Log in

Enhanced Saturation Magnetization in Cobalt Doped Ni-Zn Ferrite Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The Co substitution in Ni-Zn ferrites with respect to their structural and magnetic properties has been investigated in favor to select a material for future electromagnetic interference (EMI) shielding application purpose. Ni0.6−x Zn0.4Co x Fe2O4 (x = 0, 0.03, 0.09, 0.27) nanoparticles were synthesized using a sol-gel method and annealed at 700C. The prepared Ni0.6−x Zn0.4Co x Fe2O4 samples were characterized for their structural, stoichiometric, and magnetic properties. X-ray diffraction patterns reveal the formation of single-phase spinel cubic structure formed at x = 0.27. The influence of Co do** on structural properties of Ni-Zn ferrite was examined with X-ray diffraction and field emission scanning electron microscopy. The stoichiometry of prepared samples has also been examined by energy-dispersive X-ray spectroscopy. The magnetic behavior was studied using a vibrating sample magnetometer at room temperature. The variations in values of saturation magnetization were explained on the basis of spin canting effect imparted by hematite (α-Fe2O3) phase with spinel phase. Ni0.6−x Zn0.4Co x Fe2O4 with x = 0.27 possesses best saturation magnetization and can be useful in EMI shielding material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Suzuki, T., Tanaka, T., Ikemizu, K.: High density recording capability for advanced particulate media. J. Magn. Magn. Mater. 235, 159 (2001)

    Article  ADS  Google Scholar 

  2. Olsen, E., Thonstad, J.: Nickel ferrite as inert anodes in aluminium electrolysis. J. Appl. Electrochem. 29, 293 (1999)

    Article  Google Scholar 

  3. Gubbala, S., Nathani, H., Koizol, K., Misra, R.D.K.: Magnetic properties of nanocrystalline Zn–Mn, and Ni–Mn ferrites synthesized by reverse micelle technique. Phys. B Condens. Matter 348, 317 (2004)

    Article  ADS  Google Scholar 

  4. Rao, B.P., Rao, K.H.: Initial permeability dependence on the microstructural and compositional changes in Ni-Zn-Sc ferrites Le. J. Phys. 7, 239 (1997)

    Google Scholar 

  5. Costa, A.C.F.M., Tortella, E., Morelli, M.R., Kiminami, R.H.G.A.: Synthesis, microstructure and magnetic properties of Ni–Zn ferrites. J. Magn. Magn. Mater. 256, 174 (2003)

    Article  ADS  Google Scholar 

  6. Da Silva, J.B, Mohallem, N.D.S.: Preparation of composites of nickel ferrites dispersed in silica matrix. J. Magn. Magn. Mater. 226, 1393 (2001)

    Article  ADS  Google Scholar 

  7. Jalaly, M., Enayati, M.H., Karimzadeh, F.: Investigation of structural and magnetic properties of nanocrystalline Ni0.3Zn0.7Fe2O4 prepared by high energy ball milling. J. Alloys Compd. 480, 737 (2009)

    Article  Google Scholar 

  8. Sertkol, M., Köseoğlu, Y., Baykal, A., Kavas, H., Başaran, A.C.: Synthesis and magnetic characterization of Zn0.6Ni0.4Fe2O4 nanoparticles via a polyethylene glycol-assisted hydrothermal route. J. Magn. Magn. Mater. 321, 157 (2009)

    Article  ADS  Google Scholar 

  9. Shannigrahi, S.R., Pramoda, K.P., Nugroho, F.A.A.: Synthesis and characterizations of microwave sintered ferrite powders and their composite films for practical applications. J. Magn. Magn. Mater. 324, 140 (2012)

    Article  ADS  Google Scholar 

  10. Rezlescu, E., Sachelarie, L., Popa, P.D., Rezlescu, N.: Effect of substitution of divalent ions on the electrical and magnetic properties of Ni-Zn-Me ferrites. IEEE Trans. Magn. 36, 3962 (2000)

    Article  ADS  Google Scholar 

  11. Rao, B.P., Caltun, O.F.: Microstructure and magnetic behaviour of Ni-Zn-Co ferrites. J. Optoelectron. Adv. Mater. 8, 995 (2006)

    Google Scholar 

  12. Shannigrahi, S.R., Pramoda, K.P., Nugroho, F.A.A.: Synthesis and characterizations of microwave sintered ferrite powders and their composite films for practical applications. J. Magn. Magn. Mater. 324, 140 (2012)

    Article  ADS  Google Scholar 

  13. Shen, X., Wang, Y., Yang, X., **a, Y., Zhuang, J.F., Tang, P.D.: Megahertz magneto-dielectric properties of nanosized NiZnCo ferrite from CTAB-assisted hydrothermal process . Trans. Nonferrous Metals Soc. China 19, 1588 (2009)

    Article  Google Scholar 

  14. Ghodake, J.S., Kambale, R.C., Kulkarni, S.D., Sawant, S.R., Suryavanshi, S.S.: Complex permeability studies of Ni–Co–Zn ferrites synthesized by an oxalate precursor method. Smart Mater. Struct. 18, 125009 (2009)

    Article  ADS  Google Scholar 

  15. Pereira, S.L., Pfannes, H.-D., Mendes Filho, A.A., Pinto, L.C.B., Chíncaro, M.A.: A comparative study of NiZn ferrites modified by the addition of cobalt. Mater. Res. 2, 231 (1999)

    Article  Google Scholar 

  16. Li, L.-Z., Peng, L., Zhu, X.-H., Yang, D.-Y.: Effects of cu and co substitution on the properties of Ni-Zn ferrite thin films. Journal of Electronic Science and Technology 10, 88 (2012)

    Google Scholar 

  17. Yoo, B.S., Chae, Y.G., Kwon, Y.M., Kim, D.H., Lee, B.W., Liu, C.: Effects of solution concentration on the structural and magnetic properties of Ni0.5Zn0.5Fe2O4 ferrite nanoparticles prepared by sol-gel. J. Magn. 18, 230 (2013)

    Article  Google Scholar 

  18. Kwon, Y.M., Lee, M.Y., Mustaqima, M., Liu, C., Lee, B.W.: Structural and magnetic properties of Ni0.6Zn0.4Fe2O4 ferrite prepared by solid state reaction and sol-gel. J. Magn. 19, 64 (2014)

    Article  Google Scholar 

  19. George, M., Nair, S.S., John, A.M., Joy, P.A., Anantharaman, M.R.: Structural magnetic and electrical properties of the sol-gel prepared Li0.5Fe2.5O4 fine particles. J. Phys. D. Appl. Phys. 39, 900 (2006)

    Article  ADS  Google Scholar 

  20. Prabahar, S., Dhanam, M.: CdS thin films from two different chemical baths—structural and optical analysis. J. Cryst. Growth 285, 41 (2005)

    Article  ADS  Google Scholar 

  21. Iqbal, M.J., Siddiquah, M.R.: Structural, electrical and magnetic properties of Zr–Mg cobalt ferrite. J. Magn. Magn. Mater. 320, 845 (2008)

    Article  ADS  Google Scholar 

  22. Ahlawat, A., Sathe, V.G., Reddy, V.R., Gupta, A.: Mossbauer Ramaand X-ray diffraction studies of superparamagnetic NiFe2O4 nanoparticles prepared by sol–gel auto-combustion method. J. Magn. Magn. Mater. 323, 2049 (2011)

    Article  ADS  Google Scholar 

  23. Neel, L.: Théorie du trâınagemagnétique des ferromagnétiques en grains fins avec applications auxterres cuites. Ann. Geophys. 5, 99 (1949)

    Google Scholar 

  24. Bercoff, P.G., Bertorello, H.R.: Localized canting effect in Zn-substituted Ni ferrites. J. Magn. Magn. Mater. 213, 56 (2000)

    Article  ADS  Google Scholar 

  25. Shen, X., Wang, Y., Yang, X., Lu, L., Huang, L.: 0.3–3 GHz magneto-dielectric properties of nanostructured NiZnCo ferrite from hydrothermal process. J. Mater. Sci: Mater. Electron. 2, 630 (2010)

    Google Scholar 

  26. Thakur, S., Katyal, S.C., Singh, M.: Structural and magnetic properties of nano nickel–zinc ferrite synthesized by reverse micelle technique. J. Magn. Magn. Mater. 321, 1 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are very thankful for the financial aid to this work provided by the Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragini Raj Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kumar, H., Kumar, M. et al. Enhanced Saturation Magnetization in Cobalt Doped Ni-Zn Ferrite Nanoparticles. J Supercond Nov Magn 28, 3557–3564 (2015). https://doi.org/10.1007/s10948-015-3192-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3192-5

Keywords

Navigation