Log in

Improvement of physical properties of poly(glycerol sebacate) by copolymerization with polyhydroxybutyrate-diols

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The characterizations and physical properties of elastomeric poly(glycerol sebacate) (PGS) copolymerized with different amounts of polyhydroxybutyrate diol (PHB-diol) were analyzed with 1H-NMR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), mechanical test, biodegradation test, and cytotoxicity analysis. The chemical composition of the PHB-diol prepared and the copolymerization reaction of the PHB-diol in the PGS were confirmed by 1H-NMR. From 1H-NMR analysis, the PHB-diol prepared had the molecular weight about 989.6 g/mol and a faster crystallization rate than the PHB according to the DSC measurement. The tensile/compressive strengths of PGS-co-(PHB-diol) increased while the crosslinking densities decreased with the amount of PHB-diol copolymerized. The PGS-co-(PHB-diol) had a slower biodegradation rate but a worse thermal stability than the PGS. Additionally, the biodegradable PGS-co-(PHB-diol) elastomers prepared exhibited no cytotoxicity and could replace PGS used in bio-fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Patel A, Gaharwar AK, Iviglia G, Zhang H, Mukundan S, Mihaila SM, Khademhosseini A (2013). Biomaterials 34(16):3970–3983

    Article  CAS  Google Scholar 

  2. Rai R, Tallawi M, Grigore A, Boccaccini AR (2012). Prog Polym Sci 37(8):1051–1078

    Article  CAS  Google Scholar 

  3. Loh XJ, Karim AA, Owh C (2015). J Mater Chem B 3(39):7641–7652

    Article  CAS  Google Scholar 

  4. Chen Q, Liang S, Thouas GA (2011). Soft Matter 7(14):6484–6492

    Article  CAS  Google Scholar 

  5. Zhao X, Wu Y, Du Y, Chen X, Lei B, Xue Y, Ma PX (2015). J Mater Chem B 3(16):3222–3233

    Article  CAS  Google Scholar 

  6. Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Sridhar R, Ramakrishna S (2012). Nanotechnology 23(38):385102

    Article  Google Scholar 

  7. Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S (2013) World J. Cardiology 5(3):28–41

    Google Scholar 

  8. Aydin HM, Salimi K, Rzayev ZMO, Pişkin E (2013). Biomater Sci 1(5):503–509

    Article  CAS  Google Scholar 

  9. Qazi TH, Rai R, Dippold D, Roether JE, Schubert DW, Rosellini E, Boccaccini AR (2014). Acta Biomater 10(6):2434–2445

    Article  CAS  Google Scholar 

  10. Pritchard CD, Arnér KM, Langer RS, Ghosh FK (2010). Biomaterials 31(31):7978–7984

    Article  CAS  Google Scholar 

  11. Jeong CG, Hollister SJ (2010). Biomaterials 31(15):4304–4312

    Article  CAS  Google Scholar 

  12. Sun ZJ, Chen C, Sun MZ, Ai CH, Lu XL, Zheng YF, Dong DL (2009). Biomaterials 30(28):5209–5214

    Article  CAS  Google Scholar 

  13. Chen QZ, Bismarck A, Hansen U, Junaid S, Tran MQ, Harding SE, Boccaccini AR (2008). Biomaterials 29(1):47–57

    Article  Google Scholar 

  14. Maliger R, Halley PJ, Cooper-White JJ (2013). J Appl Polym Sci 127(5):3980–3986

    Article  CAS  Google Scholar 

  15. Salehi S, Fathi M, Javanmard SH, Barneh F, Moshayedi M (2015). Adv Biome Res 4:9

    Article  Google Scholar 

  16. Sun ZJ, Wu L, Huang W, Chen C, Chen Y, Lu XL, Dong DL (2010). J Biomed Mater Res Part A 92(1):332–339

    Article  Google Scholar 

  17. Liu Q, Tian M, Shi R, Zhang L, Chen D, Tian W (2007). J Appl Polym Sci 104(2):1131–1137

    Article  CAS  Google Scholar 

  18. Sun ZJ, Wu L, Huang W, Zhang XL, Lu XL, Zheng YF, Dong DL (2009). Mater Sci Eng C 29(1):178–182

    Article  CAS  Google Scholar 

  19. Sun ZJ, Sun B, Tao RB, **e X, Lu XL, Dong DL (2013). J Biomed Mater Res Part A 101(1):253–260

    Article  Google Scholar 

  20. Chen QZ, Liang SL, Wang J, Simon GP (2011). J Mech Behav Biomed Mater 4(8):1805–1818

    Article  CAS  Google Scholar 

  21. Wu T, Frydrych M, O’Kelly K, Chen B (2014). Biomacromolecules 15(7):2663–2671

    Article  CAS  Google Scholar 

  22. Li X, Hong ATL, Naskar N, Chung HJ (2015). Biomacromolecules 16(5):1525–1533

    Article  CAS  Google Scholar 

  23. Zhou L, He H, Jiang C, He S (2015). J Appl Polym Sci 132(27):42196

    Article  Google Scholar 

  24. Gaharwar AK, Patel A, Dolatshahi-Pirouz A, Zhang H, Rangarajan K, Iviglia G, Khademhosseini A (2015). Biomater Sci 3(1):46–58

    Article  CAS  Google Scholar 

  25. Nijst CLE, Bruggeman JP, Karp JM, Ferreira L, Zumbuehl A, Bettinger CJ, Langer R (2007). Biomacromolecules 8:3067–3073

    Article  CAS  Google Scholar 

  26. Ifkovits JL, Padera RF, Burdick JA (2008). Biomed Mater 3:034104

    Article  Google Scholar 

  27. Mas-Castella J, Urmeneta J, Lafuente R, Navarrete A, Guerrero R (1995). Int Biodeterior Biodegrad 35:155–174

    Article  CAS  Google Scholar 

  28. Doi Y, Kasuya K, Abe H, Koyama N, Ishiwatari S, Takagi K, Yoshida Y (1996). Polym Degrad Stab 51:281–286

    Article  CAS  Google Scholar 

  29. Yoon JS, Jung HW, Kim MN, Park ES (2000). J Appl Polym Sci 77:1716–1722

    Article  CAS  Google Scholar 

  30. Yu J, Plackett D, Chen LXL (2005). Polym Degrad Stab 89:289–299

    Article  CAS  Google Scholar 

  31. Yu G, Marchessault RH (2000). Polymer 41:1087–1098

    Article  CAS  Google Scholar 

  32. Aoyagi Y, Yamashita K, Doi Y (2002). Polym Degrad Stab 76:53–59

    Article  CAS  Google Scholar 

  33. Sˇpitalsky’ Z, Lacı’k I, Lathova’ E, Janigova’ I, Choda’k I (2006). Polym Degrad Stab 91:856–861

    Article  Google Scholar 

  34. Yu G (2005) US Pat. Pub. No.: 2005/0260723A1

  35. Oh WG, Kim BS (2007). Macromol Symp 249–250:76–80

    Article  Google Scholar 

  36. Saad B, Keiser OM, Welti M, Uhlschmid GK, Neuenschwander P, Suter UW (1997). J Mat Sci Mater Med 8:497–505

    Article  CAS  Google Scholar 

  37. Erduranli H, Hazer B, Borcakli M (2008). Macromol Symp 269:161–169

    Article  CAS  Google Scholar 

  38. Saad GR, Seliger H (2004). Polym Degrad Stab 83:101–110

    Article  CAS  Google Scholar 

  39. Seebach D, Fritz MG (1999). Inter J Bio Macromol 25:217–236

    Article  CAS  Google Scholar 

  40. Zhao Q, Cheng G (2004). J Mat Sci 39:3829–3831

    Article  CAS  Google Scholar 

  41. Gunaratne LWMK, Shanks RA, Amarasinghe G (2004). Thermochim Acta 423:127–135

    Article  CAS  Google Scholar 

  42. Barham PJ, Keller A, Otun EL, Holmes PA (1984). J Mat Sci 19:2781–2794

    Article  CAS  Google Scholar 

  43. Hong SG, Huang SC (2015). J Polym Res 22:61

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinn-Gwo Hong.

Additional information

This article is part of the Topical Collection on Bio-Based Polymers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, BC., Yao, CL., **eh, KY. et al. Improvement of physical properties of poly(glycerol sebacate) by copolymerization with polyhydroxybutyrate-diols. J Polym Res 24, 215 (2017). https://doi.org/10.1007/s10965-017-1371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1371-8

Keywords

Navigation