Log in

Glass transition and crystallization study of chalcogenide Se70Te15In15 glass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry data at different heating rates (5, 10, 15 and 20 °C min−1) of Se70Te15In15 chalcogenide glass is reported and discussed. The crystallization mechanism is explained in terms of recent analyses developed for use under non-isothermal conditions. The value of Avrami exponent (n) indicates that the glassy Se70Te15In15 alloy has three-dimensional growth. The average values of the activation energy for glass transition, E g, and crystallization process, E c, are (154.16 ± 4.1) kJ mol−1 and (98.81 ± 18.1) kJ mol−1, respectively. The ease of glass formation has also been studied. The reduced glass transition temperature (T rg), Hruby’ parameter (K gl) and fragility index (F i) indicate that the prepared glass is obtained from a strong glass forming liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Srivastava S, Zulfequar M, Agrahari SK, Kumar A. Kinetics of crystallization in glassy Se70Te30−x Zn x using DSC technique. Physica B. 2008;403:3429–33.

    Article  CAS  Google Scholar 

  2. Afify N, Hussein MA, El-Kabany N, Fathy N. Structural transformation on Se0.8Te0.2 chalcogenide glass. J Non-Cryst Solids. 2008;354:3260–6.

    Article  CAS  Google Scholar 

  3. Tripathi SK, Gupta S, Mustafa FI, Goyal N, Saini GSS. Laser induced changes on a-Ga50Se50 thin films. J Phys D. 2009;42:185404.

    Article  Google Scholar 

  4. Tripathi SK. Temperature-dependent barrier height in CdSe Schottky diode. J Mater Sci. 2010;45:5468–71.

    Article  CAS  Google Scholar 

  5. Kumar A, Misra R, Tripathi SK. Effect of partial crystallisation on the photoconductive behaviour of amorphous thin films of Se75Te25. Semicond Sci Technol. 1989;4:1151–5.

    Article  CAS  Google Scholar 

  6. Mehra RM, Gurinder AG, Mathur PC. Effect of In impurity on crystallization kinetics of (Se.7Te.3)100−x In x system. J Therm Anal. 1995;45:405–15.

    Article  CAS  Google Scholar 

  7. Imran MMA, Bhandari D, Saxena NS. Glass transition phenomena, crystallization kinetics and thermodynamic properties of ternary Se80Te20−x In x (x = 2, 4, 6, 8 and 10) semiconducting glasses: theoretical and experimental aspects. Mater Sci Eng A. 2000;292:56–65.

    Article  Google Scholar 

  8. Abd Elnaeim AM, Aly KA, Afify N, Abousehlly AM. Glass transition and crystallization kinetics of In x (Se0.75Te0.25)100−x chalcogenide glasses. J Alloys Compd. 2010;194:85–91.

    Article  Google Scholar 

  9. Patial BS, Thakur N, Tripathi SK. On the crystallization kinetics of In additive Se–Te chalcogenide glasses. Thermochim Acta. 2011;513:1–8.

    Article  CAS  Google Scholar 

  10. Shaaban ER, Kansal I, Shapaan M, Ferreira JMF. Thermal stability and crystallization kinetics of ternary Se–Te–Sb semiconducting glassy alloys. J Therm Anal Calorim. 2009;98:347–54.

    Article  CAS  Google Scholar 

  11. Sharma A, Barman PB. Effect of Bi incorporation on the glass transition kinetics of Se85Te15 glassy alloy. J Therm Anal Calorim. 2009;96:413–7.

    Article  CAS  Google Scholar 

  12. Kumar S, Singh K, Mehta N. Calorimetric studies of the glass transition phenomenon in glassy Se75Te15−x Cd10In x . Phys Scr. 2010;82:045601.

    Article  Google Scholar 

  13. Moharram AH, El-Oyoun MA, Abu-Sehly AA. Calorimetric study of the chalcogenide Se72.5Te20Sb7.5 glass. J Phys D. 2001;34:2541–6.

    Article  CAS  Google Scholar 

  14. Abu-Sehly AA, Alamri SN, Joraid AA. Measurements of DSC isothermal crystallization kinetics in amorphous selenium bulk samples. J Alloys Compd. 2009;476:348–51.

    Article  CAS  Google Scholar 

  15. Mehta N, Kumar A. A study of thermal crystallization in glassy Se80Te20 and Se80In20 using DSC technique. J Therm Anal Calorim. 2006;83:401–5.

    Article  CAS  Google Scholar 

  16. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    CAS  Google Scholar 

  17. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  18. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogrneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–92.

    Article  CAS  Google Scholar 

  19. Matusita K, Komatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci. 1984;19:291–6.

    Article  CAS  Google Scholar 

  20. Gao YQ, Wang W. On the activation energy of crystallization in metallic glasses. J Non-Cryst Solids. 1986;81:129–34.

    Article  CAS  Google Scholar 

  21. Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Eng. 1939;135:416–58.

    Google Scholar 

  22. Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  23. Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  24. Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  25. Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater Sci Eng. 1976;23:173–7.

    Article  CAS  Google Scholar 

  26. Moynihan CT, Easteal AJ, Wilder J, Tucker J. Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem. 1974;78:2673–7.

    Article  CAS  Google Scholar 

  27. Kasap SO, Juhasz C. Kinematical transformations in amorphous selenium alloys used in xerography. J Mater Sci. 1986;21:1329–40.

    Article  CAS  Google Scholar 

  28. Larmagnac JP, Grenet J, Michon P. Glass transition temperature dependence on heating rate and on ageing for amorphous selenium films. J Non-Cryst Solids. 1981;45:157–68.

    Article  CAS  Google Scholar 

  29. Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As-Sb-Se glasses. J Non-Cryst Solids. 1986;88:11–34.

    Article  CAS  Google Scholar 

  30. Pratap A, Raval KG, Gupta A, Kulkarni SK. Nucleation and growth of a multicomponent metallic glass. Bull Mater Sci. 2000;23:185–8.

    Article  CAS  Google Scholar 

  31. Jain R, Bhandari D, Saxena NS, Sharma SK, Tripathi A. Effect of high-energy heavy ion irradiation on the crystallization kinetics of Co-based metallic glasses. Bull Mater Sci. 2001;24:27–33.

    Article  CAS  Google Scholar 

  32. Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43:219–56.

    Article  CAS  Google Scholar 

  33. Hruby A. Evaluation of glass-forming tendency by means of DTA. Czechoslov J Phys B. 1972;22:1187–93.

    Article  CAS  Google Scholar 

  34. Mehta N, Tiwari RS, Kumar A. Glass forming ability and thermal stability of some Se-Sb glassy alloys. Mater Res Bull. 2006;41:1664–72.

    Article  CAS  Google Scholar 

  35. Saffarini G, Saiter A, Garda MR, Saiter JM. Mean-coordination number dependence of the fragility in Ge-Se-In glass forming liquids. Physica B. 2007;389:275–80.

    Article  CAS  Google Scholar 

  36. Viglis TA. Strong and fragile glasses: a powerful classification and its consequences. Phys Rev B. 1993;47:2882–5.

    Article  Google Scholar 

Download references

Acknowledgements

This study is financially supported by UGC (Major Research Project), New Delhi for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, S.K., Patial, B.S. & Thakur, N. Glass transition and crystallization study of chalcogenide Se70Te15In15 glass. J Therm Anal Calorim 107, 31–38 (2012). https://doi.org/10.1007/s10973-011-1724-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1724-1

Keywords

Navigation