Log in

Experimental and theoretical verification of cation distribution and spin canting effect via structural and magnetic studies of NiZnCo ferrite nanoparticles

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Nanoparticles of Ni0.6–xZn0.4CoxFe2O4 were prepared via an aqueous sol–gel auto-combustion route. The Ni–Zn–ferrite system was doped with Co to improve the magnetic properties. Structural determination of the phase and crystallite size was achieved using the X-ray diffraction technique. Spinel cubic (single-phase) nanoparticles were formed at some specific compositions, x = 0.264 and x = 0.528, whereas at other compositions, a partial hematite secondary phase was formed. The values of saturation magnetization depend upon the concentration of the hematite phase; in this situation, the value of magnetic saturation decreases, causing a high spin canting effect that results in a decrease in the net magnetic moment. Further do** of Co2+ ions enhances the magnetic properties because of its high magnetic moment and distributions. Theoretical analysis using the most suitable proposed cation distribution verified the experimental findings. The observed structural and magnetic findings may contribute to improve electromagnetic-interference-shielding and magnetic-recording-device applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data is the part of ongoing research, can be made available on genuine request.

References

  1. Suzuki, T., Tanaka, T., Ikemizu, K.: High density recording capability for advanced particulate media. J. Magn. Magn. Mater. 235(1), 159 (2001)

    Article  CAS  Google Scholar 

  2. Giannakopoulou, T., Kompotiatis, L., Kontogeorgakos, A., Kordas, G.: Microwave behavior of ferrites prepared via sol–gel method. J. Magn. Magn. Mater. 46, 360 (2002)

    Article  Google Scholar 

  3. Olsen, E., Thonstad, J.: Nickel ferrite as inert anodes in aluminium electrolysis: part I Material fabrication and preliminary testing. J. Appl. Electrochem. 29(3), 293 (1999)

    Article  CAS  Google Scholar 

  4. Augustion, C.O., Prabhakaran, D., Srinivasan, L.K.: Fabrication and characterization of NiCr2O4 spinel. J. Mater Sci. 12, 383 (1993)

    CAS  Google Scholar 

  5. Huq, M.F., Saha, D.K., Ahmed, R., Mahmood, Z.H.: Ni-Cu-Zn ferrite research: a brief review. J. Sci. Res. 5(2), 215 (2013)

    Article  CAS  Google Scholar 

  6. Amiri, G.R., Yousefi, M.H., Abolhassani, M.R., Manouchehri, S., Keshavarz, M.H., Fatahian, S.: Magnetic properties and microwave absorption in Ni–Zn and Mn–Zn ferrite nanoparticles synthesized by low-temperature solid-state reaction. J. Magn. Magn. Mater. 323(6), 730 (2011)

    Article  CAS  Google Scholar 

  7. Mohapatra, M., Anand, S.: Synthesis and applications of nano-structured iron oxides/hydroxides–a review. Int. J. Eng. Sci. Technol. 2(8), 127 (2010)

    Google Scholar 

  8. Verma, A., Chatterjee, R.: Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn–Zn and Ni–Zn ferrites synthesized by the citrate precursor technique. J. Magn. Magn. Mater. 306(2), 313 (2006)

    Article  CAS  Google Scholar 

  9. Kwon, Y.M., Lee, M.Y., Mustaqima, M., Liu, C., Lee, B.W.: Journal of Magnetics. 19, 34 (2014)

    Article  Google Scholar 

  10. Bercoff, P.G., Bertorello, H.R.: Localized canting effect in Zn-substituted Ni ferrites. J. Magn. Magn. Mater. 213, 56 (2000)

    Article  CAS  Google Scholar 

  11. Leng, P.L., Naseri, M.G., Saion, E., Shaari, A.H., Kamaruddin, M.A.: Synthesis and characterization of Ni–Zn ferrite nanoparticles (Ni0.25Zn0.75Fe2O4) by thermal treatment method. Advances in Nanoparticles 2(4), 378 (2013)

    Article  Google Scholar 

  12. Sláma, J., Grusková, A., Ušáková, M., Ušák, E., Šubrt, J., Lukáč, J.: Substituted Ni–Zn ferrites for passive sensor applications. J. Electr. Eng. 57(8), 159 (2006)

    Google Scholar 

  13. Costa, A.C.F.M., Tortella, E., Morelli, M.R., Kiminami, R.H.G.A.: Synthesis, microstructure and magnetic properties of Ni–Zn ferrites. J. Magn. Magn. Mater. 256(1), 174 (2003)

    Article  CAS  Google Scholar 

  14. Da Silva, J.B., Mohallem, N.D.S.: Preparation of composites of nickel ferrites dispersed in silica matrix. J. Magn. Magn. Mater. 226, 1393 (2001)

    Article  Google Scholar 

  15. Jalaly, M., Enayati, M.H., Karimzadeh, F.: Investigation of structural and magnetic properties of nanocrystalline Ni0.3Zn0.7Fe2O4 prepared by high energy ball milling. J. Alloys. Compd 480(2), 737 (2009)

    Article  CAS  Google Scholar 

  16. Sertkol, M., Köseoğlu, Y., Baykal, A., Kavas, H., Başaran, A.C.: Synthesis and magnetic characterization of Zn0.6Ni0.4Fe2O4 nanoparticles via a polyethylene glycol-assisted hydrothermal route. J Magn Magn Mater 321, 3157 (2009)

    Article  Google Scholar 

  17. Damnjanovic, M., Stojanovic, G., Desnica, V., Zivanov, L., Raghavendra, R., Bellew, P., Mcloughlin, N.: Analysis, design, and characterization of ferrite EMI suppressors. IEEE Trans. Magn. 42(2), 270 (2006)

    Article  CAS  Google Scholar 

  18. Abdeen, A.M.: Dielectric behaviour in Ni–Zn ferrites. J. Magn. Magn. Mater. 192(1), 121 (1999)

    Article  CAS  Google Scholar 

  19. Shannigrahi, S.R., Pramoda, K.P., Nugroho, F.A.A.: Synthesis and characterizations of microwave sintered ferrite powders and their composite films for practical applications. J. Magn. Magn. Mater. 324(2), 140 (2012)

    Article  CAS  Google Scholar 

  20. Rao, B.P., Kumar, A.M., Rao, K.H., Murthy, Y.L.N., Caltun, O.F., Dumitru, I., Spinu, L.: Synthesis and magnetic studies of Ni–Zn ferrite nanoparticles. J. Opto. electron. Adv. M. 8(5), 1703 (2006)

    CAS  Google Scholar 

  21. Pereira, S.L., Pfannes, H.D., Mendes Filho, A.A., Pinto, L.C.B., Chíncaro, M.A.: A comparative study of NiZn ferrites modified by the addition of cobalt. Mater. Res. 2(3), 231 (1999)

    Article  CAS  Google Scholar 

  22. Li, L.Z., Peng, L., Zhu, X.H., Yang, D.Y.: Effects of Cu and Co substitution on the properties of NiZn ferrite thin films. Journal of Electronic Science and Technology. 10(1), 88 (2012)

    CAS  Google Scholar 

  23. Rezlescu, E., Sachelarie, L., Popa, P.D., Rezlescu, N.: Effect of substitution of divalent ions on the electrical and magnetic properties of Ni–Zn–Me ferrites. IEEE Trans. Magn. 36(6), 3962 (2000)

    Article  CAS  Google Scholar 

  24. **a, Y., Song, Y.Q., Lin, C.G., Cui, S., Fang, Z.Z.: Effect of carbide formers on microstructure and thermal conductivity of diamond-Cu composites for heat sink materials. Transactions of Nonferrous Metals Society of China. 19(5), 1161 (2009)

    Article  CAS  Google Scholar 

  25. Mao, W.W., Yao, Q.F., Fan, Y.F., Wang, Y.L., Wang, X.F., Pu, Y., Li, X.A.: Combined experimental and theoretical investigation on modulation of multiferroic properties in BiFeO3 ceramics induced by Dy and transition metals co-do**. J. Alloys. Compds. 784, 117 (2019)

    Article  CAS  Google Scholar 

  26. Zhang, W.Z., Zhu, X.Y., Wang, L.J., Xu, X., Yao, Q.F., Mao, W.W., Li, X.A.: Study on the magnetic and ferroelectric properties of Bi0.95Dy0.05Fe0.95M0.05O3 (M= Mn, Co) ceramics. J. Supercond. Nov. Magn 30, 11–3001 (2017)

    Article  Google Scholar 

  27. Zhu, Y.Y., Quan, C.Y., Ma, Y.H., Wang, Q., Mao, W.W., Wang, X.F., Zhang, J., Min, Y.G., Yang, J.P., Li, X.A., Huang, W.: Effect of Eu, Mn co-do** on structural, optical and magnetic properties of BiFeO3nanoparticles. Mat. Sci. Semicon. Proc. 57, 178 (2017)

    Article  CAS  Google Scholar 

  28. Kumar, R., Kumar, H., Singh, R.R., Barman, P.B.: Variation in magnetic and structural properties of Co-doped Ni–Zn ferrite nanoparticles: a different aspects. J. Sol-Gel Sci. Techn. 78(3), 566 (2016)

    Article  CAS  Google Scholar 

  29. Veverka, M., Jirák, Z., Kaman, O., Knížek, K., Maryško, M., Pollert, E., Závěta, K., Lančok, A., Dlouhá, M., Vratislav, S.: Distribution of cations in nanosize and bulk Co–Zn ferrites. Nanotechnology 22, 34–345701 (2011)

    Article  Google Scholar 

  30. Choi, E.J., Ahn, Y.K., Song, K.C., An, D.H., Lee, B.G., Kang, K.U.: Cation distribution and spin-canted structure in cobalt ferrite particles from a cobalt-iron hydroxide carbonate complex. J. Korean. Phys. Soc. 44(6), 1518 (2004)

    CAS  Google Scholar 

  31. Fayek, M.K., Bahgat, A.A., Abbas, Y.M., Moberg, L.: Neutron diffraction and Mossbauer effect study on a cobalt substituted zinc ferrite. J. Phys. C Solid State Phys. 15(11), 2509 (1982)

    Article  CAS  Google Scholar 

  32. Sawatzky, G.A., van der Woude, F., Morrish, A.H.: Mössbauer study of several ferrimagnetic spinels. Phys. Rev. 187(2), 747 (1969)

    Article  CAS  Google Scholar 

  33. Kumar, A.M., Rao, P.A., Verma, M.C., Chaudhary, G.S.V.R.K., Rao, K.H.: Cation distribution in Co0.7Me0.3Fe2O4 (Me= Zn, Ni and Mn). J Mod Phys 2(9), 1083 (2011)

    Article  CAS  Google Scholar 

  34. Prabahar, S., Dhanam, M.: CdS thin films from two different chemical baths—structural and optical analysis. J. Cryst. Growth. 285(1), 41 (2005)

    Article  CAS  Google Scholar 

  35. **a, A.L., Liu, S.K., **, C.G., Chen, L., Lv, Y.H.: Hydrothermal Mg1-xZnxFe2O4 spinel ferrites: phase formation and mechanism of saturation magnetization. Mater. Lett. 105, 199 (2013)

    Article  CAS  Google Scholar 

  36. Zaki, H.M., Al-Heniti, S.H., Elmosalami, T.A.: Structural magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J Alloys Compd 633, 104 (2015)

    Article  CAS  Google Scholar 

  37. Hakim, M.A., Kumar Nath, S., Sikder, S.S., Hanium Maria, K.: Cation distribution and electromagnetic properties of spinel type Ni–Cd ferrites. J. Phys. Chem. Solids. 74(9), 1316 (2013)

    Article  CAS  Google Scholar 

  38. Mohammed, K.A., Al-Rawas, A.D., Gismelseed, A.M., Sellai, A., Widatallah, H.M., Yousif, A., Elzain, M.E., Shongwe, M.: Infrared and structural studies of Mg1–xZnxFe2O4 ferrites. Physica B. 407(4), 795 (2012)

    Article  CAS  Google Scholar 

  39. Sharma, R., Thakur, P., Kumar, M., Thakur, N., Negi, N.S., Sharma, P., Sharma, V.: Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloys Compd 684, 569 (2016)

    Article  CAS  Google Scholar 

  40. Houshiar, M., Zebhi, F., Razi, Z.J., Alidoust, A., Askari, Z.: Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. J. Magn. Magn. Mater. 371, 43 (2014)

    Article  CAS  Google Scholar 

  41. Goldman, A.: 2006 Modern Ferrite Technology. Spring. Sci. & Bus. Med. Germ

  42. Shen, X., Wang, Y.X., Yang, X., Lu, L.Q., Huang, L.: 0.3–3 GHz magneto-dielectric properties of nanostructured NiZnCo ferrite from hydrothermal process. J Mater Sci Mater Electron 21(6), 630 (2010)

    Article  CAS  Google Scholar 

  43. Thakur, S., Katyal, S.C., Singh, M.: Structural and magnetic properties of nano nickel–zinc ferrite synthesized by reverse micelle technique. J. Magn. Magn. Mater. 321, 1 (2009)

    Article  CAS  Google Scholar 

  44. Shenoy, S.D., Joy, P.A., Anantharaman, M.R.: Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite. J. Magn. Magn. Mater. 269(2), 217 (2004)

    Article  CAS  Google Scholar 

  45. Lodhi, M.Y., Mahmood, K., Mahmood, A., Malik, H., Warsi, M.F., Shakir, I., Asghar, M., Khan, M.A.: New Mg0.5CoxZn0.5− xFe2O4 nano-ferrites: structural elucidation and electromagnetic behavior evaluation. Curr. Appl. Phys 14, 5–716 (2014)

    Article  Google Scholar 

  46. Arana, M., Galván, V., Jacobo, S.E., Bercoff, P.G.: Cation distribution and magnetic properties of LiMnZn ferrites. J. Alloys Compd. 568, 5 (2013)

    Article  CAS  Google Scholar 

  47. Kumar, G., Shah, J., Kotnala, R.K., Singh, V.P., Garg, G., Shirsath, S.E., Batoo, K.M., Singh, M.: Superparamagnetic behaviour and evidence of weakening in super-exchange interactions with the substitution of Gd3+ ions in the Mg–Mn nanoferrite matrix. Mater. Res. Bull. 63, 216 (2015)

    Article  CAS  Google Scholar 

  48. Vasoya, N.H., Lakhani, V.K., Sharma, P.U., Modi, K.B., Kumar, R., Joshi, H.H.: Study on the electrical and dielectric behaviour of Zn-substituted cobalt ferrialuminates. J. Phys-Condens. Mat 18(34), 8063 (2006)

    Article  CAS  Google Scholar 

  49. Lakhani, V.K., Pathak, T.K., Vasoya, N.H., Modi, K.B.: Structural parameters and X-ray Debye temperature determination study on copper-ferrite-aluminates. Solid State Sci. 13(3), 539 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very thankful for the financial aid to this work provided by Jaypee University of Information Technology, Waknaghat, Solan, H.P., India. We also thank SAIF, Panjab University, Chandigarh for characterization of our samples.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Ra**der Kumar (first author) All the work has been done: sample preparation, characterization, interpretation, and manuscript writing. Dipti Rawat (joint first author) Interpretation and manuscript writing. Prof. P.B. Barman (third author) Manuscript corrections and guidance. Dr. Ragini Raj Singh (corresponding and senior author) All work has been planned and guided, interpretation of the results, and manuscript writing.

Corresponding author

Correspondence to Ragini Raj Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Un-doped and cobalt-doped Ni–Zn nanoparticles synthesized by aqueous route.

2. Single phase spinel cubic nanoparticles have been prepared at x = 0.264 and 0.528.

3. Hematite phase and do** of Co2+ can tune the saturation magnetization.

4. Mr, Mc increased on Co2+ do** due to + ve magneto-crystalline anisotropy energy.

5. Theoretical evaluation supports the experimental results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Rawat, D., Barman, P.B. et al. Experimental and theoretical verification of cation distribution and spin canting effect via structural and magnetic studies of NiZnCo ferrite nanoparticles. J Aust Ceram Soc 58, 101–111 (2022). https://doi.org/10.1007/s41779-021-00671-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00671-5

Keywords

Navigation