Log in

Inverse estimation of the time-dependent wall temperature in stagnation region of an annular jet on a cylinder rod using Levenberg–Marquardt method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

For the first time, a numerical solution code, based on Levenberg–Marquardt method is presented for solving non-linear problem of inverse heat transfer in axisymmetric stagnation flow im**ing on a cylinder rod to determine time-dependent wall temperature by temperature distribution at a specific point in the fluid region. Also, the effect of noisy data on the final result has been studied. For this purpose, the numerical solution of the dimensionless temperature and the convective heat transfer in a radial incompressible flow on a cylinder axis is carried out as a direct problem. In the direct problem, the free stream is steady with an initial flow strain rate of \(\overline{k}\). Using similarity variable and appropriate transformations, momentum and energy equations are converted into semi-similar equations. The new equation systems are then discretized using an implicit finite difference method and solved by applying the tridiagonal matrix algorithm (TDMA). The wall temperature is then estimated by applying the Levenberg–Marquardt parameter estimation approach. This technique is an iterative approach based on minimizing the least-square summation of the error values, the error being the difference between the estimated and measured temperatures. Results of the inverse analysis indicate that the Levenberg–Marquardt algorithm is an efficient and acceptably stable technique for estimating wall temperature in axisymmetric stagnation flow. The maximum value of the sensitivity coefficient is related to the estimation of polynomial wall temperature and its value is 0.1952 also the minimum value of the sensitivity coefficient is 8.62 × 10–6 which is related to the triangular wall temperature. The results show that the parameter estimation error in calculating the triangular and trapezoidal wall temperature is greater than the others because the maximum value of RMS error is obtained for these two cases, which are 0.451 and 0.479, respectively, the reason for the increase in error in estimating these functions is the existence of points where the first derivative of the function does not exist. This method also exhibits considerable stability for noisy input data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Abbreviations

a :

Cylinder radius (m)

C :

Known trial functions used in Levenberg–Marquardt method

C p :

Specific heat capacity (J kg1 K1)

eRMS :

Root-mean-square error

f :

Dimensionless function defining velocity field

S p :

Sum of the square error

I :

Number of measurements

J :

Sensitivity matrix

k :

Thermal conductivity (W m1 K1)

\(\overline{k}\) :

Free stream strain rate (s1)

N :

Number of unknown parameters

Nu:

Nusselt number

P :

Fluid pressure (Nm2)

p :

Dimensionless pressure

P k :

Vector of unknown parameters at current iteration

r, z :

Cylindrical coordinates (m)

Re:

Reynolds number

T :

Temperature (°C)

u :

Radial component of the velocity field (m s1)

w :

Axial component of the velocity field (m s1)

t :

Time (s)

T :

Free stream temperature (°C)

T w (t):

Time-dependent wall heat temperature (°C)

Y :

Measured transient temperature in the sensor position (°C)

\(\eta\) :

Dimensionless radius

\(\theta\) :

Dimensionless temperature

τ :

Dimensionless time

\(\mu\) :

Dynamic viscosity (N s m2)

\(\mu^{\text{k}}\) :

Dam** parameter

\(\mu\) :

Kinematic viscosity (m2 s1)

ρ :

Fluid density (kg m3)

α :

Fluid thermal diffusivity coefficient (m2 s1)

\(\sigma\) :

Standard deviation of measurement errors

\(\varepsilon_{1}\) :

Selected tolerance for stop** the minimization process

TDMA:

Tridiagonal matrix algorithm

RMS:

Root-mean-square

References

  1. Huang CH, Wang SP. A three-dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method. Int J Heat Mass Transf. 1999;42:3387–403.

    Article  CAS  Google Scholar 

  2. Shiguemori EH, Harter FP, Campos Velho HF, Dasilva JDS. Estimation of boundary conditions in conduction heat transfer by neural networks. Trends Appl Comput Math. 2002;3:189–95.

    Google Scholar 

  3. Volle F, Maillet D, Gradeck M, Kouachi A, Lebouché M. Practical application of inverse heat conduction for wall condition estimation on a rotating cylinder. Int J Heat Mass Transf. 2009;52:210–21.

    Article  CAS  Google Scholar 

  4. Haghighi MG, Eghtesad M, Malekzadeh P, Necsulescu DS. Three-dimensional inverse transient heat transfer analysis of thick functionally graded plates. Energy Convers Manag. 2009;50:450–7.

    Article  Google Scholar 

  5. Su J, Neto AJS. Two-dimensional inverse heat conduction problem of source strength estimation in cylindrical rods. Appl Math Model. 2001;25:861–72.

    Article  Google Scholar 

  6. Hsu PT. Estimating the boundary condition in a 3D inverse hyperbolic heat conduction problem. Appl Math Comput. 2006;177:453–64.

    Google Scholar 

  7. Shi J, Wang J. Inverse problem of estimating space and time dependent hot surface heat flux in transient transpiration cooling process. Int J Therm Sci. 2009;48:1398–404.

    Article  CAS  Google Scholar 

  8. Ling X, Atluri S. Stability analysis for inverse heat conduction problems. Comput Model Eng Sci. 2006;13:219–28.

    Google Scholar 

  9. Lin J, Chen S, Weng CI. Inverse estimation of transient temperature distribution in the end quenching test. J Mater Process Technol (Netherlands). 1999;86:257–63.

    Article  Google Scholar 

  10. Plotkowski A, Krane MJM. The use of inverse heat conduction models for estimation of transient surface heat flux in electroslag remelting. J Heat Transf. 2015;137:03101–9.

    Article  Google Scholar 

  11. Hsu PT, Wang SG, Li TY. An inverse problem approach for estimating the wall heat flux in filmwise condensation on a vertical surface with variable heat flux and body force convection. Appl Math Model. 2000;24:235–45.

    Article  Google Scholar 

  12. Khaniki HB, Karimian SH. Determining the heat flux absorbed by satellite surfaces with temperature data. J Mech Sci Technol. 2014;28:2393–8.

    Article  Google Scholar 

  13. Beck JV, Blackwell B, Clair CRS Jr. Inverse heat conduction: ill-posed problems. New York: Wiley; 1985.

    Google Scholar 

  14. Mohammadiun M, Rahimi AB, Khazaee I. Estimation of the time-dependent heat flux using the temperature distribution at a point by conjugate gradient method. Int J Therm Sci. 2011;50:2443–50.

    Article  Google Scholar 

  15. Mohammadiun H, Molavi H, Talesh Bahrami HR, Mohammadiun M. Real-time evaluation of severe heat load over moving interface of decomposing composites. J Heat Transf. 2012;134:111202–11.

    Article  Google Scholar 

  16. Mohammadiun M, Molavi H, Talesh Bahrami HR, Mohammadiun H. Application of sequential function specification method in heat flux monitoring of receding solid surfaces. Heat Transf Eng. 2014;35:933–41.

    Article  CAS  Google Scholar 

  17. Wu TS, Lee HL, Chang WJ, Yang YC. An inverse hyperbolic heat conduction problem in estimating pulse heat flux with a dual-phase-lag model. Int Commun Heat Mass Transf. 2015;60:1–8.

    Article  CAS  Google Scholar 

  18. Khosravifard A, Razavi A, Hematiyan M. An inverse meshfree method for heat flux identification based on strain measurement. Int J Therm Sci. 2019;144:50–66.

    Article  Google Scholar 

  19. Radfar N, Amiri H, Arabsolghar A. Application of metaheuristic algorithms for solving inverse radiative boundary design problems with discrete power levels. Int J Therm Sci. 2019;137:539–51.

    Article  Google Scholar 

  20. Hiemenz K. Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dingler’s Politech J. 1911;326:391–3.

    Google Scholar 

  21. Howarth L. The boundary layer in three dimensional flow—part II. The flow near a stagnation point. Lond Edinb Dublin Philos Mag J Sci. 1951;42:1433–40.

    Article  Google Scholar 

  22. Davey A. Boundary-layer flow at a saddle point of attachment. J Fluid Mech. 1961;10:593–610.

    Article  Google Scholar 

  23. Wang CY. Axisymmetric stagnation flow on a cylinder. Q Appl Math. 1974;32:207–13.

    Article  Google Scholar 

  24. Gorla RSR. Nonsimilar axisymmetric stagnation flow on a moving cylinder. Int J Eng Sci. 1978;16:397–400.

    Article  Google Scholar 

  25. Gorla RSR. Transient response behavior of an axisymmetric stagnation flow on a circular cylinder due to time dependent free stream velocity. Int J Eng Sci. 1978;16:493–502.

    Article  Google Scholar 

  26. Gorla RSR. Heat transfer in an axisymmetric stagnation flow on a cylinder. Appl Sci Res. 1976;32:541–53.

    Article  Google Scholar 

  27. Gorla RSR. Unsteady viscous flow in the vicinity of an axisymmetric stagnation point on a circular cylinder. Int J Eng Sci. 1979;17:87–93.

    Article  Google Scholar 

  28. Cunning GM, Davis A, Weidman P. Radial stagnation flow on a rotating circular cylinder with uniform transpiration. J Eng Math. 1998;33:113–28.

    Article  Google Scholar 

  29. Takhar H, Chamkha AJ, Nath G. Unsteady axisymmetric stagnation-point flow of a viscous fluid on a cylinder. Int J Eng Sci. 1999;37:1943–57.

    Article  Google Scholar 

  30. Rahimi AB, Saleh R. Axisymmetric stagnation-point flow and heat transfer of a viscous fluid on a rotating cylinder with time-dependent angular velocity and uniform transpiration. J Fluids Eng. 2007;129:107–15.

    Article  Google Scholar 

  31. Rahimi AB, Saleh R. Similarity solution of unaxisymmetric heat transfer in stagnation-point flow on a cylinder with simultaneous axial and rotational movements. J Heat Transf. 2008;130:054502–7.

    Article  Google Scholar 

  32. Saleh R, Rahimi AB. Axisymmetric stagnation-point flow and heat transfer of a viscous fluid on a moving cylinder with time-dependent axial velocity and uniform transpiration. J Fluids Eng. 2004;126:997–1005.

    Article  Google Scholar 

  33. Shokrgozar Abbassi A, Rahimi AB. Investigation of two-dimensional unsteady stagnation-point flow and heat transfer im**ing on an accelerated flat plate. J Heat Transf. 2012;134:064501–7.

    Article  Google Scholar 

  34. Rahimi AB, Mohammadiun H, Mohammadiun M. Axisymmetric stagnation flow and heat transfer of a compressible fluid im**ing on a cylinder moving axially. J Heat Transf. 2016;138:022201–10.

    Article  Google Scholar 

  35. Rahimi AB, Mohammadiun H, Mohammadiun M. Self-similar solution of radial stagnation point flow and heat transfer of a viscous, compressible fluid im**ing on a rotating cylinder. Iran J Sci Technol Trans Mech Eng. 2019;43:141–53.

    Article  Google Scholar 

  36. Mohammadiun H, Rahimi AB, Kianifar A. Axisymmetric stagnation-point flow and heat transfer of a viscous, compressible fluid on a cylinder with constant heat flux. Sci Iran. 2013;20:185–94.

    Google Scholar 

  37. Mohammadiun H, Rahimi AB. Stagnation-point flow and heat transfer of a viscous, compressible fluid on a cylinder. J Thermophys Heat Transf. 2012;26:494–502.

    Article  CAS  Google Scholar 

  38. Mohammadiun H, Amerian V, Mohammadiun M, Rahimi AB. Similarity solution of axisymmetric stagnation-point flow and heat transfer of a nanofluid on a stationary cylinder with constant wall temperature. Iran J Sci Technol Trans Mech Eng. 2017;41:91–5.

    Article  Google Scholar 

  39. Mohammadiun H, Amerian V, Mohammadiun M, Khazaee I, Darabi M, Zahedi M. Axisymmetric stagnation-point flow and heat transfer of nanofluid im**ing on a cylinder with constant wall heat flux. Therm Sci. 2019;23((5 part B)):3153–64.

    Article  Google Scholar 

  40. Zahmatkesh R, Mohammadiun H, Mohammadiun M, Dibaei Bonab MH. Investigation of entropy generation in nanofluid’s axisymmetric stagnation flow over a cylinder with constant wall temperature and uniform surface suction-blowing. Alex Eng J. 2019;58:1483–98.

    Article  Google Scholar 

  41. Lok Y, Merkin J, Pop I. Mixed convection flow near the axisymmetric stagnation point on a stretching or shrinking cylinder. Int J Therm Sci. 2012;59:186–94.

    Article  Google Scholar 

  42. Golafshaneh B, Rahimi AB. Effects of radiation on mixed convection stagnation-point flow of MHD third-grade nanofluid over a vertical stretching sheet. J Therm Anal Calorim. 2019;135:533–49.

    Article  Google Scholar 

  43. Ozisik MN. Inverse heat transfer: fundamentals and applications. New York: Taylor & Francis; 2000.

    Google Scholar 

  44. Beck JV, Arnold KJ. Parameter estimation in engineering and science. New York: Wiley; 1977.

    Google Scholar 

  45. Hong L, Wang CY. Annular axisymmetric stagnation flow on a moving cylinder. Int J Eng Sci. 2009;47:141–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mohammadiun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Numerical solution method

Appendix: Numerical solution method

Before solving the third-order differential Eq. (9), a change of the variable is applied as bellow:

$$ \xi = f^{\prime} \to \xi^{\prime} = f^{\prime \prime} \to \xi^{\prime \prime} = f^{\prime \prime \prime } $$

This formulation is necessary to eliminate the need for third-order difference and to obtain a tridiagonal system of linear algebraic equations at further stage of the analysis.

The first step in solving the system of non-linear ordinary differential Eqs. (9) and (12) is to convert them into a system of quasi-linear differential equations.

$$ \begin{aligned} & \frac{{\partial \xi^{({\text{k}} + 1)} }}{\partial \tau } + M_{0} \xi^{{{\prime \prime }({\text{k}} + 1)}} + M_{1} \xi^{{{\prime }({\text{k}} + 1)}} + M_{2} \xi^{({\text{k}} + 1)} + M_{3} f^{({\text{k}})} = M_{4} \\ & \frac{{\partial \theta^{({\text{k}} + 1)} }}{\partial \tau } + L_{0} \theta^{{{\prime \prime }({\text{k}} + 1)}} + L_{1} \theta^{{{\prime }({\text{k}} + 1)}} + L_{2} \theta^{({\text{k}} + 1)} + L_{3} f^{({\text{k}} + 1)} = L_{4} \\ \end{aligned} $$

where

$$ \begin{aligned} & M_{0} = - \frac{\eta }{{\text{Re}}} \\ & M_{1} = - \frac{1}{{\text{Re}}} - \frac{{f^{(k)} }}{{\text{Re}}} \\ & M_{2} = 2\xi^{(k)} \\ & M_{3} = - \frac{{\xi^{{{\prime }(k)}} }}{{\text{Re}}} \\ & M_{4} = \xi^{2(k)} - \frac{{f^{(k)} }}{{\text{Re}}}\xi^{{{\prime }(k)}} + 1 \\ & L_{0} = - \frac{\eta }{{{\text{Re}} \,\Pr }} \\ & L_{1} = - \frac{1}{{{\text{Re}} \,\Pr }} - f \\ & L_{2} = \frac{{{{{\text{d}}T_{\rm w} (\tau )} \mathord{\left/ {\vphantom {{{\text{d}}T_{\rm w} (\tau )} {{\text{d}}\tau }}} \right. \kern-\nulldelimiterspace} {{\text{d}}\tau }}}}{{T_{\rm w} (\tau ) - T_{\infty } }} \\ & L_{3} = - \theta^{{{\prime }(k)}} \\ & L_{4} = - f\theta^{{{\prime }(k)}} \\ \end{aligned} $$

where k and k + 1 are the iteration indices.

In the numerical analysis, we replace the boundary conditions \(\xi^{({\text{k}} + 1)} (\infty ,\tau ) = 1\), \(\theta^{({\text{k}} + 1)} (\infty ,\tau ) = 0\) by

$$ \xi^{({\text{k}} + 1)} (\eta_{\text{e}} ,\tau ) = 1,\;\;\theta^{({\text{k}} + 1)} (\eta_{\text{e}} ,\tau ) = 0. $$

where \(\eta_{e}\) is a sufficiently large value of \(\eta\).

Then, the problem has been written in a finite difference form. The interval \(1 \le \eta \le \eta_{{\text{e}}}\) has been divided into (N − 1) equal intervals and denotes the values of the dependent variables at \(\eta_{\rm i} = 1 + (i - 1)h\) with the subscript i (= 1, 2,...,N) where \(h = {{(\eta_{{\text{e}}} - 1)} \mathord{\left/ {\vphantom {{(\eta_{e} - 1)} {(N - 1)}}} \right. \kern-\nulldelimiterspace} {(N - 1)}}\). Substituting, as usual, the expressions

$$ \begin{gathered} \xi^{{\prime \prime }} = \frac{{\xi_{{\rm i} + 1} - 2\xi_{\rm i} + \xi_{{\rm i} - 1} }}{{h^{2} }},\quad \xi^{{\prime }} = \frac{{\xi_{{\text{i}} + 1} - \xi {}_{{\text{i}} - 1}}}{2h}, \hfill \\ \theta^{{\prime \prime }} = \frac{{\theta_{{\rm i} + 1} - 2\theta_{\rm i} + \theta_{{\text{i}} - 1} }}{{h^{2} }},\quad \theta^{{\prime }} = \frac{{\theta_{{\text{i}} + 1} - \theta {}_{{\text{i}} - 1}}}{2h} \hfill \\ \frac{{\partial \xi_{\rm i} }}{\partial \tau } = \frac{{\xi_{\rm i} - \xi_{\rm i}^{{{\text{old}}}} }}{\Delta \tau },\quad \frac{{\partial \theta_{\rm i} }}{\partial \tau } = \frac{{\theta_{\rm i} - \theta_{\rm i}^{{{\text{old}}}} }}{\Delta \tau } \hfill \\ \end{gathered} $$

In to equations and using the boundary conditions, at every time step, we obtain a system of linear algebraic equations in a tridiagonal form:

$$ \begin{aligned} & A_{2,2} \xi_{2}^{({\text{k}} + 1)} + A_{2,3} \xi_{3}^{({\text{k}} + 1)} = C_{2} - A_{2,1} \\ & A_{{\text i},{\text i} - 1} \xi_{{\text i} - 1}^{({\text{k}} + 1)} + A_{{\rm i},{\rm i}} \xi_{\rm i}^{({\text{k}} + 1)} + A_{{\rm i},{\rm i} + 1} \xi_{{\rm i} + 1}^{({\text{k}} + 1)} = C_{\rm i} \quad (i = 3,4, \ldots ,{\text{N}} - 2) \\ & A_{{\text{N}} - 1,{\text{N}} - 2} \xi_{{\text{N}} - 2}^{({\text{k}} + 1)} + A_{{\text{N}} - 1,{\text{N}} - 1} \xi_{{\text{N}} - 1}^{({\text{k}} + 1)} = C_{{\text{N}} - 1} - A_{{\text{N}} - 1,{\text{N}}} \\ & A_{2,2}^{{\prime }} \theta_{2}^{({\text{k}} + 1)} + A_{2,3}^{{\prime }} \theta_{3}^{({\text{k}} + 1)} = C_{2}^{{\prime }} - A_{2,1}^{{\prime }} \\ & A^{\prime}_{{\text{i}},{\text{i}} - 1} \theta_{{\text{i}} - 1}^{({\text{k}} + 1)} + A_{{\text{i}},{\text{i}}}^{{\prime }} \theta_{\rm i}^{({\text{k}} + 1)} + A_{{\text{i}},{\text{i}} + 1}^{{\prime }} \theta_{{\text{i}} + 1}^{({\text{k}} + 1)} = C_{\rm i}^{{\prime }} \quad ({\text{i}} = 3,4, \ldots ,{\text{N}} - 2) \\ & A_{{\text{N}} - 1,{\text{N}} - 2}^{{\prime }} \theta_{{\text{N}} - 2}^{({\text{k}} + 1)} + A_{{\text{N}} - 1,{\text{N}} - 1}^{{\prime }} \theta_{{\text{N}} - 1}^{({\text{k}} + 1)} = C_{{\text{N}} - 1}^{{\prime }} - A_{{\text{N}} - 1,{\text{N}}}^{{\prime }} \\ \end{aligned} $$

where

$$ \begin{aligned} & A_{{\text{i}},{\text{i}} - 1} = \frac{{M_{0} }}{{h^{2} }} - \frac{{M_{1} }}{2h} \\ & A_{{\text{i}},{\text{i}}} = \frac{1}{\Delta \tau } - \frac{{2M_{0} }}{{h^{2} }} + M_{2} \\ & A_{{\text{i}},{\text{i}} + 1} = \frac{{M_{0} }}{{h^{2} }} + \frac{{M_{1} }}{2h} \\ & C_{\rm i} = M_{4} + \frac{{\xi_{\rm i}^{{({\text{old}})}} }}{\Delta \tau } - M_{3} f_{\rm i}^{(k)} \\ & A_{{\text{i}},{\text{i}} - 1}^{{\prime }} = \frac{{L_{0} }}{{h^{2} }} - \frac{{L_{1} }}{2h} \\ & A_{{\text{i}},{\text{i}}}^{{\prime }} = \frac{1}{\Delta \tau } - \frac{{2L_{0} }}{{h^{2} }} + L_{2} \\ & A_{{\text{i}},{\text{i}} + 1}^{{\prime }} = \frac{{L_{0} }}{{h^{2} }} + \frac{{L_{1} }}{2h} \\ & C_{\rm i}^{{\prime }} = L_{4} + \frac{{\theta_{\rm i}^{{({\text{old}})}} }}{\Delta \tau } - L_{3} f_{\rm i} \\ \end{aligned} $$

In the above relations, the superscript (old) represents the calculated value of \(\xi\) and \(\theta\) in the previous time step.

These systems are composed of (N-2) equations for (N-2) unknowns \(\xi_{\rm i}^{({\text{k}} + 1)} ,\theta_{\rm i}^{({\text{k}} + 1)}\). It can be solved quite easily by usual swee** method. Once all of \(\xi_{\rm i}^{({\text{k}} + 1)}\) are determined, \(f_{\rm i}^{({\text{k}} + 1)}\) is obtained from \(\xi = f^{\prime}\), namely:

$$ f_{\rm i}^{({\text{k}} + 1)} = \int\limits_{1}^{{\eta_{\rm i} }} {\xi_{\rm i}^{({\text{k}} + 1)} {\text{d}}\eta } $$

executing a numerical integration. The values of \(\xi_{\rm i}^{({\text{k}} + 1)}\) and \(f_{\rm i}^{({\text{k}} + 1)}\) obtained here are used to replace \(\xi_{\rm i}^{({\text{k}})}\) and \(f_{\rm i}^{(k)}\) for the next cycle. The convergence is considered achieved if \(\left| {\xi_{\rm i}^{(k + 1)} - \xi_{\rm i}^{(k)} } \right| \le \varepsilon\) and \(\left| {\theta_{\rm i}^{(k + 1)} - \theta_{\rm i}^{(k)} } \right| \le \varepsilon\) for all points, where \(\varepsilon\) is a prescribed accuracy criterion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montazeri, M., Mohammadiun, H., Mohammadiun, M. et al. Inverse estimation of the time-dependent wall temperature in stagnation region of an annular jet on a cylinder rod using Levenberg–Marquardt method. J Therm Anal Calorim 147, 2729–2747 (2022). https://doi.org/10.1007/s10973-021-10570-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10570-3

Keywords

Navigation