Google Scholar 

  17. Wang L, Ma A, Tan Y, Cui X, Cui H. Study on solar-assisted cascade refrigeration system. Energy Procedia. 2012;16:1503–9. https://doi.org/10.1016/j.egypro.2012.01.236.

    Article  CAS  Google Scholar 

  18. Garimella S, Brown AM, Nagavarapu AK. Waste heat driven absorption/vapor-compression cascade refrigeration system for megawatt scale, high-flux, low-temperature cooling. Int J Refrig. 2011;34:1776–85. https://doi.org/10.1016/J.IJREFRIG.2011.05.017.

    Article  CAS  Google Scholar 

  19. Kairouani L, Nehdi E. Cooling performance and energy saving of a compression–absorption refrigeration system assisted by geothermal energy. Appl Therm Eng. 2006;26:288–94. https://doi.org/10.1016/J.APPLTHERMALENG.2005.05.001.

    Article  CAS  Google Scholar 

  20. Colorado D, Velázquez VM. Exergy analysis of a compression–absorption cascade system for refrigeration. Int J Energy Res. 2013;37:1851–65. https://doi.org/10.1002/ER.3012.

    Article  Google Scholar 

  21. Cimsit C, Ozturk IT. Analysis of compression–absorption cascade refrigeration cycles. Appl Therm Eng. 2012;40:311–7. https://doi.org/10.1016/J.APPLTHERMALENG.2012.02.035.

    Article  CAS  Google Scholar 

  22. Jain V, Kachhwaha SS, Sachdeva G. Thermodynamic performance analysis of a vapor compression-absorption cascaded refrigeration system. Energy Convers Manag. 2013;75:685–700. https://doi.org/10.1016/j.enconman.2013.08.024.

    Article  CAS  Google Scholar 

  23. Lijuan H, Wang S, Suxia L, Xuan W. Numerical and experimental evaluation of the performance of a coupled vapour absorption-compression refrigeration configuration. Int J Refrig. 2019;99:429–39. https://doi.org/10.1016/J.IJREFRIG.2018.11.023.

    Article  Google Scholar 

  24. Xu Y, Jiang N, Pan F, Wang Q, Gao Z, Chen G. Comparative study on two low-grade heat driven absorption-compression refrigeration cycles based on energy, exergy, economic and environmental (4E) analyses. Energy Convers Manag. 2017;133:535–47. https://doi.org/10.1016/j.enconman.2016.10.073.

    Article  CAS  Google Scholar 

  25. Wang J, Wang B, Wu W, Li X, Shi W. Performance analysis of an absorption-compression hybrid refrigeration system recovering condensation heat for generation. Appl Therm Eng. 2016;108:54–65. https://doi.org/10.1016/J.APPLTHERMALENG.2016.07.100.

    Article  Google Scholar 

  26. Patel B, Kachhwaha SS, Modi B. Thermodynamic modelling and parametric study of a two stage compression-absorption refrigeration system for ice cream hardening plant. Energy Procedia. 2017;109:190–202. https://doi.org/10.1016/J.EGYPRO.2017.03.091.

    Article  CAS  Google Scholar 

  27. He H, Wang L, Yuan J, Wang Z, Fu W, Liang K. Performance evaluation of solar absorption-compression cascade refrigeration system with an integrated air-cooled compression cycle. Energy Convers Manag. 2019;201:112153. https://doi.org/10.1016/j.enconman.2019.112153.

    Article  Google Scholar 

  28. Jianbo L, Kai L, **aolong H, Chen Z, Fulin C, **angqiang K. A novel absorption–compression combined refrigeration cycle activated by engine waste heat. Energy Convers Manag. 2020;205:112420. https://doi.org/10.1016/j.enconman.2019.112420.

    Article  Google Scholar 

  29. Agarwal S, Arora A, Arora BB. Energy and exergy analysis of vapor compression–triple effect absorption cascade refrigeration system. Eng Sci Technol an Int J. 2020;23:625–41. https://doi.org/10.1016/J.JESTCH.2019.08.001.

    Article  Google Scholar 

  30. Chen W, Li Z, Sun Q, Zhang B. Energy and exergy analysis of proposed compression-absorption refrigeration assisted by a heat-driven turbine at low evaporating temperature. Energy Convers Manag. 2019;191:55–70. https://doi.org/10.1016/J.ENCONMAN.2019.04.024.

    Article  CAS  Google Scholar 

  31. Longo GA, Mancin S, Righetti G, Zilio C. R1234yf and R1234ze(E) as environmentally friendly replacements of R134a: Assessing flow boiling on an experimental basis. Int J Refrig. 2019;108:336–46. https://doi.org/10.1016/j.ijrefrig.2019.09.008.

    Article  CAS  Google Scholar 

  32. Goldberg DE. Genetic algorithms in search, optimization, and machine learning. Choice Rev Online. 1989;27:27-0936-27–0936. https://doi.org/10.5860/choice.27-0936.

    Article  Google Scholar 

  33. Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Int Symp Micro Mach Hum Sci. 1999. https://doi.org/10.1109/MHS.1995.494215.

    Article  Google Scholar 

  34. Rao RV, Savsani VJ, Vakharia DP. Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Des. 2011;43:303–15. https://doi.org/10.1016/J.CAD.2010.12.015.

    Article  Google Scholar 

  35. Kommadath R, Prakash K (2016) Sanitized teaching-learning based optimization. Tech Report, IIT Guwahati. 2016.

  36. Ahmadi MH, Ahmadi MA, Mehrpooya M, Hosseinzade H, Feidt M. Thermodynamic and thermo-economic analysis and optimization of performance of irreversible four-temperature-level absorption refrigeration. Energy Convers Manag. 2014;88:1051–9. https://doi.org/10.1016/J.ENCONMAN.2014.09.041.

    Article  Google Scholar 

  37. Rubio-Maya C, Pacheco-Ibarra JJ, Belman-Flores JM, Galván-González SR, Mendoza-Covarrubias C. NLP model of a LiBr–H2O absorption refrigeration system for the minimization of the annual operating cost. Appl Therm Eng. 2012;37:10–8. https://doi.org/10.1016/J.APPLTHERMALENG.2011.12.035.

    Article  CAS  Google Scholar 

  38. Rezayan O, Behbahaninia A. Thermoeconomic optimization and exergy analysis of CO2/NH3 cascade refrigeration systems. Energy. 2011;36:888–95. https://doi.org/10.1016/J.ENERGY.2010.12.022.

    Article  CAS  Google Scholar 

  39. Grosu L, Benelmir R, Feidt M. Technico-economic simulation and optimization of a compression refrigerating machine. Energy Convers Manag. 1999;40:1651–60. https://doi.org/10.1016/S0196-8904(99)00058-8.

    Article  CAS  Google Scholar 

  40. Cimsit C, Ozturk IT, Kincay O. Thermoeconomic optimization of LiBr/H2O-R134a compression-absorption cascade refrigeration cycle. Appl Therm Eng. 2015;76:105–15. https://doi.org/10.1016/J.APPLTHERMALENG.2014.10.094.

    Article  CAS  Google Scholar 

  41. Jain V, Sachdeva G, Kachhwaha SS. NLP model based thermoeconomic optimization of vapor compression-absorption cascaded refrigeration system. Energy Convers Manag. 2015;93:49–62. https://doi.org/10.1016/j.enconman.2014.12.095.

    Article  CAS  Google Scholar 

  42. Turgut MS, Turgut OE. Comparative investigation and multi objective design optimization of a cascaded vapor compression absorption refrigeration system operating with different refrigerants in the vapor compression cycle. Heat Mass Transf. 2019;55:467–88. https://doi.org/10.1007/s00231-018-2430-3.

    Article  CAS  Google Scholar 

  43. Boyaghchi FA, Mahmoodnezhad M, Sabeti V. Exergoeconomic analysis and optimization of a solar driven dual-evaporator vapor compression-absorption cascade refrigeration system using water/CuO nanofluid. J Clean Prod. 2016;139:970–85. https://doi.org/10.1016/J.JCLEPRO.2016.08.125.

    Article  CAS  Google Scholar 

  44. Jain V, Colorado D. Thermoeconomic and feasibility analysis of novel transcritical vapor compression-absorption integrated refrigeration system. Energy Convers Manag. 2020;224:113344. https://doi.org/10.1016/J.ENCONMAN.2020.113344.

    Article  CAS  Google Scholar 

  45. Li Z, Liu L, **g Y. Exergoeconomic analysis of solar absorption-subcooled compression hybrid cooling system. Energy Convers Manag. 2017;144:205–16. https://doi.org/10.1016/j.enconman.2017.04.052.

    Article  Google Scholar 

  46. **g Y, Li Z, Liu L, Lu S. Exergoeconomic assessment of solar absorption and absorption-compression hybrid refrigeration in building cooling. Entropy. 2018;20(2):130. https://doi.org/10.3390/e20020130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jain V, Sharma N, Sachdeva G, Kachhwaha SS. Performance analysis and multi-objective optimization of cooling tower assisted vapor compression-absorptioin cascaded and hybrid refrigeration systems. Int J Green Energy. 2019;16:1024–45.

    Article  CAS  Google Scholar 

  48. Salhi K, Korichi M, Ramadan KM. Thermodynamic and thermo-economic analysis of compression–absorption cascade refrigeration system using low-GWP HFO refrigerant powered by geothermal energy. Int J Refrig. 2018;94:214–29. https://doi.org/10.1016/J.IJREFRIG.2018.03.017.

    Article  CAS  Google Scholar 

  49. Dixit M, Arora A, Kaushik SC. Energy, exergy, environment and economic analyses and optimization of two-stage absorption-compression combined refrigeration system. Clean Technol Environ Policy. 2017;19:2215–29. https://doi.org/10.1007/s10098-017-1404-3.

    Article  CAS  Google Scholar 

  50. Zhao W, Wang L, Zhang Z. Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowledge-Based Syst. 2019;163:283–304. https://doi.org/10.1016/j.knosys.2018.08.030.

    Article  Google Scholar 

  51. Pierezan J, Dos Santos Coelho L (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems. In: 2018 IEEE Congr Evol Comput CEC 2018—Proc. https://doi.org/10.1109/CEC.2018.8477769

  52. Punnathanam V, Kotecha P. Yin-Yang-pair optimization: a novel lightweight optimization algorithm. Eng Appl Artif Intell. 2016;54:62–79. https://doi.org/10.1016/j.engappai.2016.04.004.

    Article  Google Scholar 

  53. Cheraghalipour A, Hajiaghaei-Keshteli M, Paydar MM. Tree growth algorithm (TGA): a novel approach for solving optimization problems. Eng Appl Artif Intell. 2018;72:393–414. https://doi.org/10.1016/j.engappai.2018.04.021.

    Article  Google Scholar 

  54. Makkitaya S, Kotecha P, R A (2019) Thermo economic optimizaion of the cascaded system; A Tech report IIT Guwahati 2019

  55. Jain V, Sachdeva G, Kachhwaha SS. Energy, exergy, economic and environmental (4E) analyses based comparative performance study and optimization of vapor compression-absorption integrated refrigeration system. Energy. 2015;91:816–32. https://doi.org/10.1016/J.ENERGY.2015.08.041.

    Article  Google Scholar 

  56. Ahmad S, Linnhoff B, Smith R. Cost optimum heat exchanger networks-2. Targets and design for detailed capital cost models. Comput Chem Eng. 1990;14:751–67. https://doi.org/10.1016/0098-1354(90)87084-3.

    Article  CAS  Google Scholar 

  57. Lansing FL (1976) Computer modeling of a single-stage lithium bromide/water absorption refrigeration unit. PL Deep Sp Netw Prog Rep, pp 247–57

  58. Kaita Y. Thermodynamic properties of lithium bromide-water solutions at high temperatures. Int J Refrig. 2001;24:374–90. https://doi.org/10.1016/S0140-7007(00)00039-6.

    Article  CAS  Google Scholar 

  59. Grover GS, Eisa MAR, Holland FA. Thermodynamic design data for absorption heat pump systems operating on water-lithium chloride—Part one. Cool Heat Recover Syst CHP. 1988;8:33–41. https://doi.org/10.1016/0890-4332(88)90039-7.

    Article  CAS  Google Scholar 

  60. Conde MR. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design. Int J Therm Sci. 2004;43:367–82. https://doi.org/10.1016/J.IJTHERMALSCI.2003.09.003.

    Article  CAS  Google Scholar 

  61. Chaudhari SK, Patil KR. Thermodynamic properties of aqueous solutions of lithium chloride. Phys Chem Liq. 2002;40:317–25. https://doi.org/10.1080/0031910021000004883.

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prakash Kotecha or R. Anandalakshmi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Thermo-physical properties of absorbent-refrigerant (VARC) working pairs (LiBr-H2O, LiCl-H2O, and (CaCl2-LiBr-LiNO3)-H2O) used in this study are calculated using the following equations.

LiBr-H2O

The concentration, enthalpy, and specific heat of LiBr solution are calculated as follows [57]:

$$X_{6} = \frac{{49.04 + 1.125\,\,T_{6} - T_{5} }}{{134.65 + 0.47\,\,T_{6} }}$$
(A.1)
$$X_{9} = \frac{{49.04 + 1.125\,\,T_{12} - T_{13} }}{{134.65 + 0.47\,\,T_{12} }}$$
(A.2)

where X6 and X9 (in %) are the concentrations of LiBr in weak solution and strong solution, respectively. Enthalpy and specific heat for the streams consisting of LiBr-H2O (streams: 6–11 in Fig. 1) are given as [58]:

$$H_{\text{i}} = \left( {a_{0} + a_{1} X_{\text{i}} } \right)\,\,T_{\text i} + \,\,0.5\left( {b_{0} + b_{1} X_{\text{i}} } \right)\,\,T_{\text{i}}^{2} + \,\,\left( {d_{0} + d_{1} X_{\text{i}} + d_{2} X_{\text{i}}^{2} + d_{3} X_{\text{i}}^{3} } \right)$$
(A.3)
$$C_{{\text p}_{\text{i}}} = a_0 + a_1 X_{\text{i}} + \left( {b_0 + b_1 X_{\text{i}} } \right)T_{\text{i}}$$
(A.4)

Constant values used in Eqs. A.3A.4 are given in Table 6.

Table 6 Constants for LiBr-H2O/ LiCl-H2O/CaCl2 –LiBr-LiNO3-H2O thermo-physical properties calculation

LiCl-H2O

The concentration and specific heat capacity of LiCl-H2O are calculated as follows [59, 60]:

$$X = \left( {A_{1} + A_{2} T_{\text{s}} } \right) + \left( {B_{1} + B_{2} T_{\text{s}} } \right) \cdot T_{\text{R}}$$
(A.5)

In Eq. (A.5), the temperature is in °C, concentration is in %, and the constant values are given in Table 6.

$$\theta_{\text{i}} = \left( {\frac{{T_{\text{i}} }}{228}} \right) - 1$$
(A.6)
$$C_{{{\text p}_{\text{i}} ,\,{\text{water}}}} = A_{1} + B_{1} \theta_{\text{i}}^{0.02} + C_{1} \theta_{\text{i}}^{0.04} + D_{1} \theta_{\text{i}}^{0.06} + E_{1} \theta_{\text{i}}^{1.8} + F_{1} \theta_{\text{i}}^{8}$$
(A.7)
$$f_{1} \left( T \right) = a_{1} \,\theta_{\text i}^{0.02} + \,\,b_{1} \,\theta_{\text i}^{0.04} + \,\,c_{1} \,\theta_{\text i}^{0.06}$$
(A.8)
$$f_{2} (\xi ) = \left\{ \begin{gathered} d_{1} X_{\text{i}} + e_{1} X_{\text{i}}^{2} + f_{1} X_{i}^{3} \,\,\,\,\,\,\,\,if\,X_{\text{i}} \le 0.31 \hfill \\ g_{1} + h_{1} X_{\text{i}} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,if\,\,X_{\text{i}} \,\, > \,\,0.31 \hfill \\ \end{gathered} \right.$$
(A.9)
$${C}_{\text{p}_{\text{i}} ,\text{LiCl} } = {C}_{{\text{p}}_{\text{i} ,{\text{water}}} } ( {1\, - \,{f}_{1} (T)\,\,{f}_{2} (\xi)\,})$$
(A.10)

where T is in K; ζ is the mass fraction of the absorbent in the solution. The parameters used in Eqs. A.7A.9 are listed in Table 7.

Table 7 Constants for LiCl-H2O specific heat capacity Eqs. (A.7-A.9) [60]

Enthalpy equation for LiCl-H2O is given by Chaudhari and Patil [61] for the concentration range of 0–50% of LiCl.

$$\begin{gathered} A = A_{1} \, + \,A_{2} \,X_{\text{i}} \, + A_{3} \,X_{\text{i}}^{2} + A_{4} \,X_{\text{i}}^{3} \, + A_{5} X_{\text{i}}^{4} \hfill \\ B = \,\,B_{1} \, + \,B_{2} \,X_{\text{i}} \, + B_{3} \,X_{\text{i}}^{2} + B_{4} \,X_{\text{i}}^{3} \, + B_{5} X_{\text{i}}^{4} \hfill \\ C = \,C_{1} \, + \,C_{2} \,X_{\text{i}} \, + C_{3} \,X_{\text{i}}^{2} + C_{4} \,X_{\text{i}}^{3} \, + C_{5} X_{\text{i}}^{4} \hfill \\ \end{gathered}$$
(A.11)
$$H_{\text{i,LiCl}} = A\, + \,B\,T_{\text{i}} \,\, + C\,T_{\text{i}}^{2}$$
(A.12)

where T is in °C and X is in %. The coefficient values of Eqs. A.11 and A.12 are given in Table 6.

CaCl2-LiBr-LiNO3/H2O

Thermo-physical property expressions for specific heat capacity, vapour pressure, specific enthalpy are obtained from the literature [14]. The equation for vapour pressure is given as

$$\log \,\,P = \sum\limits_{\text{i} = 0}^{2} {\left[ {A_{\text{i}} + {{B_{\text{i}} } \mathord{\left/ {\vphantom {{B_{\text{i}} } {\left( {T - C_{\text{i}} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {T - C_{\text{i}} } \right)}}} \right]} \left( {100w} \right)^{\text i}$$
(A.13)

The coefficient values of Eq. A.13 are given in Table 6. The specific heat capacity and enthalpy of the combination are given in Eqs. A.14 and A.15:

$$C_{\text p} = \sum\limits_{\text{i} = 0}^{2} {\left[ {\left( {A_{\text{i}} + B_{\text i} T + C_{\text{i}} T^{2} } \right)w^{\text{i}} } \right]}$$
(A.14)
$$H = \sum\limits_{\text{i} = 0}^{2} {\left[ {\left( {A_{\text{i}} + B_{\text{i}} w + C_{\text{i}} w^{2} } \right)T^{\text{i}} } \right]}$$
(A.15)

where P is in kPa, T is in °C, and w is in %. The coefficient values of Eqs. A.13A.15 are mentioned in Table 6.

See Table 6, 7 and 8

Table 8 Parameters used in the current study

See Figs. 9

Fig. 9
figure 9

Effect of operational parameters for LiCl-H2O-R290

and 10

Fig. 10
figure 10

Effect of operational parameters for CaCl2-LiBr-LiNO3-H2O-R290

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagraj, M.S., Maharana, D., Kotecha, P. et al. Thermoeconomic optimization of cascade refrigeration system using computational intelligence techniques. J Therm Anal Calorim 147, 13805–13827 (2022). https://doi.org/10.1007/s10973-022-11516-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11516-z

Keywords

Navigation