Log in

Nanocomposite Film of Potato Starch and Gum Arabic Containing Boron Oxide Nanoparticles and Anise Hyssop (Agastache foeniculum) Essential Oil: Investigation of Physicochemical and Antimicrobial Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The purpose of this research was to prepare a nanocomposite film of potato starch (PS) and gum arabic (GA) containing boron oxide nanoparticles (BONs) and Anise hyssop (Agastache foeniculum) essential oil (AHEO) and investigate its structural and physicochemical characteristics. For this purpose, BONs in three levels (0, 50 and 100 mg) and AHEO in three levels (0, 100 and 200 µL) were evaluated according to the central compound design. After selecting the optimal films; an experiment to evaluate their antioxidant and antimicrobial activity was conducted. The results revealed that the antioxidant capacity and the films’ thickness increased significantly with the AHEO addition (p < 0.05). The highest antioxidant capacity was 47.62%. The results of Fourier-transform infrared (FT-IR) confirmed the formation of new chemical interactions between PS and GA containing BONs and AHEO. The X-ray diffraction (XRD) results showed that the nanocomposite films had a crystalline structure. The results of thermal analysis revealed that the increase in thermal stability of film samples indicates the proper interaction between the components of nanocomposite films. The increase in the elongation at break point of the films, contrary to their tensile strength, decreased with the increase of BONs and AHEO. Also, the results of the antimicrobial activity of the films revealed that the inhibition zone increased with the increase of BONs and AHEO. The highest inhibition zone (22.47 ± 0.96) was for E. coli. In general, the current research showed promising applications of PS and GA nanocomposite film containing BONs and AHEO for the development of active antimicrobial food packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rasul NH et al (2022) Development of antimicrobial/antioxidant nanocomposite film based on fish skin gelatin and chickpea protein isolated containing microencapsulated Nigella sativa essential oil and copper sulfide nanoparticles for extending minced meat shelf life. Mater Res Express 9(2):025306

    Article  Google Scholar 

  2. Bourtoom T (2008) Edible films and coatings: characteristics and properties. Int Food Res J 15(3):237–248

    Google Scholar 

  3. Sani IK et al (2023) Cold plasma technology: applications in improving edible films and food packaging. Food Packag Shelf Life 37:101087

    Article  CAS  Google Scholar 

  4. Sani IK et al (2022) Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. Food Chem. https://doi.org/10.1016/j.foodchem.2022.134964

    Article  Google Scholar 

  5. Chu Y et al (2020) Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. Lwt 122:109054

    Article  CAS  Google Scholar 

  6. Ghani S et al (2018) The preparation, characterization and in vitro application evaluation of soluble soybean polysaccharide films incorporated with cinnamon essential oil nanoemulsions. Int J Biol Macromol 112:197–202

    Article  CAS  PubMed  Google Scholar 

  7. Sani IK, Alizadeh M (2022) Isolated mung bean protein–pectin nanocomposite film containing true cardamom extract microencapsulation/CeO2 nanoparticles/graphite carbon quantum dots: investigating fluorescence, photocatalytic and antimicrobial properties. Food Packag Shelf Life 33:100912

    Article  CAS  Google Scholar 

  8. Voss GT et al (2018) Polysaccharide-based film loaded with vitamin C and propolis: a promising device to accelerate diabetic wound healing. Int J Pharm 552(1–2):340–351

    Article  CAS  PubMed  Google Scholar 

  9. Wen P et al (2017) Encapsulation of bioactive compound in electrospun fibers and its potential application. J Agric Food Chem 65(42):9161–9179

    Article  CAS  PubMed  Google Scholar 

  10. Pirsa S, Mohtarami F, Kalantari S (2020) Preparation of biodegradable composite starch/tragacanth gum/nanoclay film and study of its physicochemical and mechanical properties. Chem Rev Lett 3(3):98–103

    CAS  Google Scholar 

  11. Pirsa S, Sani IK, Mirtalebi SS (2022) Nano-biocomposite based color sensors: investigation of structure, function, and applications in intelligent food packaging. Food Packag Shelf Life 31:100789

    Article  CAS  Google Scholar 

  12. Dong D, Cui B (2021) Fabrication, characterization and emulsifying properties of potato starch/soy protein complexes in acidic conditions. Food Hydrocoll 115:106600

    Article  CAS  Google Scholar 

  13. Kumar N (2019) Polysaccharide-based component and their relevance in edible film/coating: a review. Nutr Food Sci 49(5):793–823

    Article  Google Scholar 

  14. Xu T et al (2019) Structure, physical and antioxidant properties of chitosan-gum arabic edible films incorporated with cinnamon essential oil. Int J Biol Macromol 134:230–236

    Article  CAS  PubMed  Google Scholar 

  15. Ju J et al (2019) Application of edible coating with essential oil in food preservation. Crit Rev Food Sci Nutr 59(15):2467–2480

    Article  CAS  PubMed  Google Scholar 

  16. Guo Q et al (2022) New research development on trans fatty acids in food: biological effects, analytical methods, formation mechanism, and mitigating measures. Prog Lipid Res. https://doi.org/10.1016/j.plipres.2022.101199

    Article  PubMed  PubMed Central  Google Scholar 

  17. Omidbaigi R, Sefidkon F (2003) Essential oil composition of Agastache foeniculum cultivated in Iran. J Essent Oil Res 15(1):52–53

    Article  CAS  Google Scholar 

  18. Zielińska S, Matkowski A (2014) Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem Rev 13:391–416

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hashemi M et al (2017) Phytochemical, antibacterial, antifungal and antioxidant properties of Agastache foeniculum essential oil. J Chem Health Risks 7(2):95–104

    CAS  Google Scholar 

  20. Pirsa S, Karimi Sani I, Khodayvandi S (2018) Design and fabrication of starch-nano clay composite films loaded with methyl orange and bromocresol green for determination of spoilage in milk package. Polym Adv Technol 29(11):2750–2758

    Article  CAS  Google Scholar 

  21. Nguyen TP, Kim IT (2022)  Boron oxide enhancing stability of MoS2 anode materials for lithium-ion batteries. Materials 15(6):2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wright AC (2018) The structural chemistryof B2O3 physics and chemistry of glasses-European. J Glass Sci Technol Part B 59(2):65–87

    Google Scholar 

  23. Sani IK, Pirsa S, Tağı Ş (2019) Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method. Polym Test 79:106004

    Article  Google Scholar 

  24. Meydanju N, Pirsa S, Farzi J (2022) Biodegradable film based on lemon peel powder containing xanthan gum and TiO2–Ag nanoparticles: investigation of physicochemical and antibacterial properties. Polym Test 106:107445

    Article  CAS  Google Scholar 

  25. Sani IK et al (2021) Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocoll 117:106719

    Article  CAS  Google Scholar 

  26. Abdolsattari P, Rezazadeh-Bari M, Pirsa S (2022) Smart film based on polylactic acid, modified with polyaniline/ZnO/CuO: investigation of physicochemical properties and its use of intelligent packaging of orange juice. Food Bioprocess Technol 15(12):2803–2825

    Article  CAS  Google Scholar 

  27. Karimi Sani I et al (2019) Impact of operating parameters and wall material components on the characteristics of microencapsulated Melissa officinalis essential oil. Flavour Fragr J 34(2):104–112

    Article  CAS  Google Scholar 

  28. Shen B et al (2023) Intelligent Bio-FeS-loaded Chitosan films with H2O2 rapid response for advanced waterproof and antibacterial food packaging. Food Packag Shelf Life 37:101083

    Article  CAS  Google Scholar 

  29. Pirsa S, Asadzadeh F, Karimi Sani I (2020) Synthesis of magnetic gluten/pectin/Fe3O4 nano-hydrogel and its use to reduce environmental pollutants from lake Urmia sediments. J Inorg Organomet Polym Mater 30:3188–3198

    Article  CAS  Google Scholar 

  30. **ao Y et al (2023) Surface-engineered prussian blue nanozymes as artificial receptors for universal pattern recognition of metal ions and proteins. Sens Actuators B 390:134006

    Article  CAS  Google Scholar 

  31. Pirsa S, Mahmudi M, Ehsani A (2023) Biodegradable film based on cress seed mucilage, modified with lutein, maltodextrin and alumina nanoparticles: physicochemical properties and lutein controlled release. Int J Biol Macromol 224:1588–1599

    Article  CAS  PubMed  Google Scholar 

  32. Pirsa S, Nejad FM (2017) Simultaneous analysis of some volatile compounds in food samples by array gas sensors based on polypyrrole nano-composites. Sens Rev 37(2):155–164

    Article  Google Scholar 

  33. Wang Z et al (2020) Enhanced denitrification performance of Alcaligenes sp. TB by pd stimulating to produce membrane adaptation mechanism coupled with nanoscale zero-valent iron. Sci Total Environ 708:135063

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y et al (2023) Friction behavior of biodegradable electrospun polyester nanofibrous membranes. Tribol Int 188:108891

    Article  CAS  Google Scholar 

  35. Asdagh A et al (2021) Production and characterization of nanocomposite film based on whey protein isolated/copper oxide nanoparticles containing coconut essential oil and paprika extract. J Polym Environ 29:335–349

    Article  CAS  Google Scholar 

  36. Lu J et al (2022) A 4arm-PEG macromolecule crosslinked chitosan hydrogels as antibacterial wound dressing. Carbohydr Polym 277:118871

    Article  CAS  PubMed  Google Scholar 

  37. Sani IK et al (2021) Thermal, mechanical, microstructural and inhibitory characteristics of sodium caseinate based bioactive films reinforced by ZnONPs/encapsulated Melissa officinalis essential oil. J Inorg Organomet Polym Mater 31:261–271

    Article  CAS  Google Scholar 

  38. Behrestaghi FS, Bahram S, Ariaii P (2020) Physical, mechanical, and antimicrobial properties of carboxymethyl cellulose edible films activated with Artemisia Sieberi essential oil. J food Qual Hazards Control. https://doi.org/10.18502/jfqhc.7.1.2450

    Article  Google Scholar 

  39. Oleyaei SA et al (2016) Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. Int J Biol Macromol 89:256–264

    Article  CAS  PubMed  Google Scholar 

  40. Ojagh SM, Vejdan A, Abdollahi M (2018) Effect of nanoclay addition on the properties of agar/fish gelatin bilayer film containing TiO2 nanoparticles. Iran Food Sci Technol Res J 14(1):27–38

    Google Scholar 

  41. Jebel FS, Almasi H (2016) Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydr Polym 149:8–19

    Article  Google Scholar 

  42. Malathi A, Singh A (2019) Antimicrobial activity of rice starch based film reinforced with titanium dioxide (TiO2) nanoparticles. Agric Res J. https://doi.org/10.5958/2395-146X.2019.00017.6

    Article  Google Scholar 

  43. Deepa N et al (2007) Antioxidant constituents in some sweet pepper (Capsicum annuum L.) genotypes during maturity. LWT-Food Sci Technol 40(1):121–129

    Article  CAS  Google Scholar 

  44. Akhlaghi H (2012) Volatile constituents from the aerial parts of Ferulago Angulata (schlecht.) boiss. growing wild northeast Iran. Anal Chem Lett 2(2):133–138

    Article  CAS  Google Scholar 

  45. Sahraee S et al (2017) Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. Int J Biol Macromol 97:373–381

    Article  CAS  PubMed  Google Scholar 

  46. Zhang R, Wang X, Cheng M (2018) Preparation and characterization of potato starch film with various size of nano-SiO2. Polymers 10(10):1172

    Article  PubMed  PubMed Central  Google Scholar 

  47. de Jara EM et al (2020) Potato starch-based films: effects of glycerol and montmorillonite nanoclay concentration. Rev Mex Ing Quím 19(2):627–637

    Google Scholar 

  48. Aburto J et al (1999) Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. J Appl Polym Sci 74(6):1440–1451

    Article  CAS  Google Scholar 

  49. Avilés GR (2006) Obtención Y caracterización de un polímero biodegradable a partir del almidón de yuca. Ing Y Cienc 2(4):5–28

    Google Scholar 

  50. Song X, Zuo G, Chen F (2018) Effect of essential oil and surfactant on the physical and antimicrobial properties of corn and wheat starch films. Int J Biol Macromol 107:1302–1309

    Article  CAS  PubMed  Google Scholar 

  51. Razali MH, Ismail NA, Amin KAM (2020) Titanium dioxide nanotubes incorporated gellan gum bio-nanocomposite film for wound healing: effect of TiO2 nanotubes concentration. Int J Biol Macromol 153:1117–1135

    Article  CAS  PubMed  Google Scholar 

  52. Tang X, Alavi S, Herald TJ (2008) Barrier and mechanical properties of starch-clay nanocomposite films. Cereal Chem 85(3):433–439

    Article  CAS  Google Scholar 

  53. Gahruie HH et al (2017) Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydr Polym 166:93–103

    Article  Google Scholar 

  54. Atarés L, Chiralt A (2016) Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci Technol 48:51–62

    Article  Google Scholar 

  55. Chen G, Liu B (2016) Cellulose sulfate based film with slow-release antimicrobial properties prepared by incorporation of mustard essential oil and β-cyclodextrin. Food Hydrocoll 55:100–107

    Article  CAS  Google Scholar 

  56. Wang Y et al (2023) Applications of synthetic microbial consortia in biological control of mycotoxins and fungi. Curr Opin Food Sci. https://doi.org/10.1016/j.cofs.2023.101074

    Article  Google Scholar 

  57. Gulfraz M et al (2008) Composition and antimicrobial properties of essential oil of Foeniculum vulgare. Afr J Biotechnol. https://doi.org/10.5897/AJB08.715

    Article  Google Scholar 

  58. Khan A et al (2010) Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Res Microbiol 161(10):816–823

    Article  CAS  PubMed  Google Scholar 

  59. Beyli PT et al (2018) Synthesis, characterization and their antimicrobial activities of boron oxide/poly (acrylic acid) nanocomposites: thermal and antimicrobial properties. Adv Mater Sci 18(1):28–36

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

DH: Performed the experiments; wrote the paper. IKS: Conceived and designed the experiments; wrote the paper. SP: Contributed reagents, materials, analysis tools or data; Analyzed and interpreted the data.

Corresponding author

Correspondence to Sajad Pirsa.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10120.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, D., Sani, I.K. & Pirsa, S. Nanocomposite Film of Potato Starch and Gum Arabic Containing Boron Oxide Nanoparticles and Anise Hyssop (Agastache foeniculum) Essential Oil: Investigation of Physicochemical and Antimicrobial Properties. J Polym Environ 32, 1972–1983 (2024). https://doi.org/10.1007/s10924-023-03114-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03114-3

Keywords

Navigation