Log in

pH-Sensitive Supramolecular Assemblies of β-Cyclodextrin and 2-Aminodiphenylamine in Water Medium: Structure, Solubility and Stability

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The influence of β-cyclodextrin on the solubility, protolytic properties, and complex formation behavior of 2-aminodiphenylamine was studied using UV spectroscopy. In accordance with the results of the spectrophotometric titration that was carried out in phosphate buffer solutions, the presence of β-cyclodextrin does not change the value of the deprotonation constant of the primary amino group of 2-aminodiphenylamine. This fact confirms that the primary amino group is not involved in the complex formation and interaction between β-cyclodextrin and 2-aminodiphenylamine occurs via the phenylimine moiety. The phase solubility profiles of 2-aminodiphenylamine in the presence of β-cyclodextin, at pH = 1.00 and pH = 5.00, indicate formation of inclusion complexes with limited solubility and can be classified as Higuchi–Connors curves of BI and BS type, respectively. The stoichiometry of the complexes and the apparent stability constants that characterize the β-cyclodextrin complexes with both protonated and neutral forms of 2-aminodiphenylamine were estimated from the dependence of absorbance intensity of the guest molecule at increasing amounts of β-cyclodextrin by the Ketelar equation. The linearity of the plots in the coordinates of the Ketelar equation proves the formation of 1:1 inclusion complexes for both protolytic forms of 2-aminodiphenylamine. It was found that inclusion complex formation is preferable for the neutral form of 2-aminodiphenylamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lehn, J.M.: Supramolecular chemistry: concepts and perspectives. VCH Verlagsgesellschaft, Weinheim (1995)

    Book  Google Scholar 

  2. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997)

    Article  CAS  Google Scholar 

  3. Matsui, Y., Nishioka, T., Fujita, T.: Quantitative structure-reactivity analysis of the inclusion mechanism by cyclodextrins. Top. Curr. Chem. 128, 61–89 (1985)

    Article  CAS  Google Scholar 

  4. Loftsson, T., Jarho, P., Masson, M., Jarvinen, T.: Cyclodextrins in drug delivery. Expert Opin. Drug Deliv. 2, 335–351 (2005)

    Article  CAS  Google Scholar 

  5. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  6. Roik, N.V., Belyakova, L.A.: Thermodynamic, IR spectral and X-ray diffraction studies of the “β-cyclodextrin-para-aminobenzoic acid” inclusion complex. J. Incl. Phen. Macrocycl. Chem. 69, 315–319 (2011)

    Article  CAS  Google Scholar 

  7. Trofymchuk, I.M., Belyakova, L.A., Grebenyuk, A.G.: Study of complex formation between β-cyclodextrin and benzene. J. Incl. Phenom. Macrocycl. Chem. 69, 371–375 (2011)

    Article  CAS  Google Scholar 

  8. Roik, N.V., Belyakova, L.A.: Cyclodextrin-based drug stabilizing system. J. Mol. Struct. 987, 225–231 (2011)

    Article  CAS  Google Scholar 

  9. Park, C., Oh, K., Lee, S.C., Kim, C.: Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif. Angew. Chem. Int. Ed. 46, 1455–1457 (2007)

    Article  CAS  Google Scholar 

  10. Angelos, S., Yang, Y.W., Patel, K., Stoddart, J.F., Zink, J.I.: pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. Angew. Chem. Int. Ed. 47, 2222–2226 (2008)

    Article  CAS  Google Scholar 

  11. Klichko, Y., Khashab, N.M., Yang, Y.W., Angelos, S., Stoddart, J.F., Zink, J.I.: Improving pore exposure in mesoporous silica films for mechanized control of the pores. Micropor. Mesopor. Mater. 132, 435–441 (2010)

    Article  CAS  Google Scholar 

  12. Li, Z., Barnes, J.C., Bosoy, A., Stoddart, J.F., Zink, J.I.: Mesoporous silica nanoparticles in biomedical application. Chem. Soc. Rev. 41, 2590–2605 (2012)

    Article  CAS  Google Scholar 

  13. Meng, H., Xue, M., **a, T., Zhao, Y.L., Tamanoi, F., Stoddart, J.F., Zink, J.I., Nel, A.E.: Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J. Am. Chem. Soc. 132, 12690–12697 (2010)

    Article  CAS  Google Scholar 

  14. Ambrogio, M.W., Thomas, C.R., Zhao, Y.L., Zink, J.I., Stoddart, J.F., : Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc. Chem. Res. 44, 903–913 (2011)

    Article  CAS  Google Scholar 

  15. Yang, Y.W.: Towards biocompatible nanovalves based on mesoporous silica nanoparticles. Med. Chem. Commun. 2, 1033–1049 (2011)

    Article  CAS  Google Scholar 

  16. Gao, Y., Yang, C., Liu, X., Ma, R., Kong, D., Shi, L.: A multifunctional nanocarrier based on nanogated mesoporous silica for enhanced tumor-specific uptake and intracellular delivery. Macromol. Biosci. 12, 251–259 (2012)

    Article  CAS  Google Scholar 

  17. Roik, N.V., Belyakova, L.A.: Sol-gel synthesis of MCM-41 silicas and selective vapor-phase modification of their surface. J. Solid State Chem. 207, 194–202 (2013)

    Article  CAS  Google Scholar 

  18. Roik, N.V., Belyakova, L.A.: Chemical design of pH-sensitive nanovalves on outer surface of mesoporous silicas for controlled storage and release of aromatic amino acid. J. Solid State Chem. 215, 284–291 (2014)

    Article  CAS  Google Scholar 

  19. Barry, V.C., Belton, J.G., Conalty, M.L., Twomey, D.: Anti-tubercular activity of oxidation products of substituted o-phenylene diamines. Nature 162, 622–623 (1948)

    Article  CAS  Google Scholar 

  20. Cotarelo, M.A., Huerta, F., Mallavia, R., Morallon, E., Vazquez, J.L.: On the polymerization of 2-aminodiphenylamine: an electrochemical and spectroscopic study. Synth. Met. 156, 51–57 (2006)

    Article  CAS  Google Scholar 

  21. Ojani, R., Safshekan, S., Raoof, J.-B.: Silver nanoparticle decorated poly(2-aminodiphenylamine) modified carbon paste electrode as a simple and efficient electrocatalyst for oxidation of formaldehyde. Chin. J. Catal. 35, 1565–1570 (2014)

    Article  CAS  Google Scholar 

  22. Ciric-Marjanovic, G., Trchova, M., Konyushenko, E.N., Holler, P., Stejskal, J.: Chemical oxidative polymerization of aminodiphenylamines. J. Phys. Chem. B 112, 6976–6987 (2008)

    Article  CAS  Google Scholar 

  23. Kothai Nayaki, S., Swaminathan, M.: Spectral characteristics of 2-aminodiphenylamine in different solvents and at various pH values. Spectrochim. Acta A. 57, 1361–1367 (2001)

    Article  Google Scholar 

  24. Rajamohan, R., Swaminathan, M.: Effect of inclusion complexation on the photophysical behavior of diphenylamine in β-cyclodextrin medium: a study by electronic spectra. Spectrochim. Acta A 83, 207–212 (2011)

    Article  CAS  Google Scholar 

  25. Muthu, I.V., Swaminathan, M.: Flourimetric and prototropic studies on the inclusion complexation of 2-amino and 4-aminodiphenyl ethers with β-cyclodextrin: unusual behavior of 4-aminodiphenyl ether. J. Lumin. 127, 713–720 (2007)

    Article  Google Scholar 

  26. Abdel-Shafi, A.A.: Inclusion complex of 2-naphthylamine-6-sulfonate with β-cyclodextrin: intramolecular charge transfer versus hydrogen bonding effects. Spectrochim. Acta A 66, 1228–1236 (2007)

    Article  Google Scholar 

  27. Bergamini, J.-F., Belabbas, M., Jouini, M., Aeiyach, S., Lacroix, J.-C., Chane-Ching, K.I., Lacaze, P.C.: Electrochemical and pH control of the complexation/decomplexation of 4-amino-N, N-diphenylamine with β-cyclodextrin. J. Electroanal. Chem. 482, 156–167 (2000)

    Article  CAS  Google Scholar 

  28. Stalin, T., Rajendiran, N.: A study on the spectroscopy and photophysics of 4-hydroxy-3-methoxybenzoic acid in different solvents, pH and β-cyclodextrin. J. Mol. Struct. 794, 35–45 (2006)

    Article  CAS  Google Scholar 

  29. Rajamohan, R., Nayaki, S.K., Swaminathan, M.: Inclusion complexation and photoprototropic behaviour of 3-amino-5-nitrobenzisothiazole with β-cyclodextrin. Spectrochim. Acta A 69, 371–377 (2008)

    Article  CAS  Google Scholar 

  30. Hergert, L.A., Escandar, G.M.: Spectrofluorimetric study of the β-cyclodextrin-ibuprofen complex and determination of ibuprofen in pharmaceutical preparation and serum. Talanta 60, 235–246 (2003)

    Article  CAS  Google Scholar 

  31. Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)

    CAS  Google Scholar 

  32. Dean, J.A.: Lange’s handbook of chemistry, 15th edn. McGraw-Hill, New York (1999)

    Google Scholar 

  33. Banchero, M., Ronchetti, S., Manna, L.: Characterization of ketoprofen/methyl-β-cyclodextrin complexes prepared using supercritical carbon dioxide. J. Chem. 2013, 1–8 (2013)

    Article  Google Scholar 

  34. Khan, G.M., Wazir, F., Zhu, J.-B.: Ibuprofen-cyclodextrin inclusion complexes: evaluation of different complexation methods. The Sciences 1, 193–199 (2001)

    Google Scholar 

  35. Dua, K., Pabreja, K., Ramana, M.V., Lather, V.: Dissolution behavior of β-cyclodextrin molecular inclusion complexes of aceclofenac. J. Pharm. Bioallied Sci. 3, 417–425 (2011)

    Article  CAS  Google Scholar 

  36. Petralito, S., Zanardi, I., Memoli, A., Annesini, C., Travagli, V.: Cyclodextrin/diacerein inclusion complex: a tool for therapeutic drug delivery. Chem. Eng. Trans. 24, 967–972 (2011)

    Google Scholar 

  37. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)

    Article  CAS  Google Scholar 

  38. Okimoto, K., Rajewski, R.A., Uekama, K., Jona, J.A., Stella, V.J.: The interaction of charged and uncharged drugs with neutral (HP-b-CD) and anionically charged (SBE7-b-CD) β-cyclodextrins. Pharm. Res. 13, 256–264 (1996)

    Article  CAS  Google Scholar 

  39. Stella, V.J., Rao, V.M., Zannou, E.A., Stella, V.Z.J., Rao, V.M., Zannou, E.A., Zia, V.: Mechanisms of drug release from cyclodextrin complexes. Adv. Drug Deliv. Rev. 36, 3–16 (1999)

    Article  CAS  Google Scholar 

  40. Shaomin, S., Yu, Y., **ghao, P.: Study on molecular recognition of para-aminobenzoic acid species by α-, β- and hydroxypropyl-β-cyclodextrin. Anal. Chim. Acta 458, 305–310 (2002)

    Article  Google Scholar 

  41. Beni, S., Szakacs, Z., Csernak, O., Barcza, L., Noszal, B.: Cyclodextrin/imatinib complexation: binding mode and charge dependent stabilities. Eur. J. Pharm. Sci. 30, 167–174 (2007)

    Article  CAS  Google Scholar 

  42. Zhang, Q.-F., Jiang, Z.-T., Guo, Y.-X., Li, R.: Complexation study of brilliant cresyl blue with beta-cyclodextrin and its derivatives by UV-vis and fluorospectrometry. Spectrochim. Acta A 69, 65–70 (2008)

    Article  Google Scholar 

  43. Atkins, P.W.: Physical Chemistry. Oxford University Press, Oxford (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Roik.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roik, N.V., Belyakova, L.A. pH-Sensitive Supramolecular Assemblies of β-Cyclodextrin and 2-Aminodiphenylamine in Water Medium: Structure, Solubility and Stability. J Solution Chem 45, 818–830 (2016). https://doi.org/10.1007/s10953-016-0468-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0468-8

Keywords

Navigation