Log in

Crystallization properties of polyhydroxybutyrate with modified silicas

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The crystallization behaviors of polyhydroxybutyrate (PHB) filled with hydrophobic silica and hydrophilic silica that surface modified by methyl methacrylate (MMA) and amidoamine (AMDA) were analyzed by isothermal and dynamic differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide angle X-ray diffraction (WAXD). The results of DSC indicated that the presence of the hydrophobic silica or modified hydrophilic silica could notably increase the crystallization rate but decrease the crystallization activation energy and the melting-recrystallization degree of PHB. The decreases of spherulite sizes but increases of ordered crystallite sizes in PHB by the MMA and AMDA modified silicas were also confirmed by POM and WAXD. The modified hydrophilic silica, especially the AMDA modified, would have much better effects on enhancing crystallization speeds and forming better crystal structures than the unmodified hydrophilic silica due to the better compatibility with PHB. The significant effect of the silica surface on affecting the crystallization behavior and the subsequent melting behavior of PHB was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mas-Castella J, Urmeneta J, Lafuente R, Navarrete A, Guerrero R (1995) Int Biodeterior Biodegrad 35:155–174

    Article  CAS  Google Scholar 

  2. Doi Y, Kasuya K, Abe H, Koyama N, Ishiwatari S, Takagi K, Yoshida Y (1996) Polym Degrad Stab 51:281–286

    Article  CAS  Google Scholar 

  3. Iwata T, Shiromo M, Doi Y (2002) Macro Chem Phys 203:1309–1316

    Article  CAS  Google Scholar 

  4. Doi Y, Mukai K, Kasuya K, Yamada K (1994) Biodegradation of biosynthetic and chemosynthetic polyhydroxyalkanoates. In: Doi Y, Fukuda K (eds) Biodegradable Plastics and Polymers. Elsevier, Amsterdam, pp 39–51

    Chapter  Google Scholar 

  5. Kumagai Y, Kanesawa Y, Doi Y (1992) Makromol Chem 193:53–57

    Article  CAS  Google Scholar 

  6. Zhao K, Deng Y, Chen GQ (2003) Biochem Eng J 16:115–123

    Article  CAS  Google Scholar 

  7. Zheng Z, Bei FF, Tian HL, Chen GQ (2005) Biomaterials 26:3537–3548

    Article  CAS  Google Scholar 

  8. Chen C, Fei B, Peng S, Zhuang Y, Dong L, Feng Z (2002) Eur Polym J 38:1663–1670

    Article  CAS  Google Scholar 

  9. Wang L, Zhu W, Wang X, Chen X, Chen GQ, Xu K (2008) J Appl Polym Sci 107:166–173

    Article  CAS  Google Scholar 

  10. Zhao Q, Cheng G, Song C, Zeng Y, Tao J, Zhang L (2006) Polym Degrad Stab 91:1240–1246

    Article  CAS  Google Scholar 

  11. Lee HK, Ismail J, Kammer HW, Bakar MA (2005) J Appl Polym Sci 95:113–129

    Article  CAS  Google Scholar 

  12. Kaito A (2006) Polymer 47:3548–3556

    Article  CAS  Google Scholar 

  13. El-Taweel SH, Stoll B, Hohne GWH, Mansour AA, Seliger H (2004) J Appl Polym Sci 94:2528–2537

    Article  CAS  Google Scholar 

  14. Liu WJ, Yang HL, Wang Z, Dong LS, Liu JJ (2002) J Appl Polym Sci 86:2145–2152

    Article  CAS  Google Scholar 

  15. Qian J, Zhu L, Zhang J, Whitehouse RS (2007) J Polym Sci B Polym Phys 45:1564–1577

    Article  CAS  Google Scholar 

  16. Weihua K, He Y, Asakawa N, Inoue Y (2004) J Appl Polym Sci 94:2466–2474

    Article  CAS  Google Scholar 

  17. Ikejima T, Yagi K, Inoue Y (1999) Macromol Chem Phys 200:413–421

    Article  CAS  Google Scholar 

  18. Zhang X, Lin G, Abou-Hussein R, Hassan MK, Noda I, Mark JE (2007) Eur Polym J 43:3128–3135

    Article  CAS  Google Scholar 

  19. Maiti P, Batt CA, Giannelis EP (2007) Biomacromolecules 8:3393–3400

    Article  CAS  Google Scholar 

  20. Kai W, He Y, Inoue Y (2005) Polym Int 54:780–789

    Article  CAS  Google Scholar 

  21. Alata H, Hexig B, Inoue Y (2006) J Polym Sci B Polym Phys 44:1813–1820

    Article  CAS  Google Scholar 

  22. He Y, Inoue Y (2004) J Polym Sci B Polym Phys 42:3461–3469

    Article  CAS  Google Scholar 

  23. Tang CY, Chen DZ, Tsui CP, Uskokovic PS, Yu PHF, Leung MCP (2006) J Appl Polym Sci 102:5388–5395

    Article  CAS  Google Scholar 

  24. Figuly GD (2003) Processing of polyhydroxyalkanoates using a nucleant and a plasticizer, United States Patent 20030181555

  25. Padwa AR (2005) Nucleating agents. United States Patent 20050209377

  26. Organ SJ Barham PJ Webb A (1994) Hydroxyalkanoate polymer composition. United States Patent 5281649

  27. Satkowski MM, Knapmeyer JT, Kreuzer DP (2006) Nucleating agents for polyhydroxyalkanoates United States Patent 20060058498

  28. Asrar J, Pierre JR (1999) Nucleating agents for polyhydroxyalkanoates and other thermoplastic polyesters and methods for their production and use. United States Patent 5973100

  29. Figuly GD (2004) Processing of polyhydroxyalkanoates using a nucleant and a plasticizer. United States Patent 6774158

  30. Satkowski MM, Knapmeyer JT, Kreuzer DP (2007) Nucleating agents for polyhydroxyalkanoates. United States Patent 7301000.

  31. Pacetti SD (2008) Method for forming crystallized therapeutic agents on a medical device, United States Patent 20080268018

  32. Uradnisheck J (2009) Poly(hydroxyalkanoic acid) and thermoformed articles, United States Patent 20090099313

  33. Prakalathan K, Mohanty S, Nayak SK (2013) Polym Compos. doi:10.1002/pc.22746

    Google Scholar 

  34. Miloaga DG, Miloaga HAA, Misra M, Drzal LT (2007) J Appl Polym Sci 106:2548–2558

    Article  CAS  Google Scholar 

  35. Zhang R, Zhu C, Shan X, **a J, Zhu Q, Hu Y (2013) J Appl Polym Sci. doi:10.1002/APP.39383, 2015–2022

    Google Scholar 

  36. Dagnon KL, Robinson C, Chen HH, Garrett DC, Innocentini-Mei LH, D’Souza NA (2013) J Appl Polym Sci. doi:10.1002/APP.37646, 3395–3406

    Google Scholar 

  37. Dong T, Mori T, Aoyama T, Inoue Y (2010) Carbohydr Polym 80:387–393

    Article  CAS  Google Scholar 

  38. Puente JAS, Esposito A, Chivrac F, Dargent E (2013) J Appl Polym Sci. doi:10.1002/APP.38182, 2586–2594

    Google Scholar 

  39. Wang L, Wang X, Zhu W, Chen Z, Pan J, Xu K (2010) J Appl Polym Sci 116:1116–1123

    Article  CAS  Google Scholar 

  40. Pan P, Shan G, Bao Y, Weng Z (2013) J Appl Polym Sci. doi:10.1002/APP. 38825, 1374–1382

    Google Scholar 

  41. Jacquel N, Tajima K, Nakamura N, Kawachi H, Pan P, Inoue Y (2010) J Appl Polym Sci 115:709–715

    Article  CAS  Google Scholar 

  42. Vassiliou AA, Chrissas K, Bikiaris DN (2010) Thermochim Acta 500:21–29

    Article  CAS  Google Scholar 

  43. Kim SH, Ahn SH, Hirai T (2003) Polymer 44:5625–5634

    Article  CAS  Google Scholar 

  44. Yang F, Ou Y, Yu Z (1998) J Appl Polym Sci 69:355–361

    Article  CAS  Google Scholar 

  45. Jain S, Goossens H, van Duin M, Lemstra P (2005) Polymer 46:8805–8818

    Article  CAS  Google Scholar 

  46. Ma PM, Wang RY, Wang S, Zhang YX, Hristova D (2008) J Appl Polym Sci 108:1770–1777

    Article  CAS  Google Scholar 

  47. Han L, Han C, Cao W, Wang X, Bian J, Dong L (2012) Polym Eng Sci 52:250–258

    Article  CAS  Google Scholar 

  48. Lim JS, Noda I, Im SS (2007) Polymer 48:2745–2754

    Article  CAS  Google Scholar 

  49. Hedayati M, Salehi M, Bagheri R, Panjepour M, Maghzian A (2011) Powder Technol 207:296–303

    Article  CAS  Google Scholar 

  50. Hong SG, Huang SC (2015) J Therm Anal Calorim, in press

  51. Lee WK, Iwata T, Abe H, Doi Y (2000) Macromolecules 33:9535–9541

    Article  CAS  Google Scholar 

  52. Gunaratne LWMK, Shanks RA, Amarasinghe G (2004) Thermochim Acta 423:127–135

    Article  CAS  Google Scholar 

  53. Gunaratne LWMK, Shanks RA (2005) Thermochim Acta 430:183–190

    Article  CAS  Google Scholar 

  54. Liu T, Petermann J (2001) Polymer 42:6453–6461

    Article  CAS  Google Scholar 

  55. Hong SG, Lin YC (2008) J Appl Polym Sci 110:2718–2726

    Article  CAS  Google Scholar 

  56. Hong SG, Lin YC (2008) React Funct Polym 68:1516–1523

    Article  CAS  Google Scholar 

  57. Gedde UW (1995) Polymer Physics. Chapman & Hall, New York, pp 152–155

    Google Scholar 

  58. Patterson AL (1939) Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  59. Monshi A, Foroughi MR, Monshi MR (2012) World J Nano Sci Eng 2:154–160

    Article  Google Scholar 

  60. Langford JI, Wilson AJC (1978) J Appl Cryst 11:102–113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinn-Gwo Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, SG., Huang, SC. Crystallization properties of polyhydroxybutyrate with modified silicas. J Polym Res 22, 61 (2015). https://doi.org/10.1007/s10965-015-0706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0706-6

Keywords

Navigation