Log in

Unary NP-hardness of single-machine scheduling to minimize the total tardiness with deadlines

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

We revisit the classical single-machine scheduling problem to minimize total tardiness with deadlines. The problem is binary NP-hard even without the deadline restrictions. It was reported early in Koulamas and Kyparisis (Eur J Oper Res 133:447–453, 2001) that the exact complexity (unary NP-hardness or pseudo-polynomial-time solvability) of the problem is still open. We show that this problem is unary NP-hard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Du, J. Z., & Leung, J. Y. T. (1990). Minimizing total tardiness on one machine is NP-hard. Mathematics of Operations Research, 15, 483–495.

    Article  Google Scholar 

  • Emmons, H. (1969). One-machine sequencing to minimize certain functions of job tardiness. Operations Research, 17, 701–715.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. San Francisco: Freeman.

    Google Scholar 

  • Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5, 287–326.

    Article  Google Scholar 

  • Koulamas, C., & Kyparisis, G. J. (2001). Single machine scheduling with release times, deadlines and tardiness objectives. European Journal of Operational Research, 133, 447–453.

    Article  Google Scholar 

  • Lawler, E. L. (1977). A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness. Annals of Discrete Mathematics, 1, 331–342.

    Article  Google Scholar 

  • Yuan, J. J. (2017). Unary NP-hardness of minimizing the number of tardy jobs with deadlines. Journal of Scheduling, 20, 211–218.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the associate editor and three anonymous referees for their constructive comments and helpful suggestions. This research was supported by NSFC (11671368) and NSFC (11771406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **jiang Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of equations (5) and (6)

Appendix: Proof of equations (5) and (6)

We first recall that (i) \(\sigma \) is a feasible schedule (subject to the deadlines), (ii) \(J_0=J_{\sigma (3t+1)}\), and (iii) \(\mathcal{F}^{(i)}_{\sigma }= \{J_{\sigma (1)}, J_{\sigma (2)},\ldots , J_{\sigma (3t)}\}\cap \mathcal{J}^{(i)}\), \(i=1, 2, \ldots , t\). For convenience, we write \(\mathcal{F}^{(i)}=\mathcal{F}^{(i)}_{\sigma }\) for \(i=1,2, \ldots , t\). Then, we have \(\mathcal{F}^{(1)}\cup \mathcal{F}^{(2)}\cup \cdots \cup \mathcal{F}^{(t)}= \{J_{\sigma (1)}, J_{\sigma (2)},\ldots , J_{\sigma (3t)}\}\).

Note that \(J_0\) satisfies its deadline \(\bar{d}_0\) in \(\sigma \), and the first 3t normal jobs in \(\mathcal{F}^{(1)}\cup \mathcal{F}^{(2)}\cup \cdots \cup \mathcal{F}^{(t)}\) are scheduled before \(J_0\) in \(\sigma \). Then, we have \(p(\mathcal{F}^{(1)})+ p(\mathcal{F}^{(2)})+\cdots +p(\mathcal{F}^{(t)})+p_0\le \bar{d}_0 = L+P= p_0+3t\Delta _1+3\lambda _{t}\Delta _2+\lambda _{t}B\). Consequently,

$$\begin{aligned} p(\mathcal{F}^{(1)}){+} p(\mathcal{F}^{(2)}){+} \cdots {+} p(\mathcal{F}^{(t)}) {\le } 3t\Delta _1+ 3\lambda _{t}\Delta _2{+} \lambda _{t}B. \end{aligned}$$

For each \(i\in \{1, 2, \ldots , t-1\}\), we have the following observations:

  • All the jobs in \(\{J_0\}\cup \mathcal{F}^{(1)}\cup \mathcal{F}^{(2)}\cup \cdots \cup \mathcal{F}^{(i)}\) are completed by the deadline \(\bar{d}_0\) of \(J_0\). (This statement holds since \(\sigma \) is a feasible schedule, \(J_0=J_{\sigma (3t+1)}\), and \(\mathcal{F}^{(1)}\cup \mathcal{F}^{(2)}\cup \cdots \cup \mathcal{F}^{(i)} \subseteq \{J_{\sigma (1)}, J_{\sigma (2)},\ldots , J_{\sigma (3t)}\}\).)

  • For each \(i'\in \{i+1, i+2, \ldots , t\}\), all the jobs in \(\mathcal{J}^{(i')}\) are completed by their common deadline \(L+D^{(i')}\). (This statement holds since \(\sigma \) is a feasible schedule.)

  • \(L+P=\bar{d}_0< L+ D^{(t)}< L+D^{(t-1)}< \cdots < L+D^{(i+1)}\). (This statement holds since, from (1), we have \(P< D^{(t)}< D^{(t-1)}< \cdots < D^{(i+1)}\).)

From the above observations, we conclude that all the jobs in \(\{J_0\}\cup \mathcal{F}^{(1)}\cup \mathcal{F}^{(2)}\cup \cdots \cup \mathcal{F}^{(i)}\) and \(\mathcal{J}^{(t)}\cup \mathcal{J}^{(t-1)}\cup \cdots \cup \mathcal{J}^{(i+1)}\) are completed by time \(L+D^{(i+1)}\) in \(\sigma \). Then, we have that

$$\begin{aligned}&L+ p(\mathcal{F}^{(1)})+ p(\mathcal{F}^{(2)})+\cdots + p(\mathcal{F}^{(i)}) +p(\mathcal{J}^{(t)})\\&\qquad +\,p(\mathcal{J}^{(t-1)})+ \cdots + p(\mathcal{J}^{(i+1)})\\&\quad =\, p_0 + p(\mathcal{F}^{(1)})+ p(\mathcal{F}^{(2)})+ \cdots \\&\qquad +\,p(\mathcal{F}^{(i)})+ t(P^{(t)}+ P^{(t-1)}+\cdots +P^{(i+1)})\\&\quad \le L+D^{(i+1)}\\&\quad =\, L+ P^{(1)}+ P^{(2)}+ \cdots + P^{(i)}+ t(P^{(t)}\\&\qquad +\, P^{(t-1)}+\cdots +P^{(i+1)})\\&\quad = L+ 3i\Delta _1 +3\lambda _i\Delta _2 +\lambda _iB+ t(P^{(t)}\\&\qquad +\, P^{(t-1)}+\cdots +P^{(i+1)}). \end{aligned}$$

It follows that

$$\begin{aligned}&p(\mathcal{F}^{(1)})+ p(\mathcal{F}^{(2)})+ \cdots + p(\mathcal{F}^{(i)})\\&\quad \le 3i\Delta _1 +3\lambda _i\Delta _2 +\lambda _iB,~ i=1, 2, \ldots , t-1. \end{aligned}$$

This proves Eq. (5).

Since each normal job has a processing time larger than \(\Delta _1\) and \(3i\Delta _1+ 3\lambda _i\Delta _2+ \lambda _iB< (3i+1)\Delta _1\), from (5), we have

$$\begin{aligned} |\mathcal{F}^{(1)}|{+} |\mathcal{F}^{(2)}|{+} \cdots {+} |\mathcal{F}^{(i)}|{\le } 3i \text{ for } \text{ each } i=1, 2, \ldots , t.\nonumber \\ \end{aligned}$$
(21)

From (4), we have

$$\begin{aligned}&|\mathcal{F}^{(t)}|+ |\mathcal{F}^{(t-1)}|+ \cdots \nonumber \\&\quad +\,|\mathcal{F}^{(i+1)}|\ge 3(t-i) \text{ for } \text{ each } i=1, 2, \ldots , t-1. \end{aligned}$$
(22)

If there is some \(x\in \{1, 2, \ldots , t-1\}\) such that \(|\mathcal{F}^{(t)}|+|\mathcal{F}^{(t-1)}|+ \cdots + |\mathcal{F}^{(x+1)}|\ge 3(t-x)+1\), then we have

$$\begin{aligned}&|\mathcal{F}^{(1)}|+ 2|\mathcal{F}^{(2)}|+ \cdots + t|\mathcal{F}^{(t)}|\\&\quad =\, \sum _{i=0}^{t-1}(|\mathcal{F}^{(t)}|+\, |\mathcal{F}^{(t-1)}|+ \cdots + |\mathcal{F}^{(i+1)}|)\\&\quad \ge \sum _{i=0}^{t-1}3(t-i)+1= 3\lambda _{t} +1. \end{aligned}$$

Note that each normal job in \(\mathcal{F}^{(i)}\) has a processing time larger than \(\Delta _1 +i\Delta _2\) for \(1\le i\le t\). Then, the completion time of \(J_0\) can be estimated by the following way:

$$\begin{aligned}&p(\mathcal{F}^{(1)})+ p(\mathcal{F}^{(2)})+\cdots +p(\mathcal{F}^{(t)})+ p_0\\&\quad>\, |\mathcal{F}^{(1)}|(\Delta _1+ \Delta _2)+ |\mathcal{F}^{(2)}|(\Delta _1+ 2\Delta _2)+ \cdots \\&\qquad +\,|\mathcal{F}^{(t)}|(\Delta _1+ t\Delta _2)+ L\\&\quad = L+ 3t\Delta _1+ (|\mathcal{F}^{(1)}|+ 2|\mathcal{F}^{(2)}|\\&\qquad +\cdots +t|\mathcal{F}^{(t)}|)\Delta _2\\&\quad \ge L+ 3t\Delta _1 +3\lambda _{t}\Delta _2 +\Delta _2 >\, L+ P\\&\quad = \bar{d}_{0}. \end{aligned}$$

This contradicts the feasibility of \(\sigma \). Consequently, \(|\mathcal{F}^{(t)}|+ |\mathcal{F}^{(t-1)}|+ \cdots + |\mathcal{F}^{(i+1)}|= 3(t-i)\) for each i with \(1\le i\le t-1\). This further implies that \(|\mathcal{F}^{(i)}|= 3\) for each \(i=1, 2, \ldots , t\). Equation (6) follows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Yuan, J. Unary NP-hardness of single-machine scheduling to minimize the total tardiness with deadlines. J Sched 22, 595–601 (2019). https://doi.org/10.1007/s10951-019-00615-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-019-00615-9

Keywords

Navigation