Log in

The Semi-ideal Solution Theory. 3. Extension to Viscosity of Multicomponent Aqueous Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Viscosities were measured for the ternary aqueous systems NaCl–mannitol(C6H14O6)–H2O, NaBr–mannitol–H2O, KCl–mannitol–H2O, KCl–glycine(NH2CH2COOH)–H2O, KCl–CdCl2–H2O, and their binary subsystems NaCl–H2O, KCl–H2O, NaBr–H2O, CdCl2–H2O, mannitol–H2O, and glycine–H2O at 298.15 K. A powerful new approach is presented for theoretical modeling of the viscosity of multicomponent solutions in terms of the properties of their binary solutions. In this modeling, the semi-ideal solution theory was used to associate the solvation structure formed by each ion and its first solvation shell in a binary solution with the solvation structure of the same ion and its first solvation shell in multicomponent solutions. Then, the novel mechanism proposed by Omta et al. (Science, 301:347–349, 2003) for the effect of a single electrolyte on the viscosity of water was extended to describe the influence of solute mixtures on the viscosity of water, including electrolyte mixtures, nonelectrolyte mixtures, and mixtures of electrolytes with nonelectrolytes. The established simple equation was verified by comparison with measured viscosities and viscosities reported in literature. The agreements are very impressive. This formulation provides a powerful new approach for modeling this transport property in solutions. It can stimulate further research in establishing a dynamical analogue to that formulated for the thermodynamics of multicomponent solutions. It is also very important for the study of hydration of ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chandra, A., Bagchi, B.: Beyond the classical transport laws of electrochemistry: New microscopic approach to ionic conductance and viscosity. J. Phys. Chem. B 104, 9067–9080 (2000)

    Article  CAS  Google Scholar 

  2. Wu, Y.C., Koch, W.F., Zhong, E.C., Friedman, H.L.: The cross-square rule for transport in electrolyte mixtures. J. Phys. Chem. 92, 1692–1695 (1988)

    Article  CAS  Google Scholar 

  3. Harned, H.S.: Some thermodynamic properties of uni-univalent halide mixtures in aqueous solution. J. Am. Chem. Soc. 57, 1865–1873 (1935)

    Article  CAS  Google Scholar 

  4. Young, T.F., Wu, Y.C., Krawetz, A.A.: Thermal effects of the interactions between ions of like charge. Discuss. Faraday Soc. 24, 37–42 (1957)

    Article  Google Scholar 

  5. Young, T.F., Wu, Y.C., Krawetz, A.A.: General discussion. Discuss. Faraday Soc. 24, 66–82 (1957)

    Article  Google Scholar 

  6. Zdanovskii, A.B.: Regularities in the property variations of mixed solutions. Tr. Solyanoi Lab. Akad. Nauk SSSR 6, 5–70 (1936)

    Google Scholar 

  7. Hu, Y.F., Fan, S.S., Liang, D.Q.: The semi-ideal solution theory for mixed Ionic solutions at solid–liquid–vapor equilibrium. J. Phys. Chem. A 110, 4276–4284 (2006)

    Article  CAS  Google Scholar 

  8. Hu, Y.F.: The thermodynamics of nonelectrolyte systems at constant activities of any number of components. J. Phys. Chem. B 107, 13168–13177 (2003)

    Article  CAS  Google Scholar 

  9. Miller, D.G.: Binary mixing approximations and relations between specific conductance, molar conductance, equivalent conductance, and ionar conductance for mixtures. J. Phys. Chem. 100, 1220–1226 (1996)

    Article  CAS  Google Scholar 

  10. Hu, Y.F., Zhang, X.M., Li, J.G., Liang, Q.Q.: The semi-ideal solution theory. 2. Extension to conductivity of mixed electrolyte solutions. J. Phys. Chem. B 112, 15376–15381 (2008)

    Article  CAS  Google Scholar 

  11. Omta, A.W., Kropman, M.F., Woutersen, S., Bakker, H.J.: Negligible effect of ions on the hydrogen-bond structure in liquid water. Science 301, 347–349 (2003)

    Article  CAS  Google Scholar 

  12. Jenkins, H.D.B., Marcus, Y.: Viscosity B-coefficients of ions in solution. Chem. Rev. 95, 2695–2724 (1995)

    Article  CAS  Google Scholar 

  13. Gurney, R.W.: Ionic Processes in Solution. McGraw-Hill, New York (1953)

    Google Scholar 

  14. Ohtaki, H., Radnai, T.: Structure and dynamics of hydrated ions. Chem. Rev. 93, 1157–1204 (1993)

    Article  CAS  Google Scholar 

  15. Chandrasekhar, J., Spellmeier, D.C., Jorgensen, W.L.: Energy component analysis for dilute aqueous solutions of Li +, Na +, F, and Cl ions. J. Am. Chem. Soc. 106, 903–910 (1984)

    Article  CAS  Google Scholar 

  16. Batchelor, J.D., Olteanu, A., Tripathy, A., Pielak, G.J.: Impact of protein denaturants and stabilizers on water structure. J. Am. Chem. Soc. 126, 1958–1961 (2004)

    Article  CAS  Google Scholar 

  17. Gurau, M.C., Lim, S.M., Castellana, E.T., Albertorio, F., Kataoka, S., Cremer, P.S.: On the mechanism of the Hofmeister effect. J. Am. Chem. Soc. 126, 10522–10523 (2004)

    Article  CAS  Google Scholar 

  18. Marcus, Y.: Ionic radii in aqueous solutions. Chem. Rev. 88, 1475–1498 (1988)

    Article  CAS  Google Scholar 

  19. Conway, B.E.: Ionic Hydration in Chemistry and Biophysics. Studies in Physical and Theoretical Chemistry, vol. 12. Elsevier, Amsterdam (1981)

    Google Scholar 

  20. Marcus, Y.: Ion Solution. Wiley, Chichester (1986)

    Google Scholar 

  21. Scatchard, G.: The speed of reaction in concentrated solutions and the mechanism of the inversion of sucrose. J. Am. Chem. Soc. 43, 2387–2406 (1921)

    Article  CAS  Google Scholar 

  22. Scatchard, G.: The hydration of sucrose in water solution as calculated from vapor-pressure measurements. J. Am. Chem. Soc. 43, 2406–2418 (1921)

    Article  CAS  Google Scholar 

  23. Stokes, R.H., Robinson, R.A.: Ionic hydration and activity in electrolyte solutions. J. Am. Chem. Soc. 70, 1870–1878 (1948)

    Article  CAS  Google Scholar 

  24. Robinson, R.A., Stokes, R.H.: Activity coefficients in aqueous solutions of sucrose, mannitol and their mixtures at 25°. J. Phys. Chem. 65, 1954–1958 (1961)

    Article  CAS  Google Scholar 

  25. Rard, J.A.: Isopiestic determination of the osmotic and activity coefficients of {(1−y)H2SO4+yNa2SO4}(aq) at 298.15 K. I. Results for y=0.5 (NaHSO4) and y=0.55595, 0.70189, and 0.84920. J. Chem. Thermodyn. 21, 539–560 (1989)

    Article  CAS  Google Scholar 

  26. Stokes, R.H., Robinson, R.A.: Interactions in aqueous nonelectrolyte solutions. I. Solute-solvent equilibria. J. Phys. Chem. 70, 2126–2131 (1966)

    Article  CAS  Google Scholar 

  27. Robinson, R.A., Stokes, R.H.: Activity coefficients of mannitol and potassium chloride in mixed aqueous solutions at 25°. J. Phys. Chem. 66, 506–507 (1962)

    Article  CAS  Google Scholar 

  28. Clegg, S.L., Seinfeld, J.H.: Improvement of the Zdanovskii–Stokes–Robinson model for mixtures containing solutes of different charge types. J. Phys. Chem. A 108, 1008–1017 (2004)

    Article  CAS  Google Scholar 

  29. Clegg, S.L., Seinfeld, J.H., Edney, E.O.: Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. II. An extended Zdanovskii–Stokes–Robinson approach. J. Aerosol Sci. 34, 667–690 (2003)

    Article  CAS  Google Scholar 

  30. Mikhailov, V.A.: Thermodynamics of mixed electrolyte solutions. Russ. J. Phys. Chem. 42, 1414–1416 (1968)

    Google Scholar 

  31. Glasstone, S., Laidler, K.J., Eyring, H.: The Theory of Rate Process. McGraw-Hill, New York (1941)

    Google Scholar 

  32. Vogel, A.I., Bassett, J.: Vogel’s Textbook of Quantitative Inorganic Analysis: Including Elementary Instrumental Analysis, 5th edn. Longman, Essex (1989)

    Google Scholar 

  33. Stokes, R.H., Mills, R.: Viscosity of Electrolytes and Related Properties. Pergamon, New York (1965)

    Google Scholar 

  34. Zhang, H.L., Han, S.J.: Viscosity and density of water + sodium chloride + potassium chloride solutions at 298.15 K. J. Chem. Eng. Data 41, 516–520 (1996)

    Article  Google Scholar 

  35. Isono, T.: Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, LaCl3, Na2SO4, NaNO3, NaBr, KNO3, KBr, and Cd(NO3)2. J. Chem. Eng. Date 29, 45–52 (1984)

    Article  CAS  Google Scholar 

  36. Reilly, P.J., Stokes, R.H.: The diffusion coefficients of cadmium chloride and cadmium perchlorate in water at 25°. Aust. J. Chem. 24, 1361–1367 (1971)

    Article  CAS  Google Scholar 

  37. Hu, Y.F., Zhang, Z.X., Zhang, Y.H., Fan, S.S., Liang, D.Q.: Viscosity and density of the nonelectrolyte system mannitol + sorbitol + sucrose + H2O and its binary and ternary subsystems at 298.15 K. J. Chem. Eng. Data 51, 438–442 (2006)

    Article  CAS  Google Scholar 

  38. Mason, L.S., Kampmeyer, P.M., Robinson, A.L.: The viscosities of aqueous solutions of amino acids at 25 and 35°. J. Am. Chem. Soc. 74, 1287–1290 (1952)

    Article  CAS  Google Scholar 

  39. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworth, London (1965)

    Google Scholar 

  40. Ellerton, H.D., Reinfelds, G., Mulcahy, D.E., Dunlop, P.J.: Activity, density, and relative viscosity data for several amino acids, lactamide, and raffinose in aqueous solution at 25°. J. Phys. Chem. 68, 398–402 (1964)

    Article  CAS  Google Scholar 

  41. Filippov, V.K., Yakimov, M.A., Makarevskii, V.M., Luking, L.G.: A study of water activity in the ternary system KCl–CdCl2–H2O, KBr–CdBr2–H2O, and KBr–CdBr2–H2O at 25 °C. Russ. J. Inorg. Chem. 16, 1653–1655 (1971)

    Google Scholar 

  42. Chen, H., Sangster, J., Teng, T.T., Lenzi, F.: A general method of predicting the water activity of ternary aqueous solutions from binary data. Can. J. Chem. Eng. 51, 234–241 (1973)

    Article  CAS  Google Scholar 

  43. Ruby, C.E., Kawai, J.: The densities, equivalent conductances and relative viscosities at 25°, of solutions of hydrochloric acid, potassium chloride and sodium chloride, and of their binary and ternary mixtures of constant chloride-ion-constituent content. J. Am. Chem. Soc. 48, 1119–1128 (1926)

    Article  CAS  Google Scholar 

  44. Lengyel, S., Tamas, J., Giber, J., Holderith, J.: Study of viscosity of aqueous alkali halide solutions. J. Acta Chim. Hung. 40, 125–142 (1964)

    CAS  Google Scholar 

  45. Zhang, H.L., Chen, G.H., Han, S.J.: Viscosity and density of H2O + NaCl + CaCl2 and H2O + KCl + CaCl2 at 298.15 K. J. Chem. Eng. Data 42, 526–530 (1997)

    Article  CAS  Google Scholar 

  46. Liu, Y.S., Shi, M.X., Cao, R., Zhang, Y.H., Hu, Y.F.: Densities and viscosities of the quaternary system mannitol–sorbitol–D-glucose–H2O and its ternary subsystems at 298.15 K. Chin. J. Chem. Eng. 15, 703–709 (2007)

    Article  CAS  Google Scholar 

  47. Pitzer, K.S.: Electrolytes. From dilute solutions to fused salts. J. Am. Chem. Soc. 102, 2902–2906 (1980)

    Article  CAS  Google Scholar 

  48. Clegg, S.L., Pitzer, K.S.: Thermodynamics of multicomponent, miscible, ionic solutions: Generalized equations for symmetrical electrolytes. J. Phys. Chem. 96, 3513–3520 (1992)

    Article  CAS  Google Scholar 

  49. Zhang, Y., Furyk, S., Bergbreiter, D.E., Cremer, P.S.: Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J. Am. Chem. Soc. 127, 14505–14510 (2005)

    Article  CAS  Google Scholar 

  50. Bostrom, M., Williams, D.R.M., Ninham, B.W.: Specific ion effects: Why DLVO theory fails for biology and colloid systems. Phys. Rev. Lett. 87, 168103–168106 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Feng Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, YF., Zhang, XM., **, CW. et al. The Semi-ideal Solution Theory. 3. Extension to Viscosity of Multicomponent Aqueous Solutions. J Solution Chem 39, 1828–1844 (2010). https://doi.org/10.1007/s10953-010-9565-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9565-2

Keywords

Navigation