Log in

On the Radius of Self-Repellent Fractional Brownian Motion

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the radius of gyration \(R_T\) of a self-repellent fractional Brownian motion \(\left\{ B^H_t\right\} _{0\le t\le T}\) taking values in \(\mathbb {R}^d\). Our sharpest result is for \(d=1\), where we find that with high probability,

$$\begin{aligned} R_T \asymp T^\nu , \quad \text {with }\quad \nu =\frac{2}{3}\left( 1+H\right) . \end{aligned}$$

For \(d>1\), we provide upper and lower bounds for the exponent \(\nu \), but these bounds do not match.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Notes

  1. Here, we leverage the fact that for any \(\beta > 0\), the expression \(\beta ^{\gamma _1} T^{\gamma _2} \log (T)^{\gamma _3}\) behaves like \(T^{\gamma _2} \log (T)^{\gamma _3}\) for large T, where \(\gamma _1, \gamma _2, \gamma _3\) are arbitrary numbers, with the constraint that \(\gamma _2\) and \(\gamma _3\) cannot both be zero.

References

  1. Domb, C., Joyce, G.S.: Cluster expansion for a polymer chain. J. Phys. C: Solid State Phys. 5(9), 956 (1972). https://doi.org/10.1088/0022-3719/5/9/009

    Article  ADS  CAS  Google Scholar 

  2. Edwards, S.F.: The statistical mechanics of polymers with excluded volume. Proc. Phys. Soc. 85, 613–624 (1965). https://doi.org/10.1007/s001090000086

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Madras, N., Slade, G.: The Self-Avoiding Walk. Probability and Its Applications, p. 425. Birkhäuser, Boston (1993)

    Google Scholar 

  4. Duminil-Copin, H., Goodman, J., Slade, G.: Lectures on self-avoiding walks. In: Probability and Statistical Physics in Two and More Dimensions. Clay Mathematical Proceedings, vol. 15, pp. 395–467. American Mathematical Society, Providence (2012)

  5. Slade, G.: Self-avoiding walk, spin systems and renormalization. Proc. A. 475(2221), 20180549–21 (2019). https://doi.org/10.1098/rspa.2018.0549

    Article  MathSciNet  Google Scholar 

  6. Biswas, P., Cherayil, B.J.: Dynamics of fractional Brownian walks. J. Phys. Chem. 99(2), 816–821 (1995). https://doi.org/10.1021/j100002a052

    Article  CAS  Google Scholar 

  7. Grothaus, M., Oliveira, M.J., Silva, J.L., Streit, L.: Self-avoiding fractional Brownian motion—the Edwards model. J. Stat. Phys. 145(6), 1513–1523 (2011). https://doi.org/10.1007/s10955-011-0344-2

    Article  ADS  MathSciNet  Google Scholar 

  8. Bornales, J., Oliveira, M.J., Streit, L.: Self-repelling fractional Brownian motion—a generalized Edwards model for chain polymers. In: Quantum Bio-informatics V. QP–PQ: Quantum Probability. White Noise Analysis, vol. 30, pp. 389–401. World Science, Hackensack (2013)

  9. Bock, W., Bornales, J.B., Cabahug, C.O., Eleutério, S., Streit, L.: Scaling properties of weakly self-avoiding fractional Brownian motion in one dimension. J. Stat. Phys. 161(5), 1155–1162 (2015). https://doi.org/10.1007/s10955-015-1368-9

    Article  ADS  MathSciNet  Google Scholar 

  10. Rosen, J.: The intersection local time of fractional Brownian motion in the plane. J. Multivariate Anal. 23(1), 37–46 (1987). https://doi.org/10.1016/0047-259X(87)90176-X

    Article  MathSciNet  Google Scholar 

  11. Hu, Y., Nualart, D.: Renormalized self-intersection local time for fractional Brownian motion. Ann. Probab. 33(3), 948–983 (2005). https://doi.org/10.1214/009117905000000017

    Article  MathSciNet  Google Scholar 

  12. Mueller, C., E., N.: The radius of a self-repelling star polymer. Preprint ar**v:2306.01537 (2023)

  13. Fixman, M.: Radius of gyration of polymer chains. J. Chem. Phys. 36(2), 306–310 (1962). https://doi.org/10.1063/1.1732501

    Article  ADS  CAS  Google Scholar 

  14. Bolthausen, E.: On self-repellent one-dimensional random walks. Probab. Theory Related Fields 86(4), 423–441 (1990). https://doi.org/10.1007/BF01198167

    Article  MathSciNet  Google Scholar 

  15. Greven, A., Hollander, F.: A variational characterization of the speed of a one-dimensional self-repellent random walk. Ann. Appl. Probab. 3(4), 1067–1099 (1993). https://doi.org/10.1214/aoap/1177005273

    Article  MathSciNet  Google Scholar 

  16. Hara, T., Slade, G.: Self-avoiding walk in five or more dimensions. I. The critical behaviour. Commun. Math. Phys. 147(1), 101–136 (1992). https://doi.org/10.1007/BF02099530

    Article  ADS  MathSciNet  Google Scholar 

  17. Brydges, D., Spencer, T.: Self-avoiding walk in \(5\) or more dimensions. Commun. Math. Phys. 97(1–2), 125–148 (1985). https://doi.org/10.1007/BF01206182

    Article  ADS  MathSciNet  Google Scholar 

  18. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics, p. 448. Springer, New York (2007)

    Google Scholar 

  19. Hara, T., Slade, G.: Critical behaviour of self-avoiding walk in five or more dimensions. Bull. Am. Math. Soc. 25(2), 417–423 (1991). https://doi.org/10.1090/S0273-0979-1991-16085-4

    Article  MathSciNet  Google Scholar 

  20. Madras, N.: A lower bound for the end-to-end distance of the self-avoiding walk. Can. Math. Bull. 57(1), 113–118 (2014). https://doi.org/10.4153/CMB-2012-022-6

    Article  MathSciNet  Google Scholar 

  21. Biagini, F., Hu, Y., Øksendal, B., Zhang, T.: Stochastic Calculus for Fractional Brownian Motion and Applications. Probability and Its Applications (New York), p. 329. Springer, London (2008)

    Google Scholar 

  22. Norros, I., Valkeila, E., Virtamo, J.: An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5(4), 571–587 (1999). https://doi.org/10.2307/3318691

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

L. C. and P. X. are partially supported by NSF grant DMS-2246850 and L. C. is partially supported by a collaboration Grant (#959981) from the Simons foundation.

Author information

Authors and Affiliations

Authors

Contributions

This paper was a group project, with equal participation on all stages.

Corresponding author

Correspondence to Carl Mueller.

Ethics declarations

Conflict of interest

None

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Additional information

Communicated by Ivan Corwin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Fractional Brownian Motions and Girsanov Theorem

Appendix A: Fractional Brownian Motions and Girsanov Theorem

In this section, we present some preliminaries about stochastic calculus for fBm’s. For a more detailed account of this topic, we refer the interested readers to [21].

A d-dimensional stochastic process \(B^H = \left\{ \left( B^{H,1}_t,\dots , B^{H,d}_t\right) :t\in \mathbb {R}_+\right\} \) is a called a fraction Brownian motion (fBm) with the Hurst parameters \(H \in (0,1)\) on a probability space \((\Omega , \mathcal {F}, \mathbb {P})\), if

  1. (i)

    \(B^{H,i}\), \(i=1,\dots ,d\), are independent;

  2. (ii)

    for each \(1\le i\le d\), \(\left\{ B^{H,i}_t :t \in \mathbb {R}_+\right\} \) is a centered Gaussian family with covariance

    $$\begin{aligned} \mathbb {E} \left[ B^{H,i}_t B^{H,i}_s\right] = \frac{1}{2}\left( t^{2H} + s^{2H} - |t-s|^{2H}\right) . \end{aligned}$$

Without loss of generality, we can assume that the filtration \(\left\{ \mathcal {F}_t :t \in \mathbb {R}_+\right\} \) is the canonical filtration generated by \(B^H\).

Next, we define the integration of deterministic functions against fBm’s. If \(\phi \) is a smooth function on \(\mathbb {R}_+\) with compact support, i.e., \(\phi \in C_c^{\infty }(\mathbb {R}_+)\), then the integrals

$$\begin{aligned} B^{H,i}(\phi ) :=\int _0^{\infty } \phi (t) \textrm{d} B^{H,i}_t, \qquad i = 1,\dots , d, \end{aligned}$$

are centered Gaussian random variables with the following covariance structure:

for all \(1\le i,j \le d\), and \(\phi , \psi \in C_c^{\infty }(\mathbb {R}_+).\)

By typical approximation arguments, one can extend the integration to the Hilbert space \(\mathcal {H}\) of functions on \(\mathbb {R}_+\), with inner product,

$$\begin{aligned} \left\langle \phi , \psi \right\rangle _{\mathcal {H}} :=\iint _{\mathbb {R}_+^2} \textrm{d} t \, \textrm{d} s\, \phi (s)\psi (t) |t-s|^{2H - 2}. \end{aligned}$$

In particular, for any \(t\in \mathbb {R}_+\), the function \(w(t,\cdot )\), given by

$$\begin{aligned} w (t,s) :=c_{1}\, s^{1/2 - H} (t - s)^{1/2 - H} \textbf{1}_{(0,t)} (s),\quad \text {for all } s\in \mathbb {R}, \end{aligned}$$

is an element of \(\mathcal {H}\) (see [22, Proposition 2.1]), where, with \(B(\cdot ,\cdot )\) denoting the Beta function,

This observation allows us to define the following Gaussian process \(M = M^{\textbf{u}} = \{ M_t :t \in \mathbb {R}_+\}\) with parameter \(\textbf{u} = (u_1,\dots , u_d)\) being a unit vector in \(\mathbb {R}^d\) as follows:

$$\begin{aligned} M_t :=\sum _{i=1}^d u_i \int _0^t w(t,s) \textrm{d} B^{H,i}_s, \quad \text {for all } t\in \mathbb {R}_+. \end{aligned}$$
(3.1)

The following theorem is a straightforward extension of [22, Theorem 3.1] from \(d=1\) to higher dimensional cases, thanks to the independence of the components of \(B^H\):

Theorem A.1

Let \(B^H\) be a d-dimensional fBm with \(H \in (0,1)\), let \(\textbf{u}\) be a unit vector in \(\mathbb {R}^d\), and let \(M = M^{\textbf{u}}\) be the Gaussian process given as in (3.1). Then M is a square-integrable martingale with quadratic variation

For any \(\lambda > 0\) and \(T > 0\), denote

$$\begin{aligned} \mathcal {Q}_T (M) :=\exp \left( M_T - \frac{1}{2} \langle M, M \rangle _T \right) , \end{aligned}$$

and let \(\mathbb {P}_T^{\lambda } = \mathbb {P}_T^{\lambda , \textbf{u}}\) be a probability measure on \((\Omega , \mathcal {F}_T)\) that is equivalent to \(\mathbb {P}_T\) with the Radon–Nikodym derivative

$$\begin{aligned} \frac{\textrm{d} \mathbb {P}_T^{\lambda }}{\textrm{d} \mathbb {P}_T} :=\mathcal {Q}_T(\lambda M). \end{aligned}$$
(3.2)

The next theorem, a Girsanov formula for fBm’s, is a straightforward extension of [22, Theorem 4.1].

Theorem A.2

Under probability \(\mathbb {P}^{\lambda }_T\), the process \(\left\{ B^H_t :0 \le t \le T\right\} \) is a d-dimensional fBm with a drift \(\lambda \textbf{u}\in \mathbb {R}^d\), i.e., the distribution of the process \(B^H\) up to time T under \(\mathbb {P}^{\lambda }_T = \mathbb {P}^{\lambda ,\textbf{u}}_T\) is the same as \( B^{H, \lambda , \textbf{u}, T} = \left\{ B^H_t + \lambda t\, \textbf{u} \,:0\le t\le T\right\} \) under \(\mathbb {P}_T\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Kuzgun, S., Mueller, C. et al. On the Radius of Self-Repellent Fractional Brownian Motion. J Stat Phys 191, 19 (2024). https://doi.org/10.1007/s10955-023-03227-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03227-y

Keywords

Mathematics Subject Classification

Navigation