Log in

Release behavior and cytotoxicity of captopril-intercalated layered double hydroxide for an antihypertensive drug delivery system

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Intercalation of an antihypertensive drug, captopril (CPL) into zinc–aluminum-layered (ZAL) double hydroxide carrier was successfully accomplished via co-precipitation method. The resulting material was investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric and differential thermogravimetric (TGA/DTG) analysis, carbon, hydrogen, nitrogen, and sulfur (CHNS) analysis, field emission scanning electron microscopy, and accelerated surface area and porosity (ASAP) analysis. High loading percentage of CPL (61.6% [w/w]) in zinc–aluminum–captopril-layered double hydroxide (ZAC) with an interlayer spacing of 9.7 Å suggested the successful intercalation of CPL into the ZAL interlayer. Release percentages of the drug into Na3PO4, Na2CO3, and NaCl solutions are 48%, 30%, and 24%, respectively. Pseudo-second order kinetic model with correlation coefficient, r2 > 0.9 best defined the release behavior of CPL from ZAC nanocomposite into the aqueous media. Cytotoxicity study reveals lower toxic nature of ZAC nanohybrid (IC50 > 200 µg/mL) compared to pristine CPL drug (IC50 < 200 µg/mL) when tested on HUVEC and 3T3 cells. For the work described in this research, the organic-inorganic hybrid nanocomposite, ZAC could have good application in slow releases formulation of the drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Saxena, S. Antoniou, N. Hamedi, P. Robinson, H. Singh, O. Mukhtar, V. Kapil, M.D. Lobo, Br. J. Gen. Pract. 66(645), e285–e287 (2016). https://doi.org/10.3399/bjgp16X684709

    Article  Google Scholar 

  2. H. Asiabi, Y. Yamini, M. Alipour, M. Shamsayei, S. Hosseinkhani, Mater. Sci. Eng. 97, 96–102 (2019). https://doi.org/10.1016/j.msec.2018.12.017

    Article  CAS  Google Scholar 

  3. S. Javad, Z. Zarnegar, J. Saudi Chem. Soc. 18, 85–99 (2014). https://doi.org/10.1016/j.jscs.2012.12.009

    Article  CAS  Google Scholar 

  4. V. Rives, M. Arco, C. Martín, J. Control. Release 169(1–2), 28–39 (2013). https://doi.org/10.1016/j.jconrel.2013.03.034

    Article  CAS  Google Scholar 

  5. V.K. Ameena Shirin, R. Sankar, A.P. Johnson, H.V. Gangadharappa, K. Pramod, J. Control. Release 330, 398–426 (2021). https://doi.org/10.1016/j.jconrel.2020.12.041

    Article  CAS  Google Scholar 

  6. A.L.M.D. de Sousa, W.M. dos Santos, M.L. de Souza, L.C.P.B.B. Silva, A.E.H.K. Yun, C.S.B. Aguilera, B. de França Chagas, L.A. Rolim, R.M.F. da Silva, P.J.R. Neto, Eur. J. Pharm. Sci. 165, 105922 (2021). https://doi.org/10.1016/j.ejps.2021.105922

    Article  CAS  Google Scholar 

  7. F. Cavani, Trifira and a vaecar. Catal. Today 11, 173–301 (1991). https://doi.org/10.1016/0920-5861(91)80068-K

    Article  CAS  Google Scholar 

  8. X. Ruren, X. Yan, Modern Inorganic Synthetic Chemistry, 2nd edn. (Elsevier, Amsterdam, 2017), pp.493–543. https://doi.org/10.1016/B978-0-444-63591-4.00018-5

    Book  Google Scholar 

  9. H. Sun, Z. Chu, D. Hong, G. Zhang, Y. **e, L. Li, K. Shi, J. Alloys Compd. 658, 561–568 (2016). https://doi.org/10.1016/j.jallcom.2015.10.237

    Article  CAS  Google Scholar 

  10. S.K. Pillai, P. Kleyi, M. de Beer, P. Mudaly, Appl. Clay Sci. 199, 105868 (2020). https://doi.org/10.1016/j.clay.2020.105868

    Article  CAS  Google Scholar 

  11. S.H. Sarijo, M.L. Jadam, F. Md Saleh, AMR 1142, 230–233 (2017). https://doi.org/10.4028/www.scientific.net/amr.1142.230

    Article  Google Scholar 

  12. S.B. Khan, K.A. Alamry, N.A. Alyahyawi, A.M. Asiri, Int. J. Nanomed. 13, 3203–3222 (2018). https://doi.org/10.2147/ijn.s138840

    Article  CAS  Google Scholar 

  13. S. Dasgupta, IOP: Mater. Sci. Eng. 225(1), 012005 (2017). https://doi.org/10.1088/1757-899X/225/1/012005

    Article  Google Scholar 

  14. Y. Ma, S. Zhang, Y. Wang, Z. Yang, Y. Mao, Nanotech 15(3), 2050028 (2020). https://doi.org/10.1142/S1793292020500289

    Article  CAS  Google Scholar 

  15. X. Xue, F. Yu, B. Peng, G. Wang, Y. Lv, L. Chen, Y. Yao, B. Dai, Y. Shi, X. Guo, J. Sustain. Energy Fuels 3, 237–244 (2019). https://doi.org/10.1039/C8SE00394G

    Article  CAS  Google Scholar 

  16. N.B. Allou, A. Yadav, M. Pal, R.L. Goswamee, Carbohydr. Polym. 186, 282–289 (2018). https://doi.org/10.1016/j.carbpol.2018.01.066

    Article  CAS  Google Scholar 

  17. G. Choi, H. Piao, Z.A. Alothman, A. Vinu, C. Yun, J. Choy, Int. J. Nanomed. 11, 337–348 (2016). https://doi.org/10.2147/IJN.S95611

    Article  CAS  Google Scholar 

  18. M. Chakraborty, M.K. Mitra, J. Chakraborty, Bull. Mater. Sci. 17, 146–155 (2017). https://doi.org/10.1007/s12034-017-1468-z

    Article  CAS  Google Scholar 

  19. S. Saha, S. Ray, R. Acharya, T.K. Chatterjee, J. Chakraborty, Appl. Clay Sci. 135, 493–509 (2017). https://doi.org/10.1016/j.clay.2016.09.030

    Article  CAS  Google Scholar 

  20. E.E. Gaskell, T. Ha, A.R. Hamilton, Ther. Deliv. 9(9), 653–666 (2018). https://doi.org/10.4155/tde-2018-0046

    Article  CAS  Google Scholar 

  21. M. Joy, S.J. Iyengar, J. Chakraborty, S. Ghosh, Front. Mater. Sci. 11, 395–408 (2017). https://doi.org/10.1007/s11706-017-0400-1

    Article  Google Scholar 

  22. K. Zhang, Z.P. Xu, J. Lu, Z.Y. Tang, H.J. Zhao, D.A. Good, M.Q. Wei, Int. J. Mol. Sci. 15(5), 7409–7428 (2014). https://doi.org/10.3390/ijms15057409

    Article  CAS  Google Scholar 

  23. A. Grillo, L. Salvi, P. Coruzzi, P. Salvi, G. Parati, Nutrients 11(9), 1970 (2019). https://doi.org/10.3390/nu11091970

    Article  CAS  Google Scholar 

  24. H. Zhang, K. Zou, S. Guo, X. Duan, J. Solid State Chem. 179, 1792–1801 (2006). https://doi.org/10.1016/j.jssc.2006.03.019

    Article  CAS  Google Scholar 

  25. T. Biswick, W. Jones, A. Pacula, E. Serwick, J. Solid State Chem. 179, 49–55 (2006). https://doi.org/10.1016/j.jssc.2005.09.040

    Article  CAS  Google Scholar 

  26. A. Elhalil, M. Farnane, A. Machrouhi, F.Z. Mahjoubi, R. Elmoubarki, H. Tounsadi, M. Abdennouri, N. Barka, J. Sci. Adv. Mater. Devices 3(2), 188–195 (2018). https://doi.org/10.1016/j.jsamd.2018.03.005

    Article  Google Scholar 

  27. A. Hayashi, H. Nakayama, Chem. Lett. 40, 276278 (2011). https://doi.org/10.1246/cl.2011.276

    Article  CAS  Google Scholar 

  28. S.J. **a, Z.M. Ni, Q. Xu, B.X. Xu, J. Hu, J. Solid State Chem. 181, 2610–2619 (2008). https://doi.org/10.1016/j.jssc.2008.06.009

    Article  CAS  Google Scholar 

  29. L.P. Tang, H.M. Cheng, S.M. Cui, X.R. Wang, L.Y. Song, W. Zhou, S.J. Li, Colloids Surf. B 165, 111–117 (2018). https://doi.org/10.1016/j.colsurfb.2018.02.017

    Article  CAS  Google Scholar 

  30. Z. Jubri, N.Z.A. Mohd Yusuf, S.H. Sarijo, E.S. Marsom, M.Z. Hussein, J. Porous Mater. 24(3), 573–582 (2017). https://doi.org/10.1007/s10934-106-0293-x

    Article  Google Scholar 

  31. M.L. Jadam, S.A.S. Mohamad, H.M. Zaki, Z. Jubri, S.H. Sarijo, J. Drug Deliv. Sci. Technol. 62, 102314 (2021). https://doi.org/10.1016/j.jddst.2020.102314

    Article  CAS  Google Scholar 

  32. S.H. Sarijo, A. Ahmad, S.M.N. Muhsin, Z. Jubri, J. Porous Mater. 26, 41–50 (2019). https://doi.org/10.1007/s10934-018-0605-4

    Article  CAS  Google Scholar 

  33. T.R.R. Timóteo, C.G. de Melo, L.J. de Alencar Danda, L.C.P.B.B. Silva, D.A.F. Fontes, P.C.D. Silva, C.S.B. Aguilera, L. da Paixão Siqueira, L.A. Rolim, P.J.R. Neto, Appl. Clay Sci. 180, 105197 (2019). https://doi.org/10.1016/j.clay.2019.105197

    Article  CAS  Google Scholar 

  34. J.T. Nivaldo, Global Ed. (Pearson Edu. Incorp., London, 2017), 672–679

    Google Scholar 

  35. M.S. Usman, M.Z. Hussein, A.U. Kura, S. Fakurazi, M.J. Masarudin, F.F.A. Saad, Mater. Chem. Phys. 240, 122232 (2020). https://doi.org/10.1016/j.matchemphys.2019.122232

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was fully funded by Universiti Tenaga Nasional BOLD Research Grant 2021 (Research Grant No. J510050002/2021081).

Author information

Authors and Affiliations

Authors

Contributions

MLJ produced samples, performed data analysis and interpretation, and drafted the manuscript. ZJ conceived the study, participated in the design and coordination of scientific terms, and assisted to draft the manuscript. SHS assisted in the characterization of the synthesized materials.

Corresponding author

Correspondence to Zaemah Jubri.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadam, M.L., Jubri, Z. & Sarijo, S.H. Release behavior and cytotoxicity of captopril-intercalated layered double hydroxide for an antihypertensive drug delivery system. J Porous Mater 30, 223–233 (2023). https://doi.org/10.1007/s10934-022-01333-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01333-y

Keywords

Navigation