Log in

Glass forming ability and thermal stability parameters of Se85Te15-x Sbx chalcogenide glasses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Various glass stability criteria have been presented in this work using three ternary alloys of Se85Te15-xSbx (x = 2,4&6 at. %) glassy system. These criteria can be obtained by using the interrelationship ship between the typical temperatures. For this, differential scanning caliometry measurements in non-isothermal settings can be used. The KGL criterion was shown to be ineffective in discussing glass stability (GS) for the compositions studied due to its dependence on heating rate and composition. The data from various GS criteria and their relative change parameters suggest that Yuan et al.'s criterion KYL is the best and has the best ability to apprise the GS. By increasing Sb content, all criteria indicate that thermal stability improves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdel-Rahim MA, Hafiz MM, Shamekh AM. A study of crystallization kinetics of some Ge–Se–In glasses. Phys B. 2019;369:143.

    Article  Google Scholar 

  2. Abdel-Rahem MA. A study of the crystallization kinetics of some Se-Te-Sbglasses. J Non-Cryst Solid. 1998;241:121.

    Article  Google Scholar 

  3. Saiter JM, Ledru J, Saffarini G, Benazeth SA. Bout the coordination number of indium in Ge x Se 1– xy In y glasses. Mater Lett. 1996;28:451.

    Article  CAS  Google Scholar 

  4. Saffarini G, Saiter A, Garda MR. Mean-coordination number dependence of the fragility in Ge–Se–In glass-forming liquids. Phys B. 2007;389:275.

    Article  CAS  Google Scholar 

  5. Saffarini G. The effect of compositional variations on the glass-transition and crystallisation temperatures in Ge-Se-In glasses. Appl Phys A. 2002;74:283.

    Article  CAS  Google Scholar 

  6. Kotkata MF, Mansour SA. Crystallization process analysis for Se 0.95 In 0.05 and Se 0.90 In 0.10 chalcogenide glasses using the contemporary isoconversional models. J Therm Anal Calorim. 2011;103(3):957.

    Article  CAS  Google Scholar 

  7. Giridhar A, Mahadevan S. The Tg versus Z dependence of glasses of the Ge-In-Se system. J Non Cryst Solid. 1992;151:245.

    Article  CAS  Google Scholar 

  8. Sharma I, Tripathi SK, Barman PB. Compositional dependence of the physical properties in a-Ge–Se–In glassy semiconductor. Phys B. 2008;403:624.

    Article  CAS  Google Scholar 

  9. Sharma I, Tripathi SK, Monga A. Electrical properties of a-Ge-Se-In thin films. J Non Cryst Sol. 2008;354:3215.

    Article  CAS  Google Scholar 

  10. Abdel-Rahim MA, Hafiz MM, El-Nahass MM, Abdel-Rahim MA, Hafiz MM, El-Nahass MM, et al. Influence of composition on optical and electrical properties of Ge–se–in thin films. Phys B. 2007;387:383.

    Article  CAS  Google Scholar 

  11. Saffarini G, Saiter JM. Composition dependence of the heat capacity jump in Ge-Se-In chalcogenide glasses. J Mater Sci. 2004;39:6141.

    Article  CAS  Google Scholar 

  12. Todorov R, Černoškova E, Knotek P. Temperature dependence of the optical properties of thin Ge-Se-In films. J Non Cryst Sol. 2018;498:415.

    Article  CAS  Google Scholar 

  13. Abbady Gh, Abd-Elnaiem AM. Thermal stability and crystallization kinetics of Ge13In8Se79 chalcogenide glass.phase transition. Ph Trans. 2019;92:667–82.

    Article  CAS  Google Scholar 

  14. Bhargava A, Kalla J. DTA and thermal stability study of Se–Te–Sn glass. Int J Mater Sci Eng. 2016;4:126.

    Google Scholar 

  15. Mehta N, Agarwal P, Kumar A. Calorimetric studies on Se0.68Ge0.22M0.10(M = Cd, In, Pb) chalcogenide glasses. Turk J Phys. 2005;29:193.

    CAS  Google Scholar 

  16. Rodríguez-Tinoco C, Ràfols-Ribé J, González-Silveira M, Rodríguez-Viejo J. Relaxation dynamics of glasses along a wide stability and temperature range. Sci Rep. 2016;6:35607.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu AYH, Rottler J. Aging under stress in polymer glasses. Soft Matter. 2010;6:4858.

    Article  CAS  Google Scholar 

  18. Rodney D. Priestley, Physical aging of confined glasses. Soft Matter. 2009 5: 919

  19. Lubchenko V, Wolynes PG. Theory of Structural Glasses and Supercooled Liquids. Annu Rev Phys Chem. 2007;58:235.

    Article  CAS  PubMed  Google Scholar 

  20. Lubchenko V, Wolynes PG. Aging, Jamming, and the Limits of Stability of Amorphous Solids. J Phys Chem B. 2018;12:3280.

    Article  Google Scholar 

  21. Kumar A, Mehta N, Singh K. Effect of indium additive on glass-forming ability and thermal stability of Se–Zn–Te chalcogenide glasses. Philos Mag Lett. 2010;90:201.

    Article  Google Scholar 

  22. Fadel M, Hegab NA, Yahia IS, Salem AM, Farid AS. Electrical and switching properties of Se85Te15−xSbx (0≤x≤6 at.wt%) thin films. J Alloy Comp. 2011;509:7663.

    Article  CAS  Google Scholar 

  23. Yahia IS, Shakra AM, Fadel M, Hegab NA, Salem AM, Farid AS. Kinetics of non isothermal crystallization of ternary Se85Te15−xSbx glassy alloys. Chalcogenide Lett. 2011;8:453.

    CAS  Google Scholar 

  24. Philips JC, Thorp MF. Constraint theory, vector percolation and glass formation. Sol State Comm. 1985;53:699.

    Article  Google Scholar 

  25. Farid AS, Hegab NA. Physical, optical and dielectric properties of Se85Te10X5 (X=Sn, In)films. Optik - Int J Light Electron Opt. 2019;195:163138.

    Article  CAS  Google Scholar 

  26. Zhenhua L. Chemical bond approach to the chalcogenide glass forming tendency. J Non-Cryst Solids. 1991;127:298.

    Article  Google Scholar 

  27. Fouad SS, Atyia HE. Investigation of AC conductivity, dielectric and thermodynamics properties of Se Te Pb glassy system. J Alloy Compd. 2016;688:1206.

    Article  CAS  Google Scholar 

  28. Thorpe MF. Continuous deformations in random networks. J Non-Cryst Sol. 1983;355:70.

    Google Scholar 

  29. Naumis GG. Contribution of floppy modes to the heat capacity jump and fragility in chalcogenide glasses. Phys Rev. 2000;61:R9205.

    Article  CAS  Google Scholar 

  30. Mehta N, Tiwari RS, Kumar A. Glass forming ability and thermal stability of some Se–Sb glassy alloys. Mater Res Bull. 2006;41:1664.

    Article  CAS  Google Scholar 

  31. Farid AS, Atyia HE. Glass transition and crystallization study of Te additive Se-Bi chalcogenide glass. J Non-Cryst Sol. 2015;408:123.

    Article  CAS  Google Scholar 

  32. Saad M, Poulain M. Stabilizing Effect of Indium in Divalent Fluoride Glasses Mater. Sci Forum. 1987;19:11.

    Article  Google Scholar 

  33. Hruby A. Evaluation of glass-forming tendency by means of DTA. Czech J Phys B. 1972;22:1187.

    Article  CAS  Google Scholar 

  34. Lu ZP, Liu CT. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 2002;50:3501.

    Article  CAS  Google Scholar 

  35. Du XH, Huang JC, Liu CT, Lu ZP. New criterion of glass forming ability for bulk metallic glasses. J Appl Phys. 2007;101:86108.

    Article  Google Scholar 

  36. Chen Q, Shen J, Zhang D, Fan H, Sun J, Mc Cartney DG. A new criterion for evaluating the glass-forming ability of bulk metallic glasses. Mater Sci Eng. 2006;433:155.

    Article  Google Scholar 

  37. Yuan Z, Bao S, Lu Y, Zhang D, Yao L. A new criterion for evaluating the glass-forming ability of bulk glass forming alloys. J Alloy Compd. 2008;459:251.

    Article  CAS  Google Scholar 

  38. Long Z, **e G, Wei H, Su X, Peng J, Zhang P, Inoue A. On the new criterion to assess the glass-forming ability of metallic alloys. Mater Sci Eng A. 2009;509:23.

    Article  Google Scholar 

  39. Zhang P, Wei H, Wei X, Long Z, Su X. Evaluation of glass-forming ability for bulk metallic glasses based on characteristic temperatures. J Non-Cryst Sol. 2009;355:2183.

    Article  CAS  Google Scholar 

  40. Atyia HE, Farid AS. Investigation and evaluation of the glass stability criteria for Se60Ge15X25 (X = Sn, As) compositions. J Therm Anal Calorim. 2017;128:1793.

    Article  CAS  Google Scholar 

  41. Abd-Elrahman MI, Hafiz MM, Abdelraheem AM, Abu-Sehly A. Effect of Sn additive on the structure and crystallization kinetics in Ge–Se alloy. J Alloy Compd. 2016;675:1.

    Article  CAS  Google Scholar 

  42. Svoboda R, Malek J. Evaluation of glass-stability criteria for chalcogenide glasses: Effect of experimental conditions. J Non- Cryst Sol. 2015;413:39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Farid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farid, A.S. Glass forming ability and thermal stability parameters of Se85Te15-x Sbx chalcogenide glasses. J Therm Anal Calorim 148, 3179–3187 (2023). https://doi.org/10.1007/s10973-022-11930-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11930-3

Keywords

Navigation