Log in

Recent Progress in Development of Functionalized Lignin Towards Sustainable Applications

  • Review Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Lignin is classified as the second most abundantly available biopolymer after cellulose and as a main aromatic resource material. Lignin structure differs based on sources of origin and species of biomass with around 15–40% of lignin content based on dry weight. It is extracted from various types of lignocellulosic biomass through different pul** extraction methods. After extraction, lignin can be further functionalized through different chemical reactions to meet the requirements and specifications before being used in end products. Therefore, in this review paper, the details on extraction and the type of lignin, as well as chemical functionalization, are discussed. The chemical functionalization can be used to modify the lignin such through phenolic depolymerization or by other aromatic compounds, creating novel chemical active sites to impact a reactivity of lignin and through functionalization of hydroxyl functional group for enhancing its reactivity. Furthermore, the recent sustainable application of lignin was discussed in different fields such as nanocomposite, flame retardant, antioxidant, cosmetic, natural binder and emulsifier. This review hence provides a summary of the current stateoftheart in lignin technology and future outlook of potential application areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. McCarthy JL, Islam A (2000) Lignin chemistry, technology, and utilization: a brief history. ACS Publications ACS Symp Ser 742:2–99

    Article  CAS  Google Scholar 

  2. Muro-Villanueva F, Mao X, Chapple C (2019) Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition. Curr Opin Biotechnol 56:202–208

    Article  CAS  PubMed  Google Scholar 

  3. Liu Q, Luo L, Zheng L (2018) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci 19(2):335

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang J, Deng Y, Qian Y, Qiu X, Ren Y, Yang D (2016) Reduction of lignin color via one-step UV irradiation. Green Chem 18(3):695–699

    Article  CAS  Google Scholar 

  5. Başakçılardan Kabakcı S, Tanış MH (2021) Pretreatment of lignocellulosic biomass at atmospheric conditions by using different organosolv liquors: a comparison of lignins. Biomass Convers Biorefin 11(6):2869–2880

    Article  Google Scholar 

  6. Zhu W, Theliander H (2015) Precipitation of lignin from softwood black liquor: an investigation of the equilibrium and molecular properties of lignin. BioResources 10(1):1696–1714

    Article  Google Scholar 

  7. Kaur R, Uppal S (2015) Structural characterization and antioxidant activity of lignin from sugarcane bagasse. Colloid Polym Sci 293:2585–2592

    Article  CAS  Google Scholar 

  8. Yang Q, Wu S, Lou R, Lv G (2011) Structural characterization of lignin from wheat straw. Wood Sci Technol 45:419–431

    Article  CAS  Google Scholar 

  9. Yun J, Wei L, Li W, Gong D, Qin H, Feng X, Li G, Ling Z, Wang P, Yin B (2021) Isolating high antimicrobial ability lignin from bamboo kraft lignin by organosolv fractionation. Front Bioengin Biotechnol 9:683796

    Article  Google Scholar 

  10. Del Rio JC, Rencoret J, Marques G, Li J, Gellerstedt G, Jiménez-Barbero J, Martínez ÁT, Gutiérrez AN (2009) Structural characterization of the lignin from jute (Corchorus capsularis) fibers. J Agric Food Chem 57(21):10271–10281

    Article  PubMed  Google Scholar 

  11. Yan T, Xu Y, Yu C (2009) The isolation and characterization of lignin of kenaf fiber. J Appl Polym Sci 114(3):1896–1901

    Article  CAS  Google Scholar 

  12. Patel R, Dhar P, Babaei-Ghazvini A, Nikkhah Dafchahi M, Acharya B (2023) Transforming lignin into renewable fuels, chemicals, and materials: a review. Bioresour Technol Rep 22:101463. https://doi.org/10.1016/j.biteb.2023.101463

    Article  CAS  Google Scholar 

  13. Cotana F, Cavalaglio G, Nicolini A, Gelosia M, Coccia V, Petrozzi A, Brinchi L (2014) Lignin as co-product of second generation bioethanol production from ligno-cellulosic biomass. Energy Procedia 45:52–60

    Article  CAS  Google Scholar 

  14. Mandlekar N, Cayla A, Rault F, Giraud S, Salaün F, Malucelli G, Guan JP (2018) An overview on the use of lignin and its derivatives in fire retardant polymer systems. Lignin-trends Appl 9:207–231

    Google Scholar 

  15. Guadix-Montero S, Sankar M (2018) Review on Catalytic cleavage of C–C inter-unit linkages in Lignin Model compounds: towards Lignin Depolymerisation. Top Catal 61(3):183–198. https://doi.org/10.1007/s11244-018-0909-2

    Article  CAS  Google Scholar 

  16. Vieira FR, Magina S, Evtuguin DV, Barros-Timmons A (2022) Lignin as a renewable building block for sustainable polyurethanes. Mater (Basel) 15(17). https://doi.org/10.3390/ma15176182

  17. Ariyanta HA, Santoso EB, Suryanegara L, Arung ET, Kusuma IW, Taib MN, Hussin MH, Yanuar Y, Batubara I, Fatriasari W (2023) Recent progress on the development of lignin as future ingredient biobased cosmetics. Sustain Chem Pharm 32:100966

    Article  CAS  Google Scholar 

  18. Figueiredo P, Lintinen K, Hirvonen JT, Kostiainen MA, Santos HA (2018) Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog Mater Sci 93:233–269

    Article  CAS  Google Scholar 

  19. Dick GR, Komarova AO, Luterbacher JS (2022) Controlling lignin solubility and hydrogenolysis selectivity by acetal-mediated functionalization. Green Chem 24(3):1285–1293

    Article  CAS  Google Scholar 

  20. Mahmood Z, Yameen M, Jahangeer M, Riaz M, Ghaffar A, Javid I (2018) Lignin as natural antioxidant capacity. Lignin-Trends Appl 10:181–205

    Google Scholar 

  21. Shao Z, Fu Y, Wang P, Zhang Y, Qin M, Li X, Zhang F (2020) Modification of the aspen lignin structure during integrated fractionation process of autohydrolysis and formic acid delignification. Int J Biol Macromol 65:1727–1737

    Article  Google Scholar 

  22. Agarski B, Vukelic D, Micunovic MI, Budak I (2019) Evaluation of the environmental impact of plastic cap production, packaging, and disposal. J Environ Manag 245:55–65

    Article  CAS  Google Scholar 

  23. Norgate TE, Jahanshahi S, Rankin WJ (2007) Assessing the environmental impact of metal production processes. J Clean Prod 15(8–9):838–848

    Article  Google Scholar 

  24. Teseletso LS, Adachi T (2023) Future availability of mineral resources: ultimate reserves and total material requirement. Min Econ 36(2):189–206

    Article  Google Scholar 

  25. Kumar A, Kumar J, Bhaskar T (2020) Utilization of lignin: a sustainable and eco-friendly approach. J Energy Inst 93(1):235–271

    Article  CAS  Google Scholar 

  26. Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh XJ (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18(5):1175–1200

    Article  CAS  Google Scholar 

  27. Oriez V, Peydecastaing J, Pontalier P-Y (2020) Lignocellulosic biomass mild alkaline fractionation and resulting extract purification processes: conditions, yields, and purities. Clean Technol 2(1):91–115

    Article  Google Scholar 

  28. Chung H, Washburn NR (2016) 2 - extraction and types of lignin. In: Faruk O, Sain M (eds) Lignin in Polymer composites. William Andrew Publishing, pp 13–25

  29. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290

    Article  CAS  Google Scholar 

  30. Tian D, Chandra RP, Lee J-S, Lu C, Saddler JN (2017) A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Biotechnol Biofuels 10:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  31. **e M, Chen Z, **a Y, Lin M, Li J, Lan W, Zhang L, Yue F (2021) Influence of the lignin extraction methods on the content of tricin in grass lignins. Front Energy Res 9:756285

    Article  Google Scholar 

  32. Vázquez G, Antorrena G, González J, Freire S (1997) The influence of pul** conditions on the structure of acetosolv eucalyptus lignins. J Wood Chem Technol 17(1–2):147–162

    Article  Google Scholar 

  33. Achinivu EC, Howard RM, Li G, Gracz H, Henderson WA (2014) Lignin extraction from biomass with protic ionic liquids. Green Chem 16(3):1114–1119

    Article  CAS  Google Scholar 

  34. Sapouna I, van Erven G, Heidling E, Lawoko M, McKee LS (2023) Impact of extraction method on the structure of lignin from ball-milled hardwood. ACS Sustain Chem Eng 11(43):15533–15543. https://doi.org/10.1021/acssuschemeng.3c02977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yimtrakarn T, Kaveevivitchai W, Lee W-C, Lerkkasemsan N (2022) Study of Lignin extracted from Rubberwood using microwave assisted technology for fuel additive. Polymers 14(4):814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Akeem Azeez M, Andrew JE, Sithole BB (2016) A preliminary investigation of Nigerian Gmelina arborea and Bambusa vulgaris for pulp and paper production. Madera: Cienc 18(1):65–78

    Google Scholar 

  37. Khantayanuwong S, Yimlamai P, Chitbanyong K, Wanitpinyo K, Pisutpiched S, Sungkaew S, Sukyai P, Puangsin B (2023) Fiber morphology, chemical composition, and properties of kraft pul** handsheet made from four Thailand bamboo species. J Nat Fibers 20(1):2150924

    Article  Google Scholar 

  38. Parchami M, Agnihotri S, Taherzadeh MJ (2022) Aqueous ethanol organosolv process for the valorization of Brewer’s spent grain (BSG). Bioresour Technol 362:127764

    Article  CAS  PubMed  Google Scholar 

  39. Alio MA, Tugui O-C, Vial C, Pons A (2019) Microwave-assisted Organosolv pretreatment of a sawmill mixed feedstock for bioethanol production in a wood biorefinery. Bioresour Technol 276:170–176

    Article  PubMed  Google Scholar 

  40. Chen Y-L, Lo C-C, Liu Y-L, Sun Y-M (2023) Lignin extraction and fractionation from rice straw biorefinery residues. Sep Purif Technol 326:124778

    Article  CAS  Google Scholar 

  41. Lo C-C, Chang Y-W, Chen Y-L, Liu Y-L, Wu H-S, Sun Y-M (2021) Lignin recovery from rice straw biorefinery solid waste by soda process with ethylene glycol as co-solvent. J Taiwan Inst Chem 126:50–57

    Article  CAS  Google Scholar 

  42. Gao W, Inwood JP, Fatehi P (2019) Sulfonation of hydroxymethylated lignin and its application. J Bioresour Bioprod 4(2):80–88

    Article  Google Scholar 

  43. Thungphotrakul N, Dittanet P, Loykulnunt S, Tanpichai S, Parpainainar P (2019) Synthesis of sodium lignosulfonate from lignin extracted from oil palm empty fruit bunches by acid/alkaline treatment for reinforcement in natural rubber composites. IOP Conf Series: Mater Sci Eng IOP Publishing:012022

    Article  Google Scholar 

  44. Vásquez-Garay F, Carrillo-Varela I, Vidal C, Reyes-Contreras P, Faccini M, Teixeira Mendonça R (2021) A review on the Lignin Biopolymer and its integration in the elaboration of sustainable materials. Sustainability 13(5):2697

    Article  Google Scholar 

  45. Komisarz K, Majka TM, Pielichowski K (2023) Chemical and Physical Modification of Lignin for Green Polymeric Composite materials. Materials 16(1):16

    Article  CAS  Google Scholar 

  46. Jardim JM, Hart PW, Lucia L, Jameel H, Chang H (2020) A quantitative comparison of the Precipitation Behavior of Lignin from Sweetgum and Pine Kraft Black Liquors. BioResources 15(3):5464–5480

    Article  CAS  Google Scholar 

  47. de Oliveira Chagas B, Wolski TR, Vieira O (2019) Influence of the Chemical properties of Wood on the odor produced by the Kraft Pul** Process. Int J Adv Eng Res Sci 6(4)

  48. El-Sayed ESA, El-Sakhawy M, El-Sakhawy MA-M (2020) Non-wood fibers as raw material for pulp and paper industry. Nord Pulp Pap Res J 35(2):215–230. https://doi.org/10.1515/npprj-2019-0064

    Article  CAS  Google Scholar 

  49. Zainab A-K, Pradhan R, Thevathasan N, Arku P, Gordon A, Dutta A (2018) Beneficiation of renewable industrial wastes from paper and pulp processing. Aims Energy 6(5):880–907

    Article  Google Scholar 

  50. Vishtal AG, Kraslawski A (2011) Challenges in industrial applications of technical lignins. BioResources 6(3):3547–3568

    Article  Google Scholar 

  51. Ribeiro RA, Júnior SV, Jameel H, Chang H-M, Narron R, Jiang X, Colodette JL (2019) Chemical Study of Kraft Lignin during Alkaline Delignification of E. urophylla x E. Grandis Hybrid in Low and high residual effective Alkali. ACS Sustain Chem Eng 7(12):10274–10282. https://doi.org/10.1021/acssuschemeng.8b06635

    Article  CAS  Google Scholar 

  52. Gavrilescu D (2020) 2- Pul** fundamentals and processing. In: Popa VI, editor. Pulp Production and Processing: High-Tech Applications. De Gruyter p. 19

  53. Deshpande R (2016) The initial phase of sodium sulfite pul** of softwood: a comparison of different pul** options. Karlstads universitet

  54. Li T, Takkellapati S (2018) The current and emerging sources of technical lignins and their applications. Biofuel Bioprod Biorefin 0:1–32. https://doi.org/10.1002/bbb.1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luo H, Abu-Omar MM (2017) 3-Chemicals from lignin. In: Abraham MA (ed) Encyclopedia of Sustainable technologies. Elsevier p, Oxford, pp 573–585

    Chapter  Google Scholar 

  56. Lugovitskaya TN, Kolmachikhina EB (2021) Associative behavior of Lignosulphonates in moderately concentrated Water, Water–Salt, and water–alcoholic media. Biomacromolecules 22(8):3323–3331

    Article  CAS  PubMed  Google Scholar 

  57. Lavrič G, Zamljen A, Juhant Grkman J, Jasiukaitytė-Grojzdek E, Grilc M, Likozar B, Gregor-Svetec D, Vrabič-Brodnjak U (2021) Organosolv Lignin Barrier Paper Coatings from Waste Biomass resources. Polymers 13(24):4443

    Article  PubMed  PubMed Central  Google Scholar 

  58. Inwood JPW (2014) Sulfonation of kraft lignon to water soluble value added products

  59. Subramanian S, Øye G (2021) Aqueous carbon black dispersions stabilized by sodium lignosulfonates. Colloid Polym Sci 299(7):1223–1236. https://doi.org/10.1007/s00396-021-04840-7

    Article  CAS  Google Scholar 

  60. Nasrullah A, Bhat AH, Sada Khan A, Ajab H (2017) 9 - comprehensive approach on the structure, production, processing, and application of lignin. In: Jawaid M, Md Tahir P, Saba N (eds) Lignocellulosic Fibre and Biomass-based composite materials. Woodhead Publishing p, pp 165–178

  61. Pang T, Wang G, Sun H, Sui W, Si C (2021) Lignin fractionation: effective strategy to reduce molecule weight dependent heterogeneity for upgraded lignin valorization. Ind Crops Prod 165:113442. https://doi.org/10.1016/j.indcrop.2021.113442

    Article  CAS  Google Scholar 

  62. Arapova OV, Chistyakov AV, Tsodikov MV, Moiseev II (2020) Lignin as a Renewable Resource of Hydrocarbon Products and Energy Carriers (A Review). Pet Chem 60(3):227–243. https://doi.org/10.1134/S0965544120030044

    Article  CAS  Google Scholar 

  63. Nishi KB, Sanjeev KG, Ajay G, Upadhyaya JS, Ray AK (2005) Soda and Soda-anthraquinone pul** of Rice Straw. Appita: Technology, Innovation. Manuf Environ 58(3):180–185. https://doi.org/10.3316/informit.579522079285702

    Article  Google Scholar 

  64. Windeisen E, Wegener G (2012) 10.15 - lignin as Building Unit for polymers. In: Matyjaszewski K, Möller M (eds) Polymer Science: a comprehensive reference. Amsterdam Elsevier p, pp 255–265

  65. Omer SH, Khider TO, Elzaki OT, Mohieldin SD, Shomeina SK (2019) Application of soda-AQ pul** to agricultural waste (okra stalks) from Sudan. BMC Chem Eng 1(1):6. https://doi.org/10.1186/s42480-019-0005-9

    Article  Google Scholar 

  66. Torres LA, Woiciechowski AL, de Andrade Tanobe VO, Karp SG, Lorenci LC, Faulds C, Soccol CR (2020)lignin as a potential source of high-added value compounds: a review. J Clean Prod 263:121499

  67. Shao S, Wu C, Chen K (2017) Refining, dewatering, and paper properties of soda-anthraquinone (soda/AQ) pulp from rice straw. BioResources 12(3):4867–4880

    Article  CAS  Google Scholar 

  68. Tutus A, Deniz I, Eroglu H (2004) Rice straw pul** with oxide added soda-oxygen-anthraquinone. Pak J Biol Sci 7(8):1350–1354

    Article  Google Scholar 

  69. Favaro JSC, Ventorim G, de Oliveira IR, de Oliveira CR (2021) Temperature and effective alkali effect on brown pulp kraft cooking. Nord Pulp Pap Res J 36(2):227–233

    Article  CAS  Google Scholar 

  70. Shui T, Feng S, Yuan Z, Kuboki T, Xu CC (2016) Highly efficient organosolv fractionation of cornstalk into cellulose and lignin in organic acids. Bioresour Technol 218:953–961

    Article  CAS  PubMed  Google Scholar 

  71. Zhao X, Li S, Wu R, Liu D (2017) Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuel Bioprod Biorefin 11(3):567–590

    Article  CAS  Google Scholar 

  72. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827

    Article  CAS  PubMed  Google Scholar 

  73. Karlsson M, Romson J, Elder T, Emmer Å, Lawoko M (2023) Lignin structure and reactivity in the Organosolv process studied by NMR spectroscopy, Mass Spectrometry, and Density Functional Theory. Biomacromolecules 24(5):2314–2326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu B, Abu-Omar MM (2021) Chapter Five - Lignin extraction and valorization using heterogeneous transition metal catalysts. In: Ford PC, van Eldik R, editors. Advances in Inorganic Chemistry. Academic Press pp. 137– 74

  75. Huijgen WJ, Reith JH, den Uil H (2010) Pretreatment and fractionation of wheat straw by an acetone-based organosolv process. Ind Eng Chem Res 49(20):10132–10140

    Article  CAS  Google Scholar 

  76. Kim J-Y, Oh S, Hwang H, Kim U-J, Choi JW (2013) Structural features and thermal degradation properties of various lignin macromolecules obtained from poplar wood (Populus albaglandulosa). Polym Degrad Stab 98(9):1671–1678. https://doi.org/10.1016/j.polymdegradstab.2013.06.008

    Article  CAS  Google Scholar 

  77. Rossberg C, Janzon R, Saake B, Leschinsky M (2019) Effect of process parameters in pilot scale operation on properties of organosolv lignin. BioResources 14(2):4543–4559

    Article  CAS  Google Scholar 

  78. De Chirico A, Armanini M, Chini P, Cioccolo G, Provasoli F, Audisio G (2003) Flame retardants for polypropylene based on lignin. Polym Degrad Stab 79(1):139–145

    Article  Google Scholar 

  79. Yang J, Ching YC, Chuah CH (2019) Applications of lignocellulosic fibers and lignin in bioplastics: a review. Polymers 11(5):751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liao JJ, Latif NHA, Trache D, Brosse N, Hussin MH (2020) Current advancement on the isolation, characterization and application of lignin. Int J Biol Macromol 162:985–1024. https://doi.org/10.1016/j.ijbiomac.2020.06.168

    Article  CAS  PubMed  Google Scholar 

  81. Bajwa D, Pourhashem G, Ullah AH, Bajwa S (2019) A concise review of current lignin production, applications, products and their environmental impact. Ind Crops Prod 139:111526

    Article  CAS  Google Scholar 

  82. Nair SS, Yan N (2015) Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 22(5):3137–3150

    Article  CAS  Google Scholar 

  83. Vasile C, Baican M (2023) Lignins as promising renewable biopolymers and bioactive compounds for high-performance materials. Polymers 15(15):3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Amenaghawon AN, Anyalewechi CL, Okieimen CO, Kusuma HS (2021) Biomass pyrolysis technologies for value-added products: a state-of-the-art review. Environ Dev Sustain. 1–55

  85. ** W, Singh K, Zondlo J (2013) Pyrolysis kinetics of physical components of wood and wood-polymers using isoconversion method. Agriculture 3(1):12–32

    Article  Google Scholar 

  86. Suresh S, Viswanathan V, Angamuthu M, Dhakshinamoorthy GP, Gopinath KP, Bhatnagar A (2021) Lignin waste processing into solid, liquid, and gaseous fuels: a comprehensive review. Biomass Convers Bior. 1–39

  87. Heidari A, Khaki E, Younesi H, Lu HR (2019) Evaluation of fast and slow pyrolysis methods for bio-oil and activated carbon production from eucalyptus wastes using a life cycle assessment approach. J Clean Prod 241:118394. https://doi.org/10.1016/j.jclepro.2019.118394

    Article  CAS  Google Scholar 

  88. Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30(12):1479–1493. https://doi.org/10.1016/S0146-6380(99)00120-5

    Article  CAS  Google Scholar 

  89. Al-Rumaihi A, Shahbaz M, McKay G, Mackey H, Al-Ansari T (2022) A review of pyrolysis technologies and feedstock: a blending approach for plastic and biomass towards optimum biochar yield. Renew Sustain Energy Rev 167:112715. https://doi.org/10.1016/j.rser.2022.112715

    Article  CAS  Google Scholar 

  90. Lu X, Gu X (2022) A review on lignin pyrolysis: pyrolytic behavior, mechanism, and relevant upgrading for improving process efficiency. Biotechnol Biofuels Bioprod 15(1):106. https://doi.org/10.1186/s13068-022-02203-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tarabanko VE, Tarabanko N (2017) Catalytic Oxidation of Lignins into the aromatic aldehydes: general process trends and Development prospects. Int J Mol Sci 18(11). https://doi.org/10.3390/ijms18112421

  92. Liu C, Wu S, Zhang H, **ao R (2019) Catalytic oxidation of lignin to valuable biomass-based platform chemicals: a review. Fuel Process Technol 191:181–201. https://doi.org/10.1016/j.fuproc.2019.04.007

    Article  CAS  Google Scholar 

  93. Liu Y, Sun L, Huo Y-X, Guo S (2023) Strategies for improving the production of bio-based vanillin. Microb Cell Factories 22(1):147. https://doi.org/10.1186/s12934-023-02144-9

    Article  CAS  Google Scholar 

  94. Nasrollahzadeh M, Nezafat Z, Shafiei N (2021) Chap. 5 - lignin chemistry and valorization. In: Nasrollahzadeh M (ed) Biopolymer-Based Metal Nanoparticle Chemistry for sustainable applications. Elsevier p, pp 145–183

  95. Tarabanko VE, Chelbina YV, Kudryashev AV, Tarabanko NV (2013) Separation of Vanillin and Syringaldehyde Produced from Lignins. Sep Sci Technol 48(1):127–132. https://doi.org/10.1080/01496395.2012.673671

    Article  CAS  Google Scholar 

  96. Costa CAE, Vega-Aguilar CA, Rodrigues AE (2021) Added-value chemicals from Lignin Oxidation. Molecules 26(15):4602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee N, Kim YT, Lee J (2021) Recent advances in renewable polymer production from Lignin-Derived Aldehydes. Polym (Basel) 13(3). https://doi.org/10.3390/polym13030364

  98. Araújo JDP, Grande CA, Rodrigues AE (2010) Vanillin production from lignin oxidation in a batch reactor. Chem Eng Res Des 88(8):1024–1032. https://doi.org/10.1016/j.cherd.2010.01.021

    Article  CAS  Google Scholar 

  99. Joshi KM, Shinde DR, Nikam LK, Panmand R, Sethi YA, Kale BB, Chaskar MG (2019) Fragmented lignin-assisted synthesis of a hierarchical ZnO nanostructure for ammonia gas sensing. RSC Adv 9(5):2484–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Izaguirre N, Fernández-Rodríguez J, Robles E, Labidi J (2023) Sonochemical oxidation of technical lignin to obtain nanoparticles with enhanced functionality. Green Chem 25:8808–8819. https://doi.org/10.1039/D3GC01037F

    Article  CAS  Google Scholar 

  101. Haverly MR, Schulz TC, Whitmer LE, Friend AJ, Funkhouser JM, Smith RG, Young MK, Brown RC (2018) Continuous solvent liquefaction of biomass in a hydrocarbon solvent. Fuel 211:291–300

    Article  CAS  Google Scholar 

  102. Beims RF, Hu Y, Shui H, Xu CC (2020) Hydrothermal liquefaction of biomass to fuels and value-added chemicals: products applications and challenges to develop large-scale operations. Biomass Bioenergy 135:105510

    Article  CAS  Google Scholar 

  103. Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88(1):17–28

    Article  CAS  Google Scholar 

  104. Hassan EB, Kim M, Wan H (2009) Phenol–formaldehyde-type resins made from phenol‐liquefied wood for the bonding of particleboard. J Appl Polym Sci 112(3):1436–1443

    Article  CAS  Google Scholar 

  105. Hernández-Ramos F, Novi V, Alriols MG, Labidi J, Erdocia X (2023) Optimisation of lignin liquefaction with polyethylene glycol/glycerol through response surface methodology modelling. Ind Crops Prod 198:116729

    Article  Google Scholar 

  106. Hatakeyama H, Hatakeyama T (2010) Lignin structure, Properties, and applications. In: Abe A, Dusek K, Kobayashi S (eds) Biopolymers: lignin, proteins, Bioactive nanocomposites. Springer, Berlin, Heidelberg, pp 1–63

    Google Scholar 

  107. Peng Z, Jiang X, Si C, Joao Cárdenas-Oscanoa A, Huang C (2023) Advances of Modified Lignin as Substitute to Develop Lignin‐Based Phenol‐Formaldehyde Resin Adhesives. ChemSusChem. e202300174

  108. Sarika P, Nancarrow P, Khansaheb A, Ibrahim T (2020) Bio-based alternatives to phenol and formaldehyde for the production of resins. Polymers 12(10):2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sarkar S, Adhikari B (2000) Lignin-modified phenolic resin: synthesis optimization, adhesive strength, and thermal stability. J Adhes Sci Technol 14(9):1179–1193. https://doi.org/10.1163/156856100743167

    Article  CAS  Google Scholar 

  110. Li W, Sun H, Wang G, Sui W, Dai L, Si C (2023) Lignin as a green and multifunctional alternative to phenol for resin synthesis. Green Chem 25(6):2241–2261. https://doi.org/10.1039/D2GC04319J

    Article  CAS  Google Scholar 

  111. Mu Y, Wang C, Zhao L, Chu F (2009) Study on composite adhesive of hydroxymethylated lignosulfonate/phenol-formaldehyde resin with low free formaldehyde. Chem Indus for Prod 29(3):38–42

    CAS  Google Scholar 

  112. Lin Z, Ouyang X, Yang D, Deng Y, Qiu X (2010) Effect of hydroxymethylation of lignin on the properties of lignin-phenol-formaldehyde resins. World Sci-Tech R&D 32(3):348–351

    Google Scholar 

  113. Hu L, Pan H, Zhou Y, Zhang M (2011) Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: a brief review. BioResources. 6(3)

  114. Zhang W, Ma Y, Wang C, Li S, Zhang M, Chu F (2013) Preparation and properties of lignin–phenol–formaldehyde resins based on different biorefinery residues of agricultural biomass. Ind Crops Prod 43:326–333

    Article  Google Scholar 

  115. Lopez-Camas K, Arshad M, Ullah (2020) Chemical modification of lignin by polymerization and depolymerization. Biosynthesis and Transformation for Industrial Applications. 139– 80, Lignin

    Book  Google Scholar 

  116. Kim H-S, Chung T, Kim H (2001) Voltammetric determination of the pKa of various acids in polar aprotic solvents using 1, 4-benzoquinone. J Electroanal Chem 498(1–2):209–215

    Article  CAS  Google Scholar 

  117. Liu Y, Li K (2006) Preparation and characterization of demethylated lignin-polyethylenimine adhesives. J Adhes 82(6):593–605. https://doi.org/10.1080/00218460600766632

    Article  CAS  Google Scholar 

  118. Meng X, Zhang S, Scheidemantle B, Wang YY, Pu Y, Wyman CE, Cai CM, Ragauskas AJ (2022) Preparation and characterization of aminated co-solvent enhanced lignocellulosic fractionation lignin as a renewable building block for the synthesis of non-isocyanate polyurethanes. Ind Crops Prod 178:114579

    Article  CAS  Google Scholar 

  119. Du X, Li J, Lindström ME (2014) Modification of industrial softwood kraft lignin using Mannich reaction with and without phenolation pretreatment. Ind Crops Prod 52:729–735. https://doi.org/10.1016/j.indcrop.2013.11.035

    Article  CAS  Google Scholar 

  120. Liu Z, Lu X, An L, Xu C (2016) A novel cationic lignin-amine emulsifier with high performance reinforced via phenolation and Mannich reactions. BioResources 11(3):6438–6451

    Article  CAS  Google Scholar 

  121. Yue X, Chen F, Zhou X (2011) Improved interfacial bonding of PVC/wood-flour composites by lignin amine modification. BioResources 6(2):2022–2044

    Article  CAS  Google Scholar 

  122. Meister JJ (2002) Modification of lignin. J Macromol Sci C 42(2):235–289. https://doi.org/10.1081/MC-120004764

    Article  Google Scholar 

  123. Huang J, Zhang L (2002) Effects of NCO/OH molar ratio on structure and properties of graft-interpenetrating polymer networks from polyurethane and nitrolignin. Polym 43(8):2287–2294. https://doi.org/10.1016/S0032-3861(02)00028-9

    Article  CAS  Google Scholar 

  124. Liu L-Y, Hua Q, Renneckar S (2019) A simple route to synthesize esterified lignin derivatives. Green Chem 21(13):3682–3692. https://doi.org/10.1039/C9GC00844F

    Article  CAS  Google Scholar 

  125. Paananen H, Alvila L, Pakkanen TT (2021) Hydroxymethylation of softwood kraft lignin and phenol with paraformaldehyde. Sustain Chem Pharm 20:100376. https://doi.org/10.1016/j.scp.2021.100376

    Article  CAS  Google Scholar 

  126. Zhang Y, Li N, Chen Z, Ding C, Zheng Q, Xu J, Meng Q (2020) Synthesis of high-water-resistance lignin-phenol Resin Adhesive with Furfural as a Crosslinking Agent. Polymers 12(12):2805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Podschun J, Saake B, Lehnen R (2015) Reactivity enhancement of organosolv lignin by phenolation for improved bio-based thermosets. Eur Polym J 67:1–11. https://doi.org/10.1016/j.eurpolymj.2015.03.029

    Article  CAS  Google Scholar 

  128. Makwana K, Ichake AB, Valodkar V, Padmanaban G, Badiger MV, Wadgaonkar PP (2022) Cardol: Cashew nut shell liquid (CNSL) - derived starting material for the preparation of partially bio-based epoxy resins. Eur Polym J 166:111029. https://doi.org/10.1016/j.eurpolymj.2022.111029

    Article  CAS  Google Scholar 

  129. Tavares L, Boas C, Schleder G, Nacas A, Rosa D, Santos D (2016) Bio-based polyurethane prepared from Kraft lignin and modified castor oil. Express Polym Lett 10(11):927

    Article  CAS  Google Scholar 

  130. Kühnel I, Podschun J, Saake B, Lehnen R (2015) Synthesis of lignin polyols via oxyalkylation with propylene carbonate. Holzforschung 69(5):531–538

    Article  Google Scholar 

  131. Pinto JA, Prieto MA, Ferreira IC, Belgacem MN, Rodrigues AE, Barreiro MF (2020) Analysis of the oxypropylation process of a lignocellulosic material, almond shell, using the response surface methodology (RSM). Ind Crops Prod 153:112542

    Article  CAS  Google Scholar 

  132. Wang S, Bai J, Innocent MT, Wang Q, **ang H, Tang J, Zhu M (2022) Lignin-based carbon fibers: formation, modification and potential applications. Green Energy Environ 7(4):578–605. https://doi.org/10.1016/j.gee.2021.04.006

    Article  CAS  Google Scholar 

  133. Wu M, Peng J, Dong Y, Pang J, Zhang X (2021) Extraction and oxypropylation of lignin by an efficient and mild integration process from agricultural waste. Ind Crops Prod 172:114013. https://doi.org/10.1016/j.indcrop.2021.114013

    Article  CAS  Google Scholar 

  134. Pinto JA, Fernandes IP, Pinto VD, Gomes E, Oliveira CF, Pinto PC, Mesquita LM, Piloto PA, Rodrigues AE, Barreiro MF (2021) Valorization of Lignin Side-streams into polyols and rigid polyurethane Foams—A contribution to the pulp and Paper Industry Biorefinery. Energies 14(13):3825

    Article  CAS  Google Scholar 

  135. Komisarz K, Majka TM, Pielichowski K (2022) Chemical and Physical Modification of Lignin for Green Polymeric Composite materials. Mater (Basel) 16(1). https://doi.org/10.3390/ma16010016

  136. Aniceto JPS, Portugal I, Silva CM (2012) Biomass-based polyols through Oxypropylation reaction. ChemSusChem. 5(8):1358–1368. https://doi.org/10.1002/cssc.201200032

  137. Wang Y-Y, Meng X, Pu Y, J (2020) Ragauskas A. recent advances in the application of Functionalized Lignin in Value-added polymeric materials. Polymers 12(10):2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Alinejad M, Henry C, Nikafshar S, Gondaliya A, Bagheri S, Chen N, Singh SK, Hodge DB, Nejad M (2019) Lignin-based polyurethanes: opportunities for Bio-based Foams, Elastomers, Coatings and adhesives. Polym (Basel) 11(7). https://doi.org/10.3390/polym11071202

  139. Antonino LD, Sumerskii I, Potthast A, Rosenau T, Felisberti MI, dos Santos DJ (2023) Lignin-based polyurethanes from the blocked Isocyanate Approach: synthesis and characterization. ACS Omega 8(30):27621–27633. https://doi.org/10.1021/acsomega.3c03422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lai Y, Qian Y, Yang D, Qiu X, Zhou M (2021) Preparation and performance of lignin-based waterborne polyurethane emulsion. Ind Crops Prod 170:113739. https://doi.org/10.1016/j.indcrop.2021.113739

    Article  CAS  Google Scholar 

  141. Li H, Liang Y, Li P, He C (2020) Conversion of biomass lignin to high-value polyurethane: a review. J Bioresour Bioprod 5(3):163–179. https://doi.org/10.1016/j.jobab.2020.07.002

    Article  CAS  Google Scholar 

  142. Delebecq E, Pascault J-P, Boutevin B, Ganachaud F (2013) On the versatility of Urethane/Urea bonds: reversibility, blocked Isocyanate, and non-isocyanate polyurethane. Chem Rev 113(1):80–118. https://doi.org/10.1021/cr300195n

    Article  CAS  PubMed  Google Scholar 

  143. Tang Q, Qian Y, Yang D, Qiu X, Qin Y, Zhou M (2020) Lignin-based nanoparticles: a review on their preparations and applications. Polymers 12(11):2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Beisl S, Miltner A, Friedl A (2017) Lignin from micro-to nanosize: production methods. Int J Mol Sci 18(6):1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Perera UP, Foo ML, Tan KW, Chew IML (2019) Process modelling and economic evaluation for nanolignin production. IOP Conference Series: Materials Science and Engineering: IOP Publishing p. 012054

  146. Mishra PK, Ekielski A (2019) The Self-Assembly of Lignin and its application in nanoparticle synthesis: a short review. Nanomaterials 9(2):243

    Article  PubMed  PubMed Central  Google Scholar 

  147. Qian Y, Zhong X, Li Y, Qiu X (2017) Fabrication of uniform lignin colloidal spheres for develo** natural broad-spectrum sunscreens with high sun protection factor. Ind Crops Prod 101:54–60. https://doi.org/10.1016/j.indcrop.2017.03.001

    Article  CAS  Google Scholar 

  148. Sipponen MH, Lange H, Ago M, Crestini C (2018) Understanding lignin aggregation processes. A case study: Budesonide Entrapment and Stimuli Controlled Release from Lignin Nanoparticles. ACS Sustain Chem Eng 6(7):9342–9351. https://doi.org/10.1021/acssuschemeng.8b01652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lievonen M, Valle-Delgado JJ, Mattinen M-L, Hult E-L, Lintinen K, Kostiainen MA, Paananen A, Szilvay GR, Setälä H, Österberg M (2016) A simple process for lignin nanoparticle preparation. Green Chem 18(5):1416–1422. https://doi.org/10.1039/C5GC01436K

    Article  CAS  Google Scholar 

  150. Bertolo MRV, Brenelli de Paiva LB, Nascimento VM, Gandin CA, Neto MO, Driemeier CE, Rabelo SC (2019) Lignins from sugarcane bagasse: renewable source of nanoparticles as Pickering emulsions stabilizers for bioactive compounds encapsulation. Ind Crops Prod 140:111591. https://doi.org/10.1016/j.indcrop.2019.111591

    Article  CAS  Google Scholar 

  151. Frangville C, Rutkevičius M, Richter AP, Velev OD, Stoyanov SD, Paunov VN (2012) Fabrication of environmentally biodegradable lignin nanoparticles. ChemPhysChem 184235–4243. https://doi.org/10.1002/cphc.201200537

  152. ur Rahman O, Shi S, Ding J, Wang D, Ahmad S, Yu H (2018) Lignin nanoparticles: synthesis, characterization and corrosion protection performance. New J Chem 42(5):3415–3425

    Article  Google Scholar 

  153. Zhang Z, Terrasson V, Guénin E (2021) Lignin nanoparticles and their nanocomposites. Nanomaterials 11(5):1336

    Article  PubMed  PubMed Central  Google Scholar 

  154. Li Z, Ge Y, Wan L (2015) Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media. J Hazard Mater 285:77–83. https://doi.org/10.1016/j.jhazmat.2014.11.033

    Article  CAS  PubMed  Google Scholar 

  155. Yiamsawas D, Baier G, Thines E, Landfester K, Wurm FR (2014) Biodegradable lignin nanocontainers. RSC Adv 4(23):11661–11663. https://doi.org/10.1039/C3RA47971D

    Article  CAS  Google Scholar 

  156. Qian Y, Zhang Q, Qiu X, Zhu S (2014) CO2-responsive diethylaminoethyl-modified lignin nanoparticles and their application as surfactants for CO2/N2-switchable Pickering emulsions. Green Chem 16(12):4963–4968. https://doi.org/10.1039/C4GC01242A

    Article  CAS  Google Scholar 

  157. Barakat A, Putaux J-L, Saulnier L, Chabbert B, Cathala B (2007) Characterization of Arabinoxylan– dehydrogenation polymer (synthetic lignin polymer) nanoparticles. Biomacromolecules 8(4):1236–1245. https://doi.org/10.1021/bm060885s

    Article  CAS  PubMed  Google Scholar 

  158. Hussin MH, Appaturi JN, Poh NE, Abd Latif NH, Brosse N, Ziegler-Devin I, Vahabi H, Syamani FA, Fatriasari W, Solihat NN, Kaimah A, Iswanto AH, Sekeri SH, Ibrahim MNM (2022) A recent advancement on preparation, characterization and application of nanolignin. Int J Biol Macromol 200:303–326

    Article  CAS  PubMed  Google Scholar 

  159. Zhou Y, Qian Y, Wang J, Qiu X, Zeng H (2020) Bioinspired Lignin-Polydopamine Nanocapsules with strong Bioadhesion for Long-Acting and High-Performance Natural sunscreens. Biomacromolecules 21(8):3231–3241. https://doi.org/10.1021/acs.biomac.0c00696

    Article  CAS  PubMed  Google Scholar 

  160. Matsakas L, Gerber M, Yu L, Rova U, Christakopoulos P (2020) Preparation of low carbon impact lignin nanoparticles with controllable size by using different strategies for particles recovery. Ind Crops Prod 2020(147):112243. https://doi.org/10.1016/j.indcrop.2020.112243

    Article  CAS  Google Scholar 

  161. Matsakas L, Karnaouri A, Cwirzen A, Rova U, Christakopoulos P (2018) Formation of Lignin nanoparticles by combining Organosolv pretreatment of Birch Biomass and homogenization processes. Molecules 23(7):1822

    Article  PubMed  PubMed Central  Google Scholar 

  162. Garcia Gonzalez MN, Levi M, Turri S, Griffini G (2017) Lignin nanoparticles by ultrasonication and their incorporation in waterborne polymer nanocomposites. J Appl Polym Sci 134(38):45318

    Article  Google Scholar 

  163. Yin H, Liu L, Wang X, Wang T, Zhou Y, Liu B, Shan Y, Wang L, Lu X (2018) A novel flocculant prepared by lignin nanoparticles-gelatin complex from switchgrass for the capture of Staphylococcus aureus and Escherichia coli. Colloids Surf a: Physicochem Eng Asp 545:51–59. https://doi.org/10.1016/j.colsurfa.2018.02.033

    Article  CAS  Google Scholar 

  164. Marulasiddeshwara MB, Dakshayani SS, Sharath Kumar MN, Chethana R, Raghavendra Kumar P, Devaraja S (2017) Facile-one pot-green synthesis, antibacterial, antifungal, antioxidant and antiplatelet activities of lignin capped silver nanoparticles: a promising therapeutic agent. Mater Sci Eng C 81:182–190. https://doi.org/10.1016/j.msec.2017.07.054

    Article  CAS  Google Scholar 

  165. Aadil KR, Mussatto SI, Jha H (2018) Synthesis and characterization of silver nanoparticles loaded poly (vinyl alcohol)-lignin electrospun nanofibers and their antimicrobial activity. Int. J. Biol. Macromol. 2018;120:763-7

  166. Crouvisier-Urion K, Bodart PR, Winckler P, Raya J, Gougeon RD, Cayot P, Domenek S, Debeaufort F, Karbowiak T (2016) Biobased composite films from Chitosan and lignin: antioxidant activity related to structure and moisture. ACS Sustain Chem Eng 4(12):6371–6381

    Article  CAS  Google Scholar 

  167. Bengtsson A, Bengtsson J, Sedin M, Sjöholm E (2019) Carbon fibers from lignin-cellulose precursors: effect of stabilization conditions. ACS Sustain Chem Eng 7(9):8440–8448

    Article  CAS  Google Scholar 

  168. Trogen M, Le N-D, Sawada D, Guizani C, Lourençon TV, Pitkänen L, Sixta H, Shah R, O’Neill H, Balakshin M, Byrne N, Hummel M (2021) Cellulose-lignin composite fibres as precursors for carbon fibres. Part 1–Manufacturing and properties of precursor fibres. Carbohydr Polym 252:117133

    Article  CAS  PubMed  Google Scholar 

  169. Klapiszewski Ł, Grząbka-Zasadzińska A, Borysiak S, Jesionowski T (2019) Preparation and characterization of polypropylene composites reinforced by functional ZnO/lignin hybrid materials. Polym Test 79:106058

    Article  Google Scholar 

  170. Zhang Y, Jiang M, Zhang Y, Cao Q, Wang X, Han Y, Sun G, Li Y, Zhou J (2019) Novel lignin–chitosan–PVA composite hydrogel for wound dressing. Mater Sci Eng C 104:110002

    Article  CAS  Google Scholar 

  171. Wang H, Qiu X, Liu W, Fu F, Yang D (2017) A novel lignin/ZnO hybrid nanocomposite with excellent UV-absorption ability and its application in transparent polyurethane coating. Ind Eng Chem Res 56(39):11133–11141

    Article  CAS  Google Scholar 

  172. Warale D, Kouser S, Nagaraja G, Shabeena M, Manasa D (2023) In vitro cell proliferation, adhesion studies, and enhancement of mechanical properties of organo solve-lignin functionalized halloysite clay nanotube fillers doped onto poly (vinyl alcohol) film. Surf Interfaces 36:102593

    Article  CAS  Google Scholar 

  173. Zhang D, Zeng J, Liu W, Qiu X, Qian Y, Zhang H, Yang Y, Liu M, Yang D (2021) Pristine lignin as a flame retardant in flexible PU foam. Green Chem 23(16):5972–5980. https://doi.org/10.1039/D1GC01109J

    Article  CAS  Google Scholar 

  174. Lizundia E, Sipponen MH, Greca LG, Balakshin M, Tardy BL, Rojas OJ, Puglia D (2021) Multifunctional lignin-based nanocomposites and nanohybrids. Green Chem 23(18):6698–6760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Parvathy G, Sethulekshmi A, Jayan JS, Raman A, Saritha A (2021) Lignin based nano-composites: synthesis and applications. Process Saf Environ Prot 145:395–410

    Article  Google Scholar 

  176. Lisý A, Ház A, Nadányi R, Jablonský M, Šurina I (2022) About hydrophobicity of lignin: a review of selected chemical methods for lignin valorisation in biopolymer production. Energies 15(17):6213

    Article  Google Scholar 

  177. Parit M, Jiang Z (2020) Towards lignin derived thermoplastic polymers. Int J Biol Macromol 165:3180–3197

    Article  CAS  PubMed  Google Scholar 

  178. Abdulkhani A, Khorasani Z, Hamzeh Y, Momenbeik F, zadeh ZE, Sun F, Madadi M, Zhang XM (2022) Valorization of bagasse alkali lignin to water-soluble derivatives through chemical modification. Biomass Convers. Bior. (0123456789). https://doi.org/10.1007/s13399-022-02935-x

  179. Zou S-L, **ao L-P, Li X-Y, Yin W-Z, Sun R-C (2023) Lignin-based composites with enhanced mechanical properties by acetone fractionation and epoxidation modification. Iscience 26(3)

  180. Ridho MR, Agustiany EA, Dn MR, Madyaratri EW, Ghozali M, Restu WK, Falah F, Lubia MAR, Syamani FA, Nurhamiyah Y, Hidayati S, Sohail A (2022) Lignin as Green Filler in Polymer composites: development methods, characteristics, and potential applications. Adv Mater Sci Eng 1–33

  181. Samal SK, Fernandes EG, Corti A, Chiellini E (2014) Bio-based polyethylene–lignin composites containing a pro-oxidant/pro-degradant additive: preparation and characterization. J Environ Polym Degrad 22:58–68

    Article  CAS  Google Scholar 

  182. Cao X, Huang J, He Y, Hu C, Zhang Q, Yin X, Wu W, Li RKY (2021) Biodegradable and renewable UV-shielding polylactide composites containing hierarchical structured POSS functionalized lignin. Int J Biol Macromol 188:323–332

    Article  CAS  PubMed  Google Scholar 

  183. **ng Q, Ruch D, Dubois P, Wu L, Wang W-J (2017) Biodegradable and high-performance poly (butylene adipate-co-terephthalate)–lignin UV-blocking films. ACS Sustain Chem Eng 5(11):10342–10351

    Article  CAS  Google Scholar 

  184. Avelino F, de Oliveira DR, Mazzetto SE, Lomonaco D (2019) Poly (methyl methacrylate) films reinforced with coconut shell lignin fractions to enhance their UV-blocking, antioxidant and thermo-mechanical properties. Int J Biol Macromol 125:171–180

    Article  CAS  PubMed  Google Scholar 

  185. Wu W, Liu T, Deng X, Sun Q, Cao X, Feng Y, Wang B, Roy VAL, Li RKY (2019) Ecofriendly UV-protective films based on poly (propylene carbonate) biocomposites filled with TiO2 decorated lignin. Int J Biol Macromol 126:1030–1036

    Article  CAS  PubMed  Google Scholar 

  186. Maldhure AV, Ekhe J, Deenadayalan E (2012) Mechanical properties of polypropylene blended with esterified and alkylated lignin. J Appl Polym Sci 125(3):1701–1712

    Article  CAS  Google Scholar 

  187. Sun J, Wang C, Yeo JCC, Yuan D, Li H, Stubbs LP, He C (2016) Lignin epoxy composites: preparation, morphology, and mechanical properties. Macromol Mater Eng 301(3):328–336

    Article  CAS  Google Scholar 

  188. Wang N, Zhang C, Weng Y (2021) Enhancing gas barrier performance of polylactic acid/lignin composite films through cooperative effect of compatibilization and nucleation. J Appl Polym Sci 138(15):50199

    Article  CAS  Google Scholar 

  189. Kumar A, Tumu VR, Chowdhury SR, SVS RR (2019) A green physical approach to compatibilize a bio-based poly (lactic acid)/lignin blend for better mechanical, thermal and degradation properties. Int J Biol Macromol 121:588–600

    Article  CAS  PubMed  Google Scholar 

  190. Delgado-Aguilar M, Oliver-Ortega H, Méndez JA, Camps J, Espinach FX, Mutjé P (2018) The role of lignin on the mechanical performance of polylactic acid and jute composites. Int J Biol Macromol 116:299–304

    Article  CAS  PubMed  Google Scholar 

  191. Shankar S, Rhim J-W, Won K (2018) Preparation of poly (lactide)/lignin/silver nanoparticles composite films with UV light barrier and antibacterial properties. Int J Biol Macromol 107:1724–1731

    Article  CAS  PubMed  Google Scholar 

  192. Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra GM, Kenny JM, Puglia D (2016) Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur Polym J 79:1–12

    Article  Google Scholar 

  193. Sadeghifar H, Venditti R, Jur J, Gorga RE, Pawlak JJ (2017) Cellulose-lignin biodegradable and flexible UV protection film. ACS Sustain Chem Eng 5(1):625–631

    Article  CAS  Google Scholar 

  194. Zhang Y, Haque ANMA, Naebe M (2021) Lignin–cellulose nanocrystals from hemp hurd as light-coloured ultraviolet (uv) functional filler for enhanced performance of polyvinyl alcohol nanocomposite films. Nanomaterials 11(12):3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Saudi A, Amini S, Amirpour N, Kazemi M, Kharazi AZ, Salehi H, Rafienia M (2019) Promoting neural cell proliferation and differentiation by incorporating lignin into electrospun poly (vinyl alcohol) and poly (glycerol sebacate) fibers. Mater Sci Eng C 104:110005

    Article  CAS  Google Scholar 

  196. Çalgeris İ, Çakmakçı E, Ogan A, Kahraman MV, Kayaman-Apohan N (2012) Preparation and drug release properties of lignin–starch biodegradable films. Starch‐Stärke 64(5):399–407

    Article  Google Scholar 

  197. Kaewtatip K, Thongmee J (2013) Effect of kraft lignin and esterified lignin on the properties of thermoplastic starch. Mater Des 49:701–704

    Article  CAS  Google Scholar 

  198. Chen L, Tang C-y, Ning N-y, Wang C-y, Fu Q, Zhang Q (2009) Preparation and properties of chitosan/lignin composite films. Chin J Polym Sci 27(05):739–746

    Article  CAS  Google Scholar 

  199. Dai P, Liang M, Ma X, Luo Y, He M, Gu X, Hussain I, Luo Z (2020) Highly efficient, environmentally friendly lignin-based flame retardant used in epoxy resin. ACS Omega 5(49):32084–32093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Azman Mohammad Taib MN, Hamidon TS, Garba ZN, Trache D, Uyama H, Hussin MH (2022) Recent progress in cellulose-based composites towards flame retardancy applications. Polym 244:124677. https://doi.org/10.1016/j.polymer.2022.124677

    Article  CAS  Google Scholar 

  201. Solihat NN, Hidayat AF, Taib MNAM, Hussin MH, Lee SH, Ghani MAA, Edrus SSAOA, Vahabi H, fatriasari W (2022) Recent developments in flame-retardant lignin-based Biocomposite: Manufacturing, and characterization. J Polym Environ 30(11):4517–4537. https://doi.org/10.1007/s10924-022-02494-2

    Article  CAS  Google Scholar 

  202. Law RJ, Allchin CR, De Boer J, Covaci A, Herzke D, Lepom P, Morris S, Tronczynski J, de Wit CA (2006) Levels and trends of brominated flame retardants in the European environment. Chemosphere 64(2):187–208

    Article  CAS  PubMed  Google Scholar 

  203. Darnerud PO (2003) Toxic effects of brominated flame retardants in man and in wildlife. Environ Int 29(6):841–853

    Article  CAS  PubMed  Google Scholar 

  204. Zhang Z, Li X, Ma Z, Ning H, Zhang D, Wang Y (2020) A facile and green strategy to simultaneously enhance the flame retardant and mechanical properties of poly(vinyl alcohol) by introduction of a bio-based polyelectrolyte complex formed by chitosan and phytic acid. Dalton Trans 49(32):11226–11237. https://doi.org/10.1039/D0DT02019B

    Article  CAS  PubMed  Google Scholar 

  205. Chen Z, Zhang S, Ding M, Wang M, Xu X (2021) Construction of a phytic acid–silica system in wood for highly efficient flame retardancy and smoke suppression. Materials 14(15). https://doi.org/10.3390/ma14154164

  206. Costes L, Laoutid F, Khelifa F, Rose G, Brohez S, Delvosalle C, Dubois P (2016) Cellulose/phosphorus combinations for sustainable fire retarded polylactide. Eur Polym J 74:218–228. https://doi.org/10.1016/j.eurpolymj.2015.11.030

    Article  CAS  Google Scholar 

  207. Wang J, Ren Q, Zheng W, Zhai W (2014) Improved flame-retardant properties of poly (lactic acid) foams using starch as a natural charring agent. Ind Eng Chem Res 53(4):1422–1430

    Article  CAS  Google Scholar 

  208. Zhang L, Zhang M, Hu L, Zhou Y (2014) Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols. Ind Crops Prod 52:380–388

    Article  CAS  Google Scholar 

  209. Liang X, Hu Q, Wang X, Li L, Dong Y, Sun C, Hu C, Gu X (2020) Thermal kinetics of a lignin-based flame retardant. Polymers 12(9):2123. https://doi.org/10.3390/POLYM12092123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Chung H, Washburn N (2013) Chemistry of lignin-based materials. Green Mater 1:137–160

    Article  Google Scholar 

  211. Yang H, Yu B, Xu X, Bourbigot S, Wang H, Song P (2020) Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chem 22(7):2129–2161

    Article  CAS  Google Scholar 

  212. Chu S, Subrahmanyam AV, Huber GW (2013) The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound. Green Chem 15(1):125–136. https://doi.org/10.1039/C2GC36332A

    Article  CAS  Google Scholar 

  213. Yan Q, Arango R, Li J, Cai Z (2021) Fabrication and characterization of carbon foams using 100% Kraft lignin. Mater Des 201:109460

    Article  CAS  Google Scholar 

  214. Ház A, Jablonský M, Orságová A, Šurina I (2013) Determination of temperature regions in thermal degradation of lignin. Proceedings of the 4 th International Conference on Renewable Energy Sources, Tatranské Matliare, Slovakia. pp. 21– 3

  215. Kumar N, Vijayshankar S, Pasupathi P, Nirmal Kumar S, Elangovan P, Rajesh M, Tamilarasan K (2018) Optimal extraction, sequential fractionation and structural characterization of soda lignin. Res Chem Intermed 44:5403–5417

    Article  CAS  Google Scholar 

  216. Costes L, Laoutid F, Brohez S, Delvosalle C, Dubois P (2017) Phytic acid–lignin combination: a simple and efficient route for enhancing thermal and flame retardant properties of polylactide. Eur Polym J 94:270–285. https://doi.org/10.1016/j.eurpolymj.2017.07.018

    Article  CAS  Google Scholar 

  217. Zhou S, Tao R, Dai P, Luo Z, He M (2020) Two-step fabrication of lignin‐based flame retardant for enhancing the thermal and fire retardancy properties of epoxy resin composites. Polym Compos 41(5):2025–2035

    Article  CAS  Google Scholar 

  218. Yu Y, Fu S, Song P, Luo X, ** Y, Lu F, Wu Q, Ye J (2012) Functionalized lignin by grafting phosphorus-nitrogen improves the thermal stability and flame retardancy of polypropylene. Polym Degrad Stab 97(4):541–546

    Article  CAS  Google Scholar 

  219. Ferry L, Dorez G, Taguet A, Otazaghine B, Lopez-Cuesta J (2015) Chemical modification of lignin by phosphorus molecules to improve the fire behavior of polybutylene succinate. Polym. Degrad. Stab. 2015;113:135– 43

  220. Liang D, Zhu X, Dai P, Lu X, Guo H, Que H, Wang D, He T, Xu C, Robin HM, Luo Z, Gu X (2021) Preparation of a novel lignin-based flame retardant for epoxy resin. Mater Chem Phys 259:124101. https://doi.org/10.1016/j.matchemphys.2020.124101

    Article  CAS  Google Scholar 

  221. Wei Y, Zhu S, Qian Q, Jiang Q, Zhang L, ** K, Liu W, Qiu Y (2022) Hexachlorocyclotriphosphazene functionalized lignin as a sustainable and effective flame retardant for epoxy resins. Ind Crops Prod 187:115543. https://doi.org/10.1016/j.indcrop.2022.115543

    Article  CAS  Google Scholar 

  222. Lu X, Yu M, Wang D, **u P, Xu C, Lee AF, Gu X (2021) Flame-retardant effect of a functional DOPO-based compound on lignin-based epoxy resins. Mater Today Chem 22:100562. https://doi.org/10.1016/j.mtchem.2021.100562

    Article  CAS  Google Scholar 

  223. Mensah RA, Shanmugam V, Narayanan S, Renner JS, Babu K, Neisiany RE, Försth M, Sas G, Das O (2022) A review of sustainable and environment-friendly flame retardants used in plastics. Polym Test 108. https://doi.org/10.1016/j.polymertesting.2022.107511

  224. Gaff M, Čekovská H, Bouček J, Kačíková D, Kubovský I, Tribulová T, Zhang L, Marino S, Kačík F (2021) Flammability characteristics of thermally modified meranti wood treated with natural and synthetic fire retardants. Polymers 13(13). https://doi.org/10.3390/polym13132160

  225. Wang X, Kalali EN, Wan J-T, Wang D-Y (2017) Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci 69:22–46. https://doi.org/10.1016/j.progpolymsci.2017.02.001

    Article  CAS  Google Scholar 

  226. Mili M, Hashmi SAR, Ather M, Hada V, Markandeya N, Kamble S, Mohapatra M, Rathore SKS, Srivastava AK, verma S (2022) Novel lignin as natural-biodegradable binder for various sectors—A review. J Appl Polym Sci 139(15):51951. https://doi.org/10.1002/app.51951

    Article  CAS  Google Scholar 

  227. Randhir R, Lin Y-T, Shetty K (2004) Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem 39(5):637–646. https://doi.org/10.1016/S0032-9592(03)00197-3

    Article  CAS  Google Scholar 

  228. Mariana M, Alfatah T, AK HPS, Yahya EB, Olaiya NG, Nuryawan A, Mistar EM, Abdullah CK, Abdulmadjid CN, ISmail H (2021) A current advancement on the role of lignin as sustainable reinforcement material in biopolymeric blends. J Mater Res Technol 15:2287–2316. https://doi.org/10.1016/j.jmrt.2021.08.139

    Article  CAS  Google Scholar 

  229. Lu X, Gu X, Shi Y (2022) A review on lignin antioxidants: their sources, isolations, antioxidant activities and various applications. Int J Biol Macromol 2022(210):716–741

    Article  Google Scholar 

  230. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in Foods and Dietary supplements. J Agric Food Chem 53(10):4290–4302. https://doi.org/10.1021/jf0502698

    Article  CAS  PubMed  Google Scholar 

  231. Cervato G, Carabelli M, Gervasio S, Cittera A, Cazzola R, Cestaro B (2000) Antioxbdant properties of oregano (origanum vulgare) leaf extracts. J Food Biochem 24(6):453–465. https://doi.org/10.1111/j.1745-4514.2000.tb00715.x

    Article  CAS  Google Scholar 

  232. Lu Q, Liu W, Yang L, Zu Y, Zu B, Zhu M, Zhang Y, Zhang X, Zhang R, Sun Z, Huang J, Zhang X, Li W (2012) Investigation of the effects of different organosolv pul** methods on antioxidant capacity and extraction efficiency of lignin. Food Chem 131(1):313–317. https://doi.org/10.1016/j.foodchem.2011.07.116

    Article  CAS  Google Scholar 

  233. Rashid T, Kait CF, Murugesan T (2016) A fourier transformed infrared compound study of lignin recovered from a formic acid process. Procedia Eng 148:1312–1319

    Article  CAS  Google Scholar 

  234. Freitas FMC, Cerqueira MA, Gonçalves C, Azinheiro S, Garrido-Maestu A, Vicente AA, Pastrana LM, Teixeira JA, Michelin M (2020) Green synthesis of lignin nano- and micro-particles: physicochemical characterization, bioactive properties and cytotoxicity assessment. Int J Biol Macromol 163:1798–1809. https://doi.org/10.1016/j.ijbiomac.2020.09.110

    Article  CAS  PubMed  Google Scholar 

  235. Gordobil OO, Paula Banales JM, Labidi J (2020) Lignins from agroindustrial by-products as natural ingredients for cosmetics: Chemical structure and in vitro sunscreen and cytotoxic activities. Molecules. 1–16

  236. Antunes FM, Inês F, Fangueiro JF, Lopes G, Pintado M, Costa, Patrícia Santos (2023) From sugarcane to skin: lignin as a multifunctional ingredient for cosmetic application. Int J Biol Macromol 234:0–9

    Article  CAS  Google Scholar 

  237. Arruda MDMPLA (2021) Simone da Cruz Filho, Iranildo José de Sousa, Georon Ferreira de Souza Silva, Guilherme Antonio do Nascimento Santos, Dayane Kelly Dias do Carmo Alves de Lima, Maria de Moraes Rocha, George Jackson de So Characterization of a lignin from Crataeva tapia leaves and potential applications in medicinal and cosmetic formulations. Int. J. Biol. Macromol. 180:286– 98

  238. Ugartondo VM, Montserrat Vinardell MaríaP (2008) Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour Technol 99(14):6683–6687

    Article  CAS  PubMed  Google Scholar 

  239. Daud INAN, Norhayati M, Rasid ZIA, Enshasy HA, El Azelee, Nur Izyan Wan (2022) Lignins as natural active ingredients for cosmetics: a review. Biosci Res 19(2):1050–1066

    Google Scholar 

  240. Ariyanta HAS, Suryanegara EB, Arung L, Kusuma ET (2023) Irawan Wijaya Azman Mohammad Taib, Mohamad Nurul Hussin, M. Hazwan Yanuar, Yeni Batubara, Irmanida Fatriasari, Widya Recent Progress on the Development of lignin as future ingredient biobased cosmetics. Sustain Chem Pharm. 32:1–17

  241. Ratanasumarn NC, Pakamon (2020) Cosmetic potential of lignin extracts from alkaline-treated sugarcane bagasse: optimization of extraction conditions using response surface methodology. Int J Biol Macromol 153:138–145

    Article  CAS  PubMed  Google Scholar 

  242. Sun LG, **ngyu H, Wang DZZ, Guoliang (2023) Anti-aging mechanism and rheological properties of lignin, quercetin, and gallic acid as antioxidants in asphalt. Constr Build Mater 369:130560

    Article  CAS  Google Scholar 

  243. Sung HJK, Kim MF, Hwan Y (2019) Recombinant lignin peroxidase-catalyzed decolorization of melanin using in-situ generated H2O2 for application in whitening cosmetics. Int J Biol Macromol 136:20–26

    Article  CAS  PubMed  Google Scholar 

  244. Mukherjee AB, Soumya Halder G (2018) Parametric optimization of delignification of rice straw through central composite design approach towards application in grafting. J Adv Res 14:11–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Adrio JLD, Arnold L (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4(1):117–139

    Article  PubMed  PubMed Central  Google Scholar 

  246. Sadaqat BK, Nazia Malik AY, Jamal A, Farooq U, Ali MI, He H, Liu FJ, Guo H, Urynowicz M, Wang Q, Huang (2020) Zaixing Enzymatic decolorization of melanin by lignin peroxidase from Phanerochaete chrysosporium. Sci. Rep. 10(1):1–10

  247. Saluja BT, Jay N, Li H, Desai, Umesh R, Sakagami M (2013) Novel low molecular weight lignins as potential anti-emphysema agents: in vitro triple inhibitory activity against elastase, oxidation and inflammation. Pulm Pharmacol Ther 26(2):296–304

    Article  CAS  PubMed  Google Scholar 

  248. Mahata DJ, Jana M, Mukherjee A, Mondal A, Saha N, Sen T, Nando S, Mukhopadhyay GB, Chakraborty CK, Ranadhir, Mandal, Santi M (2017) Lignin-graft-Polyoxazoline Conjugated Triazole a Novel Anti-Infective Ointment to Control Persistent Inflammation. Sci. Rep. 7(March):1–16

  249. Reyna-Reyna LYM-L, Valencia B, Cinco-Moroyoqui D, Francisco Javier González-Vega, Ricardo Iván Bernal-Mercado, Ariadna Thalía Ballesteros-Monrreal, Manuel, Mendez-Encinas G, Del-Toro-Sánchez MA (2023) Carmen Lizette Antioxidant, Antibacterial, Anti-Inflammatory, and Antiproliferative Activity of Sorghum Lignin (Sorghum bicolor) Treated with Ultrasonic Pulses. Metabolites. 13(3):394

  250. Puangpraphant SC-R, Edith-Oliva Oseguera-Toledo M (2022) Chap. 9 -. In: Hernández-Ledesma B, Martínez-Villaluenga C (eds) -Anti-inflammatory and antioxidant phenolic compounds. Current Advances for Development of Functional Foods Modulating Inflammation and Oxidative Stress, Elsevier, London

    Chapter  Google Scholar 

  251. Aufischer GS, Raphaela Kamm B, Paulik C (2022) Depolymerisation of kraft lignin to obtain high value-added products: antioxidants and UV absorbers. Holzforschung 76(9):845–852

    Article  CAS  Google Scholar 

  252. Dizhbite TT, Galina Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins––natural antioxidants. Bioresour Technol 95(3):309–317

    Article  CAS  PubMed  Google Scholar 

  253. Mahmood ZY, Jahangeer M, Riaz M, Ghaffar M, Javid A, Irum (2018) In: Poletto M (ed) Lignin as natural antioxidant capacity. Lignin - Trends and Applications. IntechOpen

  254. Solihat NNS, Falah FP, Ismayati F, Lubis M (2021) Muhammad Adly Rahandi Fatriasari, Widya Santoso, Eko Budi Syafii, Wasrin Lignin as an Active Biomaterial: A Review. Jurnal Sylva Lestari. 9(1):1–22

  255. Luzi FY, Ma W, Torre P, Puglia L, Debora (2021) In: Santos H, Figueiredo P (eds) -Lignin-based materials with antioxidant and antimicrobial properties. Lignin-based materials for Biomedical Applications (Preparation, characterization, and implementation). Elsevier, London

    Google Scholar 

  256. Paul ST, Neeraj S, Chandna S, Reddy Y, Nikhileshwar Bhaumik J (2021) Development of a light activatable lignin nanosphere based spray coating for bioimaging and antimicrobial photodynamic therapy. J Mater Chem B 9(6):1592–1603

    Article  CAS  PubMed  Google Scholar 

  257. Zhong JX, Li Qin X (2015) Efficient antibacterial silver nanoparticles composite using lignin as a template. J Compos Mater 49:2329–2335

    Article  CAS  Google Scholar 

  258. Qian YQ, Zhu X, Shi** (2015) Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens. Green Chem 17(1):320–324

    Article  CAS  Google Scholar 

  259. Piccinino DC, Eliana Tomaino E, Gabellone S, Gigli V, Avitabile D, Saladino R (2021) Nano-Structured Lignin as Green antioxidant and UV shielding ingredient for Sunscreen Applications. Antioxidants 10(2):1–19

    Article  Google Scholar 

  260. Sadeghifar HR, Arthur (2020) Lignin as a UV light blocker-a review. Polymers 12(5):1–10

    Article  Google Scholar 

  261. Kim THP, Lee SH, Bharadwaj S, Sai Lee AVSL, Yoo YS, Kim CG, Tae Hyun (2023) A review of Biomass-derived UV-Shielding materials for bio-composites. Energies 16(5):1–27

    Article  CAS  Google Scholar 

  262. Conde JJ, González-Rodríguez S, Chen X, Lu-Chau TA, Eibes G, Pizzi A, Moreira MT (2023) Electrochemical oxidation of lignin for the simultaneous production of bioadhesive precursors and value-added chemicals. Biomass Bioenergy 169:106693

    Article  CAS  Google Scholar 

  263. Agrawal R, Kumar A, Singh S, Sharma K (2022) Recent advances and future perspectives of lignin biopolymers. J Polym Res 29(6):222

    Article  CAS  Google Scholar 

  264. Ang AF, Ashaari Z, Lee SH, Tahir PM, Halis R (2019) Lignin-based copolymer adhesives for composite wood panels–A review. Int J Adhes Adhes 95:102408

    Article  Google Scholar 

  265. Asim M, Saba N, Jawaid M, Nasir M, Pervaiz M, Alothman OY (2018) A review on phenolic resin and its composites. Curr Anal Chem 14(3):185–197

    Article  CAS  Google Scholar 

  266. Lucia A, van Herwijnen HW, Rosenau T (2020) Wood-based resins and other bio-based binders for the production of mineral wool. Holzforschung 74(6):539–550

    Article  CAS  Google Scholar 

  267. Khan MA, Ashraf SM, Malhotra VP (2004) Development and characterization of a wood adhesive using bagasse lignin. Int J Adhes Adhes 24(6):485–493

    Article  CAS  Google Scholar 

  268. Ibrahim MNM, Zakaria N, Sipaut CS, Sulaiman O, Hashim R (2011) Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production. Carbohydr Polym 86(1):112–119

    Article  CAS  Google Scholar 

  269. Effendi A, Gerhauser H, Bridgwater AV (2008) Production of renewable phenolic resins by thermochemical conversion of biomass: a review. Renew Sustain Energy Rev 12(8):2092–2116

    Article  CAS  Google Scholar 

  270. Mancera C, El Mansouri N-E, Ferrando F, Salvado J (2011) The suitability of steam exploded Vitis vinifera and alkaline lignin for the manufacture of fiberboard. BioResources., 6(4): 4439–4453

  271. ** Y, Cheng X, Zheng Z (2010) Preparation and characterization of phenol–formaldehyde adhesives modified with enzymatic hydrolysis lignin. Bioresour Technol 101(6):2046–2048

    Article  CAS  PubMed  Google Scholar 

  272. Qiao W, Li S, Xu F (2016) Preparation and characterization of a phenol-formaldehyde resin Adhesive obtained from bio-ethanol production residue. Polym Polym Compos 24(2):99–105

    CAS  Google Scholar 

  273. Zhang J, Wang W, Zhou X, Liang J, Du G, Wu Z (2019) Lignin-based adhesive crosslinked by furfuryl alcohol–glyoxal and epoxy resins. Nord Pulp Pap Res J 34(2):228–238

    Article  CAS  Google Scholar 

  274. Mancera C, El Mansouri N-E, Pelach MA, Francesc F, Salvadó J (2012) Feasibility of incorporating treated lignins in fiberboards made from agricultural waste. Waste Manag 32(10):1962–1967. https://doi.org/10.1016/j.wasman.2012.05.019

    Article  CAS  PubMed  Google Scholar 

  275. Podschun J, Stücker A, Buchholz RI, Heitmann M, Schreiber A, Saake B, Lehnen R (2016) Phenolated Lignins as reactive precursors in Wood Veneer and Particleboard Adhesion. Ind Eng Chem Res 55(18):5231–5237. https://doi.org/10.1021/acs.iecr.6b00594

    Article  CAS  Google Scholar 

  276. Österberg M, Sipponen MH, Mattos BD, Rojas OJ (2020) Spherical lignin particles: a review on their sustainability and applications. Green Chem 22(9):2712–2733

    Article  Google Scholar 

  277. Laughlin RG, HLB (1981) From a thermodynamic perspective. J Soc Cosmet Chem 32:371–392

    CAS  Google Scholar 

  278. Ruwoldt J (2020) A critical review of the Physicochemical properties of lignosulfonates: Chemical structure and behavior in aqueous solution, at surfaces and interfaces. Surfaces 3(4):622–648. https://doi.org/10.3390/surfaces3040042

    Article  CAS  Google Scholar 

  279. Zhang Z, Zhang Y, Lin Z, Mulyadi A, Mu W, Deng Y (2017) Butyric anhydride modified lignin and its oil-water interfacial properties. Chem Eng Sci 165:55–64. https://doi.org/10.1016/j.ces.2017.02.025

    Article  CAS  Google Scholar 

  280. Rojas OJ, Bullón J, Ysambertt F, Forgiarini A, Salager JL, Argyropoulos DS (2007) Lignins as emulsion stabilizers. ACS Symp. Ser. 954:182– 99. https://doi.org/10.1021/bk-2007-0954.ch012

  281. Calabrese V, Courtenay JC, Edler KJ, Scott JL (2018) Pickering emulsions stabilized by naturally derived or biodegradable particles. Curr Opin Green Sustain Chem 12:83–90. https://doi.org/10.1016/j.cogsc.2018.07.002

    Article  Google Scholar 

  282. Selyanina SB, Makarevich NA, Tel’tevskaya SE, Afanas’eva NI, Selivanova NV (2002) Influence of adsorption of lignosulfonates on kraft lignin in the presence of tall oil on separation of water-tall oil emulsion. Russ J Appl Chem 75(11):1873–1877. https://doi.org/10.1023/A:1022243010785

    Article  CAS  Google Scholar 

  283. Padilha CEA, Nogueira CC, Matias SCB, JDBd CF, JAd SDFSO, Santos ESd (2020) Fabrication of hollow polymer microcapsules and removal of emulsified oil from aqueous environment using soda lignin nanoparticles. Colloids Surf a: Physicochem Eng Asp 603:125260. https://doi.org/10.1016/j.colsurfa.2020.125260

    Article  CAS  Google Scholar 

  284. Ruwoldt J (2022) In: Sand A, Tuteja J (eds) Emulsion stabilization with Lignosulfonates. Lignin-Chemistry, structure, and application. IntechOpen

  285. Rojas O, Salager JL (1994) Surface activity of bagasse lignin derivatives found in the spent liquor of soda plants. Tappi J 77(3):169–174

    CAS  Google Scholar 

  286. Zulfikar MA, Wahyuningrum D, Lestari S (2013) Adsorption of Lignosulfonate Compound from aqueous solution onto Chitosan-silica beads. J Sep Sci 48(9):1391–1401. https://doi.org/10.1080/01496395.2012.728275

    Article  CAS  Google Scholar 

  287. Ruwoldt J, Planque J, Øye G (2020) Lignosulfonate Salt Tolerance and the Effect on Emulsion Stability. ACS Omega 5(25):15007–15015. https://doi.org/10.1021/acsomega.0c00616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Ruwoldt J, Simon S, Øye G (2020) Viscoelastic properties of interfacial lignosulfonate films and the effect of added electrolytes. Colloids Surf a: Physicochem Eng Asp 606:125478. https://doi.org/10.1016/j.colsurfa.2020.125478

    Article  CAS  Google Scholar 

  289. Tadros TF (2013) 1-In: Tadros TF(ed) emulsion formation, stability, and rheology. Emulsion formation and stability. Wiley, New York

    Book  Google Scholar 

  290. Askvik KM, Are Gundersen S, Sjöblom J, Merta J, Stenius P (1999) Complexation between lignosulfonates and cationic surfactants and its influence on emulsion and foam stability. Colloids Surf a: Physicochem Eng Asp 159(1):89–101. https://doi.org/10.1016/S0927-7757(99)00165-X

    Article  CAS  Google Scholar 

  291. Vainio U, Lauten RA, Haas S, Svedström K, Veiga LSI, Hoell A, Serimaa R (2012) Distribution of counterions around lignosulfonate macromolecules in different polar solvent mixtures. Langmuir 28(5):2465–2475. https://doi.org/10.1021/la204479d

    Article  CAS  PubMed  Google Scholar 

  292. Ruwoldt J, Øye G (2020) Effect of low-molecular-weight alcohols on emulsion stabilization with lignosulfonates. ACS Omega 5(46):30168–30175. https://doi.org/10.1021/acsomega.0c04650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Nielsen LE, Wall R, Adams G (1958) Coalescence of liquid drops at oil-water interfaces. J Colloid Sci 13(5):441–458. https://doi.org/10.1016/0095-8522(58)90053-9

    Article  CAS  Google Scholar 

  294. Gundersen SA, Sather Ø, Sjöblom J (2001) Salt effects on lignosulfonate and Kraft lignin stabilized O/W-emulsions studied by means of electrical conductivity and video-enhanced microscopy. Colloids Surf a: Physicochem Eng Asp 186(3):141–153. https://doi.org/10.1016/S0927-7757(00)00541-0

    Article  CAS  Google Scholar 

  295. Horozov TS, Binks BP (2006) Particle-stabilized emulsions: a bilayer or a bridging monolayer? Angew Chem 118(5):787–790. https://doi.org/10.1002/ange.200503131

    Article  Google Scholar 

  296. Tadros TF (2018) 6- formulation of suspoemulsions. De Gruyter

  297. Sipponen MH, Smyth M, Leskinen T, Johansson LS, Österberg M (2017) All-lignin approach to prepare cationic colloidal lignin particles: stabilization of durable Pickering emulsions. Green Chem 19(24):5831–5840. https://doi.org/10.1039/c7gc02900d

    Article  CAS  Google Scholar 

  298. Yan M, Yang D, Deng Y, Chen P, Zhou H, Qiu X (2010) Influence of pH on the behavior of lignosulfonate macromolecules in aqueous solution. Colloids Surf a: Physicochem Eng Asp 371(1–3):50–58. https://doi.org/10.1016/j.colsurfa.2010.08.062

    Article  CAS  Google Scholar 

  299. Gharehkhani S, Ghavidel N, Fatehi P (2019) Kraft Lignin-Tannic Acid as a Green Stabilizer for Oil/Water Emulsion. ACS Sustain Chem Eng 7(2):2370–2379. https://doi.org/10.1021/acssuschemeng.8b05193

    Article  CAS  Google Scholar 

  300. Deng Y, Wu Y, Qian Y, Ouyang X, Yang D, Qiu X (2010) Adsorption and desorption behaviors of lignosulfonate during the self-assembly of multilayers. BioResources 5(2):1178–1196

    Article  CAS  Google Scholar 

  301. Wei Z, Yang Y, Yang R, Wang C (2012) Alkaline lignin extracted from furfural residues for pH-responsive Pickering emulsions and their recyclable polymerization. Green Chem 14(11):3230–3236. https://doi.org/10.1039/c2gc36278c

    Article  CAS  Google Scholar 

  302. Konduri MK, Kong F, Fatehi P (2015) Production of carboxymethylated lignin and its application as a dispersant. Eur Polym J 70:371–383. https://doi.org/10.1016/j.eurpolymj.2015.07.028

    Article  CAS  Google Scholar 

  303. Li S, Willoughby JA, Rojas OJ (2016) Oil-in-water emulsions stabilized by Carboxymethylated Lignins. Prop Energy Prospects ChemSusChem 9(17):2460–2469. https://doi.org/10.1002/cssc.201600704

    Article  CAS  Google Scholar 

  304. Ekeberg D, Gretland KS, Gustafsson J, Bråten SM, Fredheim GE (2006) Characterisation of lignosulphonates and kraft lignin by hydrophobic interaction chromatography. Anal Chim Acta 565(1):121–128. https://doi.org/10.1016/j.aca.2006.02.008

    Article  CAS  Google Scholar 

  305. Hornof V, Neale G, Margeson J, Chiwetelu C (1984) Lignosulfonate-based mixed surfactants for low interfacial tension. Cell Chem Technol 18:207–303

    Google Scholar 

  306. Qiu X, Yan M, Yang D, Pang Y, Deng Y (2009) Effect of straight-chain alcohols on the physicochemical properties of calcium lignosulfonate. J Colloid Interface Sci 338(1):151–155. https://doi.org/10.1016/j.jcis.2009.05.072

    Article  CAS  PubMed  Google Scholar 

  307. Askvik KM (2000) Complexation of lignosulfonates with multivalent cations and cationic surfactants, and the impact on emulsion stability. Norway. https://www.osti.gov/etdeweb/biblio/20119607. Acessed 21 April 2024

  308. Askvik KM, Hetlesather S, Sjöblom J, Stenius P (2001) Properties of the lignosulfonate-surfactant complex phase. Colloids Surf a: Physicochem Eng Asp 182(1–3):175–189. https://doi.org/10.1016/S0927-7757(00)00711-1

    Article  CAS  Google Scholar 

  309. Rana D, Neale GH, Hornof V (2002) Surface tension of mixed surfactant systems: Lignosulfonate and sodium dodecyl sulfate. Colloid Polym Sci 280(8):775–778. https://doi.org/10.1007/s00396-002-0687-y

    Article  CAS  Google Scholar 

  310. Hong SA, Bae JH, Lewis GR (1987) Evaluation of Lignosulfonate as a sacrificial absorbate in surfactant flooding. SPE Reserv Eng (Society Petroleum Engineers) 2(1):17–27. https://doi.org/10.2118/12699-pa

    Article  CAS  Google Scholar 

  311. Pang Y, Wang S, Qiu X, Luo Y, Lou H, Huang J (2017) Preparation of Lignin/Sodium Dodecyl Sulfate Composite nanoparticles and their application in Pickering Emulsion Template-based Microencapsulation. J Agric Food Chem 65(50):11011–11019. https://doi.org/10.1021/acs.jafc.7b03784

    Article  CAS  PubMed  Google Scholar 

  312. Lu S, Yang D, Wang M, Yan M, Qian Y, Zheng D, Qiu X (2020) Pickering emulsions synergistic-stabilized by amphoteric lignin and SiO2 nanoparticles: Stability and pH-responsive mechanism. Colloids Surf a: Physicochem Eng Asp 585:124158. https://doi.org/10.1016/j.colsurfa.2019.124158

    Article  CAS  Google Scholar 

  313. Bikiaris ND, Koumentakou I, Lykidou S, Nikolaidis N (2022) Innovative skin product O/W emulsions containing lignin, Multiwall Carbon Nanotubes and Graphene Oxide Nanoadditives with Enhanced Sun Protection Factor and UV Stability Properties. Appl Nano 3(1):1–15. https://doi.org/10.3390/applnano3010001

    Article  Google Scholar 

  314. Chen K, Qian Y, Wang C, Yang D, Qiu X, Binks BP (2021) Tumor microenvironment-responsive, high internal phase Pickering emulsions stabilized by lignin/chitosan oligosaccharide particles for synergistic cancer therapy. J Colloid Interface Sci 591:352–362. https://doi.org/10.1016/j.jcis.2021.02.012

    Article  CAS  PubMed  Google Scholar 

  315. Ruwoldt J, Blindheim FH, Chinga-Carrasco G (2023) Functional surfaces, films, and coatings with lignin - a critical review. RSC Adv 13(18):12529–12553. https://doi.org/10.1039/d2ra08179b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Löfstedt J, Dahlstrand C, Orebom A, Meuzelaar G, Sawadjoon S, Galkin MV, Agback P, Wimby M, Corresa E, Mathieu Y, Sauvanaud L, Eriksson S, Corma A, Same JSM (2016) Green Diesel from Kraft Lignin. Three Steps ChemSusChem 9(12):1392–1396. https://doi.org/10.1002/cssc.201600172

    Article  CAS  PubMed  Google Scholar 

  317. Pasquali RC, Taurozzi MP, Bregni C (2008) Some considerations about the hydrophilic-lipophilic balance system. Int J Pharm 356(1–2):44–51. https://doi.org/10.1016/j.ijpharm.2007.12.034

    Article  CAS  PubMed  Google Scholar 

  318. Aro T, Fatehi P (2017) Production and application of lignosulfonates and sulfonated lignin. Chemsuschem 10(9):1861–1877

    Article  CAS  PubMed  Google Scholar 

  319. Gao W, Inwood JPW, Fatehi P (2019) Sulfonation of Phenolated Kraft Lignin to produce Water Soluble products. J Wood Chem Technol 39(4):225–241. https://doi.org/10.1080/02773813.2019.1565866

    Article  CAS  Google Scholar 

  320. Pang YX, Qiu XQ, Yang DJ, Lou HM (2008) Influence of oxidation, hydroxymethylation and sulfomethylation on the physicochemical properties of calcium lignosulfonate. Colloids Surf a: Physicochem Eng Asp 312(2–3):154–159. https://doi.org/10.1016/j.colsurfa.2007.06.044

    Article  CAS  Google Scholar 

  321. Qiu X, Zeng W, Liang W, Xue Y, Hong N, Li Y (2016) Sulfobutylated Lignosulfonate with Ultrahigh Sulfonation Degree and its dispersion property in Low-Rank coal-water slurry. J Dispers Sci Technol 37(4):472–478. https://doi.org/10.1080/01932691.2015.1022658

    Article  CAS  Google Scholar 

  322. Delgado N, Ysambertt F, Chávez G, Bravo B, García DE, Santos J (2019) Valorization of Kraft Lignin of different molecular weights as surfactant Agent for the Oil Industry. Waste Biomass Valori 10(11):3383–3395. https://doi.org/10.1007/s12649-018-0352-4

    Article  CAS  Google Scholar 

  323. He W, Gao W, Fatehi P (2017) Oxidation of Kraft Lignin with Hydrogen Peroxide and its application as a dispersant for Kaolin suspensions. ACS Sustain Chem Eng 5(11):10597–10605. https://doi.org/10.1021/acssuschemeng.7b02582

    Article  CAS  Google Scholar 

  324. Yuliestyan A, Partal P, Navarro FJ, Martín-Sampedro R, Ibarra D, Eugenio ME (2022) Emulsion stabilization by Cationic Lignin Surfactants Derived from Bioethanol Production and Kraft Pul** Processes. Polymers 14(14). https://doi.org/10.3390/polym14142879

  325. Musl O, Sulaeva I, Bacher M, Mahler AK, Rosenau T, Potthast A (2020) Hydrophobic Interaction Chromatography in 2 D liquid chromatography characterization of Lignosulfonates. Chemsuschem 13(17):4595–4604. https://doi.org/10.1002/cssc.202000849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Hult EL, Ropponen J, Poppius-Levlin K, Ohra-Aho T, Tamminen T (2013) Enhancing the barrier properties of paper board by a novel lignin coating. Ind Crops Prod 50:694–700. https://doi.org/10.1016/j.indcrop.2013.08.013

    Article  CAS  Google Scholar 

  327. Hult EL, Koivu K, Asikkala J, Ropponen J, Wrigstedt P, Sipilä J, Poppius-Levlin K (2013) Esterified lignin coating as water vapor and oxygen barrier for fiber-based packaging. Holzforschung 67(8):899–905. https://doi.org/10.1515/hf-2012-0214

    Article  CAS  Google Scholar 

  328. Yanhua J, Weihong Q, Zongshi L, Lubai C (2004) A study on the modified lignosulfonate from Lignin. Energy Sources 26(4):409–414. https://doi.org/10.1080/00908310490281528

    Article  CAS  Google Scholar 

  329. Borrero-López AM, Wang L, Li H, Lourençon TV, Valencia C, Franco JM, Rojas OJ (2023) Oleogels and reverse emulsions stabilized by acetylated Kraft lignins. Int J Biol Macromol 242(3):124941. https://doi.org/10.1016/j.ijbiomac.2023.124941

    Article  CAS  PubMed  Google Scholar 

  330. Shorey R, Mekonnen TH (2023) Esterification of lignin with long chain fatty acids for the stabilization of oil-in-water Pickering emulsions. Int J Biol Macromol 230(12):123143. https://doi.org/10.1016/j.ijbiomac.2023.123143

    Article  CAS  PubMed  Google Scholar 

  331. Shomali Z, Fatehi P (2022) Carboxyalkylated lignin nanoparticles with enhanced functionality for oil-water Pickering Emulsion systems. ACS Sustain Chem Eng 10(50):16563–16577. https://doi.org/10.1021/acssuschemeng.2c04143

    Article  CAS  Google Scholar 

  332. Hong N (2022) Pickering emulsions stabilized by an Alkyl Chain-Bridged lignin-based polymer without additives and Organic solvents. J Agric Food Chem 70(4):1196–1202. https://doi.org/10.1021/acs.jafc.1c04787

    Article  CAS  PubMed  Google Scholar 

  333. Pang Y, Sun Y, Luo Y, Zhou M, Qiu X, Yi C, Lou H (2021) Preparation of novel all-lignin microcapsules via interfacial cross-linking of pickering emulsion. Ind Crops Prod 167:113468. https://doi.org/10.1016/j.indcrop.2021.113468

    Article  CAS  Google Scholar 

  334. Lauten RA, Myrvold BO, Gundersen SA (2010)14- New Developments in the commercial utilization of Lignosulfonates. In: Kjellin M, Johansson I (eds) Surfactants from renewable resources. Wiley, New York

  335. Xu C, Ferdosian F (2017) Conversion of Lignin into Bio-based chemicals and materials. Springer Berlin, Heidelberg

    Book  Google Scholar 

  336. Yu M, **n H, He D, Zhu C, Li Q, Wang X, Zhou J (2023) Electrospray lignin nanoparticles as Pickering emulsions stabilizers with antioxidant activity, UV barrier properties and biological safety. Int J Biol Macromol 238:123938. https://doi.org/10.1016/j.ijbiomac.2023.123938

    Article  CAS  PubMed  Google Scholar 

  337. Yuliestyan A, Gabet T, Marsac P, García-Morales M, Partal P (2018) Sustainable asphalt mixes manufactured with reclaimed asphalt and modified-lignin-stabilized bitumen emulsions. Constr Build Mater 173:662–671. https://doi.org/10.1016/j.conbuildmat.2018.04.044

    Article  CAS  Google Scholar 

  338. Yuliestyan A, García-Morales M, Moreno E, Carrera V, Partal P (2017) Assessment of modified lignin cationic emulsifier for bitumen emulsions used in road paving. Mater Des 131:242–251. https://doi.org/10.1016/j.matdes.2017.06.024

    Article  CAS  Google Scholar 

  339. Ogunkoya D, Li S, Rojas OJ, Fang T (2015) Performance, combustion, and emissions in a diesel engine operated with fuel-in-water emulsions based on lignin. Appl Energy 154:851–861. https://doi.org/10.1016/j.apenergy.2015.05.036

    Article  CAS  Google Scholar 

  340. Colucci G, Santamaria-Echart A, Silva SC, Teixeira LG, Ribeiro A, Rodrigues AE, Borreiro MF (2023) Development of colloidal lignin particles through particle design strategies and screening of their Pickering stabilizing potential. Colloids Surf a: Physicochem Eng Asp 666:131287. https://doi.org/10.1016/j.colsurfa.2023.131287

    Article  CAS  Google Scholar 

  341. Gordobil O, Blažević N, Simonič M, Sandak A (2023) Potential of lignin multifunctionality for a sustainable skincare: impact of emulsification process parameters and oil-phase on the characteristics of O/W Pickering emulsions. Int J Biol Macromol 233:123561. https://doi.org/10.1016/j.ijbiomac.2023.123561

    Article  CAS  PubMed  Google Scholar 

  342. Czaikoski A, Gomes A, Kaufmann KC, Liszbinski RB, de Jesus MB, Cunha RL (2020) Lignin derivatives stabilizing oil-in-water emulsions: Technological aspects, interfacial rheology and cytotoxicity. Ind Crops Prod 154:112762. https://doi.org/10.1016/j.indcrop.2020.112762

    Article  CAS  Google Scholar 

  343. Chen K, Lei L, Lou H, Niu J, Yang D, Qiu X, Qian Y (2020) High internal phase emulsions stabilized with carboxymethylated lignin for encapsulation and protection of environmental sensitive natural extract. Int J Biol Macromol 158:430–442. https://doi.org/10.1016/j.ijbiomac.2020.04.106

    Article  CAS  PubMed  Google Scholar 

  344. Yu X, Chen S, Wang W, Deng T, Wang H (2022) Empowering alkali lignin with high performance in pickering emulsion by selective phenolation for the protection and controlled-release of agrochemical. J Clean Prod 339:130769. https://doi.org/10.1016/j.jclepro.2022.130769

    Article  CAS  Google Scholar 

  345. **ang Hj Z, Al, Wang H, **ao L, Tr D, Tg H, Wen P (2022) Fabrication of alkali lignin-based emulsion electrospun nanofibers for the nanoencapsulation of beta-carotene and the enhanced antioxidant property. Int J Biol Macromol 218:739–750. https://doi.org/10.1016/j.ijbiomac.2022.07.121

    Article  CAS  PubMed  Google Scholar 

  346. Nasiri A, Wearing J, Dubé MA (2020) The use of lignin in emulsion-based pressure-sensitive adhesives. Int J Adhes Adhes 100:102598. https://doi.org/10.1016/j.ijadhadh.2020.102598

    Article  CAS  Google Scholar 

  347. Chang L, Wang Y, Luo S, Gao L, Tang Q, Chen Y, Ren Y (2023) Synthesis of a novel waterborne diethanolamine-modified lignin/polyurethane emulsion and its application as an adhesive for polypropylene decorative film on wood-based panels. Polym Eng Sci 63(5):1588–1597. https://doi.org/10.1002/pen.26308

    Article  CAS  Google Scholar 

  348. Foulet A, Birot M, Sonnemann G, Deleuze H (2015) The potential of Kraft black liquor to produce bio-based emulsion-templated porous materials. React Funct Polym 90:15–20. https://doi.org/10.1016/j.reactfunctpolym.2015.03.006

    Article  CAS  Google Scholar 

  349. Boarino A, Klok H-A (2023) Opportunities and challenges for Lignin Valorization in Food Packaging, Antimicrobial, and agricultural applications. Biomacromolecules 24(3):1065–1077. https://doi.org/10.1021/acs.biomac.2c01385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Ahmad UM, Ji N, Li H, Wu Q, Song C, Liu Q, Ma D, Lu X (2021) Can lignin be transformed into agrochemicals? Recent advances in the agricultural applications of lignin. Ind Crops Prod 170:113646. https://doi.org/10.1016/j.indcrop.2021.113646

    Article  CAS  Google Scholar 

  351. Abbas A, Wang Z, Zhang Y, Peng P, She D (2022) Lignin-based controlled release fertilizers: a review. Int J Biol Macromol 222:1801–1817. https://doi.org/10.1016/j.ijbiomac.2022.09.265

    Article  CAS  PubMed  Google Scholar 

  352. Saleh IA, Zouari N, Al-Ghouti MA (2020) Removal of pesticides from water and wastewater: Chemical, physical and biological treatment approaches. Environ Technol Innov 19:101026. https://doi.org/10.1016/j.eti.2020.101026

    Article  Google Scholar 

  353. Katagi T (2018) Direct photolysis mechanism of pesticides in water. J Pestic Sci 43(2):57–72. https://doi.org/10.1584/jpestics.D17-081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Weiss R, Ghitti E, Sumetzberger-Hasinger M, Guebitz GM, Nyanhongo GS (2020) Lignin-based Pesticide Delivery System. ACS Omega 5(8):4322–4329. https://doi.org/10.1021/acsomega.9b04275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Islam F, Wang J, Farooq MA, Khan MSS, Xu L, Zhu J, Zhao M, Muños S, Li QX, Zhou W (2018) Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environ Int 111:332–351. https://doi.org/10.1016/j.envint.2017.10.020

    Article  CAS  PubMed  Google Scholar 

  356. Mo D, Li X, Chen Y, Jiang Y, Gan C, Zhang Y, Li W, Huang Y, Cui J (2021) Fabrication and evaluation of slow-release lignin-based avermectin nano-delivery system with UV-shielding property. Sci Rep 11(1):23248. https://doi.org/10.1038/s41598-021-02664-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Gigli M, Fellet G, Pilotto L, Sgarzi M, Marchiol L, Crestini C (2022) Lignin-based nano-enabled agriculture: a mini-review. Front Plant Sci 13:976410. https://doi.org/10.3389/fpls.2022.976410

    Article  PubMed  PubMed Central  Google Scholar 

  358. Teramoto Y, Lee SH, Endo T (2012) Molecular composite of lignin: miscibility and complex formation of organosolv lignin and its acetates with synthetic polymers containing vinyl pyrrolidone and/or vinyl acetate units. J Appl Polym Sci 125(3):2063–2070

    Article  CAS  Google Scholar 

  359. Johansson K, Winestrand S, Johansson C, Järnström L, Jönsson LJ (2012) Oxygen-scavenging coatings and films based on lignosulfonates and laccase. J Biotech 161(1):14–18

    Article  CAS  Google Scholar 

  360. Bhat R, Abdullah N, Din RH, Tay G-S (2013) Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm black liquor waste. J Food Eng 119(4):707–713

    Article  CAS  Google Scholar 

  361. Zadeh EM, O’Keefe SF, Kim Y-T (2018) Utilization of lignin in biopolymeric packaging films. ACS Omega 3(7):7388–7398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Borrega M, Päärnilä S, Greca LG, Jääskeläinen A-S, Ohra-Aho T, Rojas OJ, Tamminen T (2020) Morphological and wettability properties of thin coating films produced from technical lignins. Langmuir 36(33):9675–9684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Raza GS, Maukonen J, Makinen M, Niemi P, Niiranen L, Hibberd AA, Poutanen K, Buchert J, Herzig K-H (2018) Hypocholesterolemic effect of the lignin-rich insoluble residue of brewer’s spent grain in mice fed a high-fat diet. J Agric Food Chem 67(4):1104–1114

    Article  Google Scholar 

  364. Sato S, Mukai Y, Tokuoka Y, Mikame K, Funaoka M, Fujita S (2012) Effect of lignin-derived lignophenols on hepatic lipid metabolism in rats fed a high-fat diet. Environ Toxicol Pharmacol 34(2):228–234

    Article  CAS  PubMed  Google Scholar 

  365. Hasegawa Y, Kadota Y, Hasegawa C, Kawaminami S (2015) Lignosulfonic acid-induced inhibition of intestinal glucose absorption. J Nutr Sci Vitaminol 61(6):449–454

    Article  CAS  PubMed  Google Scholar 

  366. **e F, Gong S, Zhang W, Wu J, Wang Z (2017) Potential of lignin from Canna edulis Ker residue in the inhibition of α-D-glucosidase: kinetics and interaction mechanism merging with docking simulation. Int J Biol Macromol 95:592–602

    Article  CAS  PubMed  Google Scholar 

  367. Medina JDC, Woiciechowski AL, Zandona Filho A, Bissoqui L, Noseda MD, de Souza Vandenberghe LP, Zawadzki SF, Soccol CR (2016) Biological activities and thermal behavior of lignin from oil palm empty fruit bunches as potential source of chemicals of added value. Ind Crops Prod 94:630–637

    Article  Google Scholar 

  368. Barapatre A, Aadil KR, Tiwary BN, Jha (2015) In vitro antioxidant and antidiabetic activities of biomodified lignin from Acacia nilotica wood. Int J Biol Macromol 75:81–89. https://doi.org/10.1016/j.ijbiomac.2015.01.012

    Article  CAS  PubMed  Google Scholar 

  369. Wang G, **a Y, Sui W, Si C (2018) Lignin as a novel tyrosinase inhibitor: effects of sources and isolation processes. ACS Sustain Chem Eng 6(7):9510–9518

    Article  CAS  Google Scholar 

  370. Lu FJ, Chu LH, Gau RJ (1998) Free radical-scavenging properties of lignin. Nutr Cancer 30(1):31–38

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.N.A.M Taib would like to thank King Fahd University of Petroleum and Minerals (KFUPM) for the Post-Doctoral scheme for this project.

Author information

Authors and Affiliations

Authors

Contributions

M. N. A. M Taib performed conceptualization, methodology and writing original draft. J. Ruwoldt, I. W. Arnata, D. Sartika assisted in performed methodology, writing original draft, formal analysis, investigation and validation. M. M. Rahman contributed in conception and supervision. T. A. Salleh also contributed in conception and administration on project. M. H. Hussin contributed on supervision, conception and writing-review and editing. All authors reviewed the manuscript upon submission.

Corresponding author

Correspondence to Mohamad Nurul Azman Mohammad Taib.

Ethics declarations

Ethics approval and consent to participate

Compliance with ethical standards.

Consent for publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taib, M.N.A.M., Rahman, M.M., Ruwoldt, J. et al. Recent Progress in Development of Functionalized Lignin Towards Sustainable Applications. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03338-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03338-x

Keywords

Navigation