Log in

Investigating the Structural and Antimicrobial Properties of Wheat Gluten Nanocomposite Film Containing Zinc Oxide Nanoparticles and Quercetin Nanoliposomes

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study aimed was to develop a wheat gluten nanocomposite film based on quercetin nanoliposomes (NL) and zinc oxide nanoparticles (ZnONPs), to examin the effects of quercetin nanoliposome (0, 5, 10% v/v) and ZnONPs (0, 3, 6% w/w) using the response surface method with a central composite design. After selecting optimal samples, an assessment of the structural properties of the nanocomposite was conducted. The findings showed that adding NL and ZnONPs led to an increase in sample thickness, Water Vapor Permeability, and antioxidant capacity. Moisture and solubility were decreased (P ≤ 0.05). Furthermore, increased L*, b*and C* indices with increasing levels of ZnONPs and NL. Conversely, higher levels of NL led to a reduction in a* index. Notably, the presence of ZnONPs did not significantly affect this parameter. Moreover, introducing ZnONPs and NL led to an enhancement in both the tensile strength and elongation at the breaking point of samples (P ≤ 0.05). The FTIR results indicate electrostatic interaction between wheat gluten, NL, and ZnONPs. XRD images illustrated a reduction in the crystalline structure of the nanocomposite film containing NL and ZnONPs. The DSC results of the film containing NL and ZnONPs exhibited better thermal stability than the control sample. SEM results indicated that the addition of NL and ZnONPs led to more cohesive particle, along with a reduction in the size of cracks and pores. The results show the high antimicrobial activity of the film against S. aureus and E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Sani IK, Masoudpour-Behabadi M, Sani MA, Motalebinejad H, Juma AS, Asdagh A, Eghbaljoo H, Khodaei SM, Rhim JW, Mohammadi F (2023) Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. Food Chem 30(405):134964. https://doi.org/10.1016/j.foodchem.2022.134964

    Article  CAS  Google Scholar 

  2. Fara**ejad Z, Sani IK, Alizadeh M, Amiri S (2023) A review of recent advances in the photocatalytic activity of protein and polysaccharide-based nanocomposite packaging films: antimicrobial, antioxidant, mechanical, and strength properties. J Polym Environ 28:1–1. https://doi.org/10.1007/s10924-023-03159-4

    Article  CAS  Google Scholar 

  3. Chavan P, Lata K, Kaur T, Jambrak AR, Sharma S, Roy S, Sinhmar A, Thory R, Singh GP, Aayush K, Rout A (2023) Recent advances in the preservation of postharvest fruits using edible films and coatings: a comprehensive review. Food Chem 13:135916. https://doi.org/10.1016/j.foodchem.2023.135916

    Article  CAS  Google Scholar 

  4. ZS Mazhandu E Muzenda (2019) Global plastic waste pollution challenges and management. In 2019 7th international renewable and sustainable energy conference (IRSEC). IEEE. https://doi.org/10.1109/IRSEC48032.2019.9078268

  5. Sani IK, Alizadeh M (2022) Isolated mung bean protein-pectin nanocomposite film containing true cardamom extract microencapsulation/CeO2 nanoparticles/graphite carbon quantum dots: Investigating fluorescence, photocatalytic and antimicrobial properties. Food Packaging Shelf Life 1(33):100912. https://doi.org/10.1016/j.fpsl.2022.100912

    Article  CAS  Google Scholar 

  6. Sani IK, Aminoleslami L, Mirtalebi SS, Sani MA, Mansouri E, Eghbaljoo H, Jalil AT, Thanoon RD, Khodaei SM, Mohammadi F, Kazemzadeh B (2023) Cold plasma technology: applications in improving edible films and food packaging. Food Packaging Shelf Life 1(37):101087. https://doi.org/10.1016/j.fpsl.2023.101087

    Article  CAS  Google Scholar 

  7. Jiang L, Wang F, **e C, **e X, Meng X, Zhang H (2022) High-amylose corn starch/konjac glucomannan composite films incorporating nano TiO2 and pomegranate peel extract and their application as coatings on Agaricus bisporus. J Polym Environ 30(11):4550–4561. https://doi.org/10.1007/s10924-022-02498-y

    Article  CAS  Google Scholar 

  8. Jiang L, Liu F, Wang F, Zhang H, Kang M (2022) Development and characterization of zein-based active packaging films containing catechin loaded β-cyclodextrin metal-organic frameworks. Food Packaging Shelf Life 1(31):100810. https://doi.org/10.1016/j.fpsl.2022.100810

    Article  CAS  Google Scholar 

  9. Jiang L, Jia F, Han Y, Meng X, **ao Y, Bai S (2021) Development and characterization of zein edible films incorporated with catechin/β-cyclodextrin inclusion complex nanoparticles. Carbohydr Polym 1(261):117877. https://doi.org/10.1016/j.carbpol.2021.117877

    Article  CAS  Google Scholar 

  10. Eghbaljoo H, Alizadeh Sani M, Sani IK, Maragheh SM, Sain DK, Jawhar ZH, Pirsa S, Kadi A, Dadkhodayi R, Zhang F, Jafari SM (2023) Development of smart packaging halochromic films embedded with anthocyanin pigments; recent advances. Crit Rev Food Sci Nutr 7:1–7. https://doi.org/10.1080/10408398.2023.2280769

    Article  CAS  Google Scholar 

  11. Hassani D, Sani IK, Pirsa S (2023) Nanocomposite film of potato starch and gum arabic containing boron oxide nanoparticles and anise hyssop (agastache foeniculum) essential oil: investigation of physicochemical and antimicrobial properties. J Polym Environ 4:1–2. https://doi.org/10.1007/s10924-023-03114-3

    Article  CAS  Google Scholar 

  12. Chavan P, Sinhmar A, Sharma S, Dufresne A, Thory R, Kaur M, Sandhu KS, Nehra M, Nain V (2022) Nanocomposite starch films: a new approach for biodegradable packaging materials. Stärke 74(5–6):2100302. https://doi.org/10.1002/star.202100302

    Article  CAS  Google Scholar 

  13. P Chavan A Sinhmar R Thory S Sharma S Sukhija GP Singh K Aayush J Singh D Kumar (2023) Acid hydrolyzed pearl millet starch nanoparticles: synthesis and characterization. Stärke 2300172. https://doi.org/10.1002/star.202300172

  14. Iqbal MJ, Shams N, Fatima K (2022) Nutritional quality of wheat. InWheat-Recent Adv. https://doi.org/10.5772/intechopen.104659

    Article  Google Scholar 

  15. Fazeli M, Alizadeh M, Pirsa S (2022) Nanocomposite film based on gluten modified with heracleum persicum essence/MgO/polypyrrole: Investigation of physicochemical and electrical properties. J Polym Environ 30(3):954–970. https://doi.org/10.1007/s10924-021-02253-9

    Article  CAS  Google Scholar 

  16. Chavoshizadeh S, Pirsa S, Mohtarami F (2020) Conducting/smart color film based on wheat gluten/chlorophyll/polypyrrole nanocomposite. Food Packaging Shelf Life 1(24):100501. https://doi.org/10.1016/j.fpsl.2020.100501

    Article  Google Scholar 

  17. Chaves MA, Baldino L, Pinho SC, Reverchon E (2022) Co-encapsulation of curcumin and vitamin D3 in mixed phospholipid nanoliposomes using a continuous supercritical CO2 assisted process. J Taiwan Inst Chem Eng 1(132):104120. https://doi.org/10.1016/j.jtice.2021.10.020

    Article  CAS  Google Scholar 

  18. Chavan P, Sinhmar A, Nehra M, Thory R, Pathera AK, Sundarraj AA, Nain V (2021) Impact on various properties of native starch after synthesis of starch nanoparticles: a review. Food Chem 1(364):130416. https://doi.org/10.1016/j.foodchem.2021.130416

    Article  CAS  Google Scholar 

  19. Alavi M, Rai M, Varma RS, Hamidi M, Mozafari MR (2022) Conventional and novel methods for the preparation of micro and nanoliposomes. Micro Nano Bio Aspects 1 1(1):18–29. https://doi.org/10.22034/mnba.2022.150564

    Article  Google Scholar 

  20. Pang X, **ao Q, Cheng Y, Ren E, Lian L, Zhang Y, Gao H, Wang X, Leung W, Chen X, Liu G (2019) Bacteria-responsive nanoliposomes as smart sonotheranostics for multidrug resistant bacterial infections. ACS nano 18 13(2):2427–2438. https://doi.org/10.1021/acsnano.8b09336

    Article  CAS  Google Scholar 

  21. Roy S, Rhim JW (2022) Genipin-crosslinked gelatin/chitosan-based functional films incorporated with rosemary essential oil and quercetin. Materials 25 15(11):3769. https://doi.org/10.3390/ma15113769

    Article  CAS  Google Scholar 

  22. Xu D, Hu MJ, Wang YQ, Cui YL (2019) Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 21 24(6):1123. https://doi.org/10.3390/molecules24061123

    Article  CAS  Google Scholar 

  23. Sani IK, Pirsa S, Tağı Ş (2019) Preparation of chitosan/zinc oxide/melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method. Polym Test 1(79):106004. https://doi.org/10.1016/j.polymertesting.2019.106004

    Article  CAS  Google Scholar 

  24. Galdámez-Martinez A, Santana G, Güell F, Martínez-Alanis PR, Dutt A (2020) Photoluminescence of ZnO nanowires: a review. Nanomaterials 29 10(5):857. https://doi.org/10.3390/nano10050857

    Article  CAS  Google Scholar 

  25. Bhati VS, Hojamberdiev M, Kumar M (2020) Enhanced sensing performance of ZnO nanostructures-based gas sensors: a review. Energy Rep 1(6):46–62. https://doi.org/10.1016/j.egyr.2019.08.070

    Article  Google Scholar 

  26. Cui H, Yang M, Shi C, Li C, Lin L (2022) Application of xanthan-gum-based edible coating incorporated with litsea cubeba essential oil nanoliposomes in salmon preservation. Foods 24 11(11):1535. https://doi.org/10.3390/foods11111535

    Article  CAS  Google Scholar 

  27. Karimi Sani I, Alizadeh M, Pirsa S, Moghaddas Kia E (2019) Impact of operating parameters and wall material components on the characteristics of microencapsulated melissa officinalis essential oil. Flavour Fragr J 34(2):104–112. https://doi.org/10.1002/ffj.3482

    Article  CAS  Google Scholar 

  28. Rasul NH, Asdagh A, Pirsa S, Ghazanfarirad N, Sani IK (2022) Development of antimicrobial/antioxidant nanocomposite film based on fish skin gelatin and chickpea protein isolated containing microencapsulated nigella sativa essential oil and copper sulfide nanoparticles for extending minced meat shelf life. Mater Res Express 19 9(2):025306. https://doi.org/10.1088/2053-1591/ac50d6

    Article  Google Scholar 

  29. Sheikh-Mohseni MA, Pirsa S (2016) Nanostructured conducting polymer/copper oxide as a modifier for fabrication of L-DOPA and uric acid electrochemical sensor. Electroanalysis 28(9):2075–2080. https://doi.org/10.1002/elan.201600089

    Article  CAS  Google Scholar 

  30. Daei S, Mohtarami F, Pirsa S (2022) A biodegradable film based on carrageenan gum/plantago psyllium mucilage/red beet extract: physicochemical properties, biodegradability and water absorption kinetic. Polym Bull 79(12):11317–11338. https://doi.org/10.1007/s00289-021-04067-0

    Article  CAS  Google Scholar 

  31. Shabkhiz MA, Pirouzifard MK, Pirsa S, Mahdavinia GR (2021) Alginate hydrogel beads containing thymus daenensis essential oils/glycyrrhizic acid loaded in β-cyclodextrin. investigation of structural, antioxidant/antimicrobial properties and release assessment. J Mol Liq 15 344:117738. https://doi.org/10.1016/j.molliq.2021.117738

    Article  CAS  Google Scholar 

  32. Pirsa S, Alizadeh M, Ghahremannejad N (2016) Application of nano-sized poly N-phenyl pyrrole coated polyester fiber to headspace microextraction of some volatile organic compounds and analysis by gas chromatography. Curr Anal Chem 1 12(5):457–464

    Article  CAS  Google Scholar 

  33. Ghasemizad S, Pirsa S, Amiri S, Abdosatari P (2022) Optimization and characterization of bioactive biocomposite film based on orange peel incorporated with gum arabic reinforced by Cr2O3 nanoparticles. J Polym Environ 30(6):2493–2506. https://doi.org/10.1007/s10924-021-02357-2

    Article  CAS  Google Scholar 

  34. Marandi MS, Pirsa S, Amiri S, Fazeli M (2022) Production of biodegradable films of zein containing mentha asiatica essential oil and copper oxide nanoparticles: investigation of physicochemical, antimicrobial, and antioxidant properties. J Polym Environ 30(10):4114–4129. https://doi.org/10.1007/s10924-022-02486-2

    Article  CAS  Google Scholar 

  35. Khakpour F, Pirsa S, Amiri S (2023) Modified starch/CrO/lycopene/gum arabic nanocomposite film: preparation, investigation of physicochemical properties and ability to use as nitrite kit. J Polym Environ 31(9):3875–3893. https://doi.org/10.1007/s10924-023-02856-4

    Article  CAS  Google Scholar 

  36. Yorghanlu RA, Hemmati H, Pirsa S, Makhani A (2022) Production of biodegradable sodium caseinate film containing titanium oxide nanoparticles and grape seed essence and investigation of physicochemical properties. Polym Bull 79(10):8217–8240. https://doi.org/10.1007/s00289-021-03900-w

    Article  CAS  Google Scholar 

  37. Kalantari S, Roufegarinejad L, Pirsa S, Gharekhani M (2020) Green extraction of bioactive compounds of pomegranate peel using β-cyclodextrin and ultrasound. Main Group Chem 1 19(1):61–80. https://doi.org/10.3233/MGC-190821

    Article  CAS  Google Scholar 

  38. Pirsa S, Mahmudi M, Ehsani A (2023) Biodegradable film based on cress seed mucilage, modified with lutein, maltodextrin and alumina nanoparticles: physicochemical properties and lutein controlled release. Int J Biol Macromol 1(224):1588–1599. https://doi.org/10.1016/j.ijbiomac.2022.10.244

    Article  CAS  Google Scholar 

  39. Sani IK, Marand SA, Alizadeh M, Amiri S, Asdagh A (2021) Thermal, mechanical, microstructural and inhibitory characteristics of sodium caseinate based bioactive films reinforced by ZnONPs/encapsulated melissa officinalis essential oil. J Inorg Organomet Polym 31:261–271. https://doi.org/10.1007/s10904-020-01777-2

    Article  CAS  Google Scholar 

  40. Zhang X, Liu D, ** TZ, Chen W, He Q, Zou Z, Zhao H, Ye X, Guo M (2021) Preparation and characterization of gellan gum-chitosan polyelectrolyte complex films with the incorporation of thyme essential oil nanoemulsion. Food Hydrocoll 1(114):106570. https://doi.org/10.1016/j.foodhyd.2020.106570

    Article  CAS  Google Scholar 

  41. Singh LP, Bhattacharyya SK, Kumar R, Mishra G, Sharma U, Singh G, Ahalawat S (2014) Sol-Gel processing of silica nanoparticles and their applications. Adv Colloid Interface Sci 1(214):17–37. https://doi.org/10.1016/j.cis.2014.10.007

    Article  CAS  Google Scholar 

  42. Zolfi M, Khodaiyan F, Mousavi M, Hashemi M (2014) The improvement of characteristics of biodegradable films made from kefiran–whey protein by nanoparticle incorporation. Carbohydr Polym 30(109):118–125. https://doi.org/10.1016/j.carbpol.2014.03.018

    Article  CAS  Google Scholar 

  43. Alizadeh-Sani M, Khezerlou A, Ehsani A (2018) Fabrication and characterization of the bionanocomposite film based on whey protein biopolymer loaded with TiO2 nanoparticles, cellulose nanofibers and rosemary essential oil. Ind Crops Prod 15(124):300–315. https://doi.org/10.1016/j.indcrop.2018.08.001

    Article  CAS  Google Scholar 

  44. Souza MP, Vaz AF, Silva HD, Cerqueira MA, Vicente AA, Carneiro-da-Cunha MG (2015) Development and characterization of an active chitosan-based film containing quercetin. Food Bioprocess Technol 8:2183–2191. https://doi.org/10.1007/s11947-015-1580-2

    Article  CAS  Google Scholar 

  45. Arezoo E, Mohammadreza E, Maryam M, Abdorreza MN (2022) The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. Int J Biol Macromol 15(157):743–751. https://doi.org/10.1016/j.ijbiomac.2019.11.244

    Article  CAS  Google Scholar 

  46. Anwar MM, Aly SS, Nasr EH, El-Sayed ES (2022) Improving carboxymethyl cellulose edible coating using ZnO nanoparticles from irradiated a lternaria tenuissima. AMB Express 7 12(1):116. https://doi.org/10.1186/s13568-022-01459-x

    Article  CAS  Google Scholar 

  47. Pech-Cohuo SC, Martín-López H, Uribe-Calderón J, González-Canché NG, Salgado-Tránsito I, May-Pat A, Cuevas-Bernardino JC, Ayora-Talavera T, Cervantes-Uc JM, Pacheco N (2022) Physicochemical, mechanical, and structural properties of bio-active films based on biological-chemical chitosan, a novel ramon (brosimum alicastrum) starch, and quercetin. Polymers 26 14(7):1346. https://doi.org/10.3390/polym14071346

    Article  CAS  Google Scholar 

  48. Liu Z, Lv M, Li F, Zeng M (2016) Development, characterization, and antimicrobial activity of gelatin/chitosan/ZnO nanoparticle composite films. J. Aquat. Food Prod 2 25(7):1056–1063. https://doi.org/10.1080/10498850.2014.923081

    Article  CAS  Google Scholar 

  49. Sutharsan J, Boyer CA, Zhao J (2022) Physicochemical properties of chitosan edible films incorporated with different classes of flavonoids. Carbohydr Polym Technol Appl 1(4):100232. https://doi.org/10.1016/j.carpta.2022.100232

    Article  CAS  Google Scholar 

  50. Sogut E, Seydim AC (2018) The effects of chitosan and grape seed extract-based edible films on the quality of vacuum packaged chicken breast fillets. Food Packaging Shelf Life 1(18):13–20. https://doi.org/10.1016/j.fpsl.2018.07.006

    Article  Google Scholar 

  51. Rambabu K, Bharath G, Banat F, Show PL, Cocoletzi HH (2019) Mango leaf extract incorporated chitosan antioxidant film for active food packaging. Int J Biol Macromol 1(126):1234–1243. https://doi.org/10.1016/j.ijbiomac.2018.12.196

    Article  CAS  Google Scholar 

  52. Kumar N, Pratibha TP, Khojah AE, Sami R, Al-Mushhin AA (2021) Chitosan edible films enhanced with pomegranate peel extract: Study on physical, biological, thermal, and barrier properties. Materials 15 14(12):3305. https://doi.org/10.3390/ma14123305

    Article  CAS  Google Scholar 

  53. Wardana AA, Suyatma NE, Muchtadi TR, Yuliani S (2018) Influence of ZnO nanoparticles and stearic acid on physical, mechanical and structural properties of cassava starch-based bionanocomposite edible films. Int Food Res J 1 25(5):1837–1844

    CAS  Google Scholar 

  54. Ezati P, Rhim JW (2021) Fabrication of quercetin-loaded biopolymer films as functional packaging materials. ACS Appl Polym Mater 25 3(4):2131–2137. https://doi.org/10.1021/acsapm.1c00177

    Article  CAS  Google Scholar 

  55. Zhang M, Xu L, Zhang L, Guo Y, Qi X, He L (2018) Effects of quercetin on postharvest blue mold control in kiwifruit. Sci Hortic 26(228):18–25. https://doi.org/10.1016/j.scienta.2017.09.029

    Article  CAS  Google Scholar 

  56. de Carvalho AP, Junior CA (2020) Green strategies for active food packagings: a systematic review on active properties of graphene-based nanomaterials and biodegradable polymers. Trends Food Sci Technol 1(103):130–143. https://doi.org/10.1016/j.tifs.2020.07.012

    Article  CAS  Google Scholar 

  57. Tongdeesoontorn W, Mauer LJ, Wongruong S, Sriburi P, Rachtanapun P (2021) Physical and antioxidant properties of cassava starch–carboxymethyl cellulose incorporated with quercetin and TBHQ as active food packaging. Polymers 7 12(2):366. https://doi.org/10.3390/polym12020366

    Article  CAS  Google Scholar 

  58. Shankar S, Rhim JW (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym 1(135):18–26. https://doi.org/10.1016/j.carbpol.2015.08.082

    Article  CAS  Google Scholar 

  59. Rachtanapun P, Klunklin W, Jantrawut P, Jantanasakulwong K, Phimolsiripol Y, Seesuriyachan P, Leksawasdi N, Chaiyaso T, Ruksiriwanich W, Phongthai S, Sommano SR (2021) Characterization of chitosan film incorporated with curcumin extract. Polymers 21 13(6):963. https://doi.org/10.3390/polym13060963

    Article  CAS  Google Scholar 

  60. Le KH, Nguyen MD, Dai Tran L, Thi HP, Van Tran C, Van Tran K, Thi HP, Thi ND, Yoon YS, Nguyen DD, La DD (2021) A novel antimicrobial ZnO nanoparticles-added polysaccharide edible coating for the preservation of postharvest avocado under ambient conditions. Prog Org Coat 1(158):106339. https://doi.org/10.1016/j.porgcoat.2021.106339

    Article  CAS  Google Scholar 

  61. de Barros Vinhal GL, Silva-Pereira MC, Teixeira JA, Barcia MT, Pertuzatti PB, Stefani R (2021) Gelatine/PVA copolymer film incorporated with quercetin as a prototype to active antioxidant packaging. J Food Sci Technol 58:3924–3932. https://doi.org/10.1007/s13197-020-04853-0

    Article  CAS  PubMed  Google Scholar 

  62. Shabahang Z, Nouri L, Nafchi AM (2022) Composite film based on whey protein isolate/pectin/CuO nanoparticles/betanin pigments; investigation of physicochemical properties. J Polym Environ 30(9):3985–3998. https://doi.org/10.1007/s10924-022-02481-7

    Article  CAS  Google Scholar 

  63. Martinez-Molina EC, Freile-Pelegrin Y, Ovando-Chacon SL, Gutierrez-Miceli FA, Ruiz-Cabrera MÁ, Grajales-Lagunes A, Luján-Hidalgo MC, Abud-Archila M (2022) Development and characterization of alginate-based edible film from sargassum fluitans incorporated with silver nanoparticles obtained by green synthesis. J Food Meas Charact 1:1–1. https://doi.org/10.1007/s11694-021-01156-6

    Article  Google Scholar 

  64. Tongdeesoontorn W, Mauer LJ, Wongruong S, Sriburi P, Reungsang A, Rachtanapun P (2021) Antioxidant films from cassava starch/gelatin biocomposite fortified with quercetin and TBHQ and their applications in food models. Polymers 1 13(7):1117. https://doi.org/10.3390/polym13071117

    Article  CAS  Google Scholar 

  65. Huang X, Zhou X, Dai Q, Qin Z (2021) Antibacterial, antioxidation, UV-blocking, and biodegradable soy protein isolate food packaging film with mangosteen peel extract and ZnO nanoparticles. Nanomaterials 8 11(12):3337. https://doi.org/10.3390/nano11123337

    Article  CAS  Google Scholar 

  66. Bhatia S, Al-Harrasi A, Al-Azri MS, Ullah S, Bekhit AE, Pratap-Singh A, Chatli MK, Anwer MK, Aldawsari MF (2022) Preparation and physiochemical characterization of bitter orange oil loaded sodium alginate and casein based edible films. Polymers 15 14(18):3855. https://doi.org/10.3390/polym14183855

    Article  CAS  Google Scholar 

  67. Choque-Quispe D, Choque-Quispe Y, Ligarda-Samanez CA, Peralta-Guevara DE, Solano-Reynoso AM, Ramos-Pacheco BS, Taipe-Pardo F, Martínez-Huamán EL, Aguirre Landa JP, Agreda Cerna HW, Loayza-Céspedes JC (2022) Effect of the addition of corn husk cellulose nanocrystals in the development of a novel edible film. Nanomaterials 29 12(19):3421. https://doi.org/10.3390/nano12193421

    Article  CAS  Google Scholar 

  68. Li S, Fan M, Deng S, Tao N (2022) Characterization and application in packaging grease of gelatin–sodium alginate edible films cross-linked by pullulan. Polymers 5 14(15):3199. https://doi.org/10.3390/polym14153199

    Article  CAS  Google Scholar 

  69. Amalraj A, Haponiuk JT, Thomas S, Gopi S (2020) Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. Int J Biol Macromol 15(151):366–375. https://doi.org/10.1016/j.ijbiomac.2020.02.176

    Article  CAS  Google Scholar 

  70. Jahromi M, Niakousari M, Golmakani MT, Mohammadifar MA (2020) Physicochemical and structural characterization of sodium caseinate based film-forming solutions and edible films as affected by high methoxyl pectin. Int J Biol Macromol 15(165):1949–1959. https://doi.org/10.1016/j.ijbiomac.2020.10.057

    Article  CAS  Google Scholar 

  71. Asdagh A, Karimi Sani I, Pirsa S, Amiri S, Shariatifar N, Eghbaljoo-Gharehgheshlaghi H, Shabahang Z, Taniyan A (2021) Production and characterization of nanocomposite film based on whey protein isolated/copper oxide nanoparticles containing coconut essential oil and paprika extract. J Polym Environ 29:335–349. https://doi.org/10.1007/s10924-020-01882-w

    Article  CAS  Google Scholar 

  72. García AV, Álvarez-Pérez OB, Rojas R, Aguilar CN, Garrigós MC (2020) Impact of olive extract addition on corn starch-based active edible films properties for food packaging applications. Foods 22 9(9):1339. https://doi.org/10.3390/foods9091339

    Article  CAS  Google Scholar 

  73. Farrag Y, Barral L, Gualillo O, Moncada D, Montero B, Rico M, Bouza R (2022) Effect of different plasticizers on thermal, crystalline, and permeability properties of poly (3–hydroxybutyrate–co−3–hydroxyhexanoate) films. Polymers 26 14(17):3503. https://doi.org/10.3390/polym14173503

    Article  CAS  Google Scholar 

  74. Kaya M, Ravikumar P, Ilk S, Mujtaba M, Akyuz L, Labidi J, Salaberria AM, Cakmak YS, Erkul SK (2018) Production and characterization of chitosan based edible films from berberis crataegina’s fruit extract and seed oil. Innov Food Sci Emerg Technol 1(45):287–297. https://doi.org/10.1016/j.ifset.2017.11.013

    Article  CAS  Google Scholar 

  75. Homthawornchoo W, Kaewprachu P, Pinijsuwan S, Romruen O, Rawdkuen S (2022) Enhancing the UV-light barrier, thermal stability, tensile strength, and antimicrobial properties of rice starch–gelatin composite films through the incorporation of zinc oxide nanoparticles. Polymers 20 14(12):2505. https://doi.org/10.3390/polym14122505

    Article  CAS  Google Scholar 

  76. Olewnik-Kruszkowska E, Gierszewska M, Richert A, Grabska-Zielińska S, Rudawska A, Bouaziz M (2021) Antibacterial films based on polylactide with the addition of quercetin and poly (ethylene glycol). Materials 27 14(7):1643. https://doi.org/10.3390/ma14071643

    Article  CAS  Google Scholar 

  77. Jakubowska E, Gierszewska M, Szydłowska-Czerniak A, Nowaczyk J, Olewnik-Kruszkowska E (2023) Development and characterization of active packaging films based on chitosan, plasticizer, and quercetin for repassed oil storage. Food Chem 15(399):133934. https://doi.org/10.1016/j.foodchem.2022.133934

    Article  CAS  Google Scholar 

  78. Łopusiewicz Ł, Zdanowicz M, Macieja S, Kowalczyk K, Bartkowiak A (2021) Development and characterization of bioactive poly (butylene-succinate) films modified with quercetin for food packaging applications. Polymers 29 13(11):1798. https://doi.org/10.3390/polym13111798

    Article  CAS  Google Scholar 

  79. Ilari A, Pescatori L, Di Santo R, Battistoni A, Ammendola S, Falconi M, Berlutti F, Valenti P, Chiancone E (2016) Salmonella enterica serovar typhimurium growth is inhibited by the concomitant binding of Zn (II) and a pyrrolyl-hydroxamate to ZnuA, the soluble component of the ZnuABC transporter. Biochim Biophys Acta Gen Subj 1 1860(3):534–541. https://doi.org/10.1016/j.bbagen.2015.12.006

    Article  CAS  Google Scholar 

  80. Yadav S, Mehrotra GK, Bhartiya P, Singh A, Dutta PK (2020) Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohydr Polym 1(227):115348. https://doi.org/10.1016/j.carbpol.2019.115348

    Article  CAS  Google Scholar 

  81. Bahrami A, Mokarram RR, Khiabani MS, Ghanbarzadeh B, Salehi R (2019) Physico-mechanical and antimicrobial properties of tragacanth/hydroxypropyl methylcellulose/beeswax edible films reinforced with silver nanoparticles. Int J Biol Macromol 15(129):1103–1112. https://doi.org/10.1016/j.ijbiomac.2018.09.045

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Hojjat Bakeshlou: Conceptualization, Methodology, Investigation, Writing—Original Draft, Project administration. Sajad Pirsa: Supervision, Funding acquisition, Writing—Review & Editing. Forogh Mohtarami: Writing—Review & Editing. Mustafa Bener; Review & Editing, Visualization.

Corresponding author

Correspondence to Sajad Pirsa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakeshlou, H., Pirsa, S., Mohtarami, F. et al. Investigating the Structural and Antimicrobial Properties of Wheat Gluten Nanocomposite Film Containing Zinc Oxide Nanoparticles and Quercetin Nanoliposomes. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03267-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03267-9

Keywords

Navigation