Log in

Model Reduction of Linear Dynamical Systems via Balancing for Bayesian Inference

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider the Bayesian approach to the linear Gaussian inference problem of inferring the initial condition of a linear dynamical system from noisy output measurements taken after the initial time. In practical applications, the large dimension of the dynamical system state poses a computational obstacle to computing the exact posterior distribution. Model reduction offers a variety of computational tools that seek to reduce this computational burden. In particular, balanced truncation is a system-theoretic approach to model reduction which obtains an efficient reduced-dimension dynamical system by projecting the system operators onto state directions which trade off the reachability and observability of state directions as expressed through the associated Gramians. We introduce Gramian definitions relevant to the inference setting and propose a balanced truncation approach based on these inference Gramians that yield a reduced dynamical system that can be used to cheaply approximate the posterior mean and covariance. Our definitions exploit natural connections between (i) the reachability Gramian and the prior covariance and (ii) the observability Gramian and the Fisher information. The resulting reduced model then inherits stability properties and error bounds from system theoretic considerations, and in some settings yields an optimal posterior covariance approximation. Numerical demonstrations on two benchmark problems in model reduction show that our method can yield near-optimal posterior covariance approximations with order-of-magnitude state dimension reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. LTI system matrices and documentation for both examples can be found online at http://slicot.org/20-site/126-benchmark-examples-for-model-reduction.

References

  1. Abt, M., Welch, W.J.: Fisher information and maximum-likelihood estimation of covariance parameters in Gaussian stochastic processes. Canadian J. Statist. 26(1), 127–137 (1998). https://doi.org/10.2307/3315678

    Article  MathSciNet  MATH  Google Scholar 

  2. Antoulas, A.C.: Approximation of large-scale dynamical systems. SIAM (2005)

  3. Antoulas, A.C., Beattie, C.A., Gugercin, S.: Interpolatory methods for model reduction. Comput. Sci. Eng. Soc. Ind. Appl. Math. (2020). https://doi.org/10.1137/1.9781611976083

    Article  MATH  Google Scholar 

  4. Apte, A., Hairer, M., Stuart, A.M., Voss, J.: Sampling the posterior: an approach to non-Gaussian data assimilation. Phys. D Nonlinear Phenomena 230(1–2), 50–64 (2007)

    Article  MathSciNet  Google Scholar 

  5. Baur, U., Benner, P., Feng, L.: Model order reduction for linear and nonlinear systems: a system-theoretic perspective. Arch. Comput. Methods Eng. 21(4), 331–358 (2014)

    Article  MathSciNet  Google Scholar 

  6. Benner, P., Breiten, T.: Model order reduction based on system balancing. SIAM 6, 261–295 (2017)

    MathSciNet  Google Scholar 

  7. Benner, P., Goyal, P.: Balanced truncation model order reduction for quadratic-bilinear control systems. ar**v preprint ar**v:1705.00160 (2017)

  8. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015). https://doi.org/10.1137/130932715

    Article  MathSciNet  MATH  Google Scholar 

  9. Benner, P., Qiu, Y., Stoll, M.: Low-rank eigenvector compression of posterior covariance matrices for linear Gaussian inverse problems. SIAM/ASA J. Uncertain. Quantif. 6(2), 965–989 (2018). https://doi.org/10.1137/17M1121342

    Article  MathSciNet  MATH  Google Scholar 

  10. Benner, P., Saak, J.: Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM-Mitteilungen 36(1), 32–52 (2013)

    Article  MathSciNet  Google Scholar 

  11. Benner, P., Saak, J.: Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM Mitteilungen 36(1), 32–52 (2013)

    Article  MathSciNet  Google Scholar 

  12. Bennett, A.F.: Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  13. Bertram, C., Faßbender, H.: A quadrature framework for solving lyapunov and sylvester equations. Linear Algebra Appl. 622, 66–103 (2021)

    Article  MathSciNet  Google Scholar 

  14. Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  15. Bonnabel, S., Sepulchre, R.: Riemannian metric and geometric mean for positive semidefinite matrices of fixed rank. SIAM J. Matrix Anal. Appl. 31(3), 1055–1070 (2010). https://doi.org/10.1137/080731347

    Article  MathSciNet  MATH  Google Scholar 

  16. Breiten, T.: Structure-preserving model reduction for integro-differential equations. SIAM J. Control Optim. 54(6), 2992–3015 (2016)

    Article  MathSciNet  Google Scholar 

  17. Calvetti, D., Somersalo, E.: An Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing. Surveys and Tutorials in the Applied Mathematical Sciences. Springer, New York (2007). https://doi.org/10.1007/978-0-387-73394-4

  18. Chen, H.S., Simpson, D.G., Ying, Z.: Infill asymptotics for a stochastic process model with measurement error. Statistica Sinica 10(1), 141–156 (2000). https://www.jstor.org/stable/24306709. Publisher: Institute of Statistical Science, Academia Sinica

  19. Cui, T., Fox, C., O’Sullivan, M.J.: Bayesian calibration of a large-scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm. Water Resour. Res. (2011). https://doi.org/10.1029/2010WR010352

    Article  Google Scholar 

  20. Cui, T., Fox, C., O’Sullivan, M.J.: A posteriori stochastic correction of reduced models in delayed-acceptance mcmc, with application to multiphase subsurface inverse problems. Int. J. Numer. Methods Eng. 118(10), 578–605 (2019)

    Article  MathSciNet  Google Scholar 

  21. Cui, T., Martin, J., Marzouk, Y.M., Solonen, A., Spantini, A.: Likelihood-informed dimension reduction for nonlinear inverse problems. Inverse Probl. 30(11), 114015 (2014)

    Article  MathSciNet  Google Scholar 

  22. Dashti, M., Stuart, A.M.: The Bayesian Approach to Inverse Problems. In: R. Ghanem, D. Higdon, H. Owhadi (eds.) Handbook of Uncertainty Quantification, pp. 311–428. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-12385-1_7

  23. Datta, B.: Numerical methods for linear control systems, vol. 1. Academic Press, Cambridge (2004)

    Google Scholar 

  24. De Oliveira, V., Ecker, M.D.: Bayesian hot spot detection in the presence of a spatial trend: application to total nitrogen concentration in chesapeake bay. Environ. Official J. Int. Environ. Soc. 13(1), 85–101 (2002)

    Google Scholar 

  25. Deligiannidis, G., Doucet, A., Rubenthaler, S.: Ensemble rejection sampling. ar**v preprint ar**v:2001.09188 (2020)

  26. Devroye, L.: General principles in random variate generation. In: Non-uniform random variate generation, pp. 27–82. Springer (1986)

  27. Evensen, G.: Data Assimilation: The Ensemble Kalman Filter, 2nd edn. Springer, NY (2009)

    Book  Google Scholar 

  28. Fortmann, T.E., Hitz, K.L.: An introduction to linear control systems. Crc Press, Boca Raton (1977)

    MATH  Google Scholar 

  29. Förstner, W., Moonen, B.: A Metric for Covariance Matrices. In: E.W. Grafarend, F.W. Krumm, V.S. Schwarze (eds.) Geodesy-The Challenge of the 3rd Millennium. Springer, Heidelberg, pp. 299–309 (2003). https://doi.org/10.1007/978-3-662-05296-9_31

  30. Gardiner, C.: Stochastic Methods: A Handbook for the Natural and Social Sciences. Springer, Berlin (2009)

    MATH  Google Scholar 

  31. Gugercin, S., Antoulas, A.C.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77(8), 748–766 (2004)

    Article  MathSciNet  Google Scholar 

  32. Hammarling, S.J.: Numerical solution of the stable, non-negative definite Lyapunov equation. IMA J. Numer. Anal. 2(3), 303–323 (1982)

    Article  MathSciNet  Google Scholar 

  33. Hensman, J., Matthews, A.G., Filippone, M., Ghahramani, Z.: MCMC for variationally sparse Gaussian processes. In: Advances in Neural Information Processing Systems, pp. 1648–1656 (2015)

  34. Johns, T.C., Carnell, R.E., Crossley, J.F., Gregory, J.M., Mitchell, J.F.B., Senior, C.A., Tett, S.F.B., Wood, R.A.: The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation. Climate Dynam. 13(2), 103–134 (1997)

    Article  Google Scholar 

  35. Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge (2002). https://doi.org/10.1017/CBO9780511802270

  36. Kürschner, P.: Efficient low-rank solution of large-scale matrix equations. Ph.D. thesis, Otto von Guericke Universität Magdeburg (2016)

  37. Law, K., Stuart, A., Zygalakis, K.: Data Assimilation, Texts in Applied Mathematics, vol. 62. Springer International Publishing, Cham (2015)

    Book  Google Scholar 

  38. Lieberman, C., Willcox, K.: Goal-oriented inference: approach, linear theory, and application to advection diffusion. SIAM Rev. 55(3), 493–519 (2013)

    Article  MathSciNet  Google Scholar 

  39. Miroshnikov, A., Wei, Z., Conlon, E.M.: Parallel Markov chain Monte Carlo for non-Gaussian posterior distributions. Stat 4(1), 304–319 (2015)

    Article  MathSciNet  Google Scholar 

  40. Moore, B.C.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981)

    Article  MathSciNet  Google Scholar 

  41. Mullis, C.T., Roberts, R.A.: Synthesis of minimum roundoff noise fixed point digital filters. Circuits Syst. IEEE Trans. 23(9), 551–562 (1976)

    Article  MathSciNet  Google Scholar 

  42. von Neumann, J.: Various techniques used in connection with random digits. In: A.S. Householder, G.E. Forsythe, H.H. Germond (eds.) Monte Carlo Method, National Bureau of Standards Applied Mathematics Series, vol. 12, chap. 13, pp. 36–38. US Government Printing Office, Washington, DC (1951)

  43. Palacios, M.B., Steel, M.F.J.: Non-Gaussian Bayesian geostatistical modeling. J. Am. Statist. Assoc. 101(474), 604–618 (2006)

    Article  MathSciNet  Google Scholar 

  44. Petreczky, M., Wisniewsk, R., Leth, J.: Theoretical analysis of balanced truncation for linear switched systems. IFAC Proc. Volum. 45(9), 240–247 (2012)

    Article  Google Scholar 

  45. Powel, N.D., Morgansen, K.A.: Empirical observability Gramian rank condition for weak observability of nonlinear systems with control. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 6342–6348 (2015). https://doi.org/10.1109/CDC.2015.7403218

  46. Redmann, M., Freitag, M.A.: Balanced model order reduction for linear random dynamical systems driven by Lévy noise. J. Comput. Dynam. 5(1&2), 33 (2018) https://doi.org/10.3934/jcd.2018002. https://www.aimsciences.org/article/doi/10.3934/jcd.2018002

  47. Rounce, D.R., Khurana, T., Short, M.B., Hock, R., Shean, D.E., Brinkerhoff, D.J.: Quantifying parameter uncertainty in a large-scale glacier evolution model using Bayesian inference: application to High Mountain Asia. J. Glaciol. 66(256), 175–187 (2020). https://doi.org/10.1017/jog.2019.91

    Article  Google Scholar 

  48. Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurcat. Chaos 15(3), 997–1013 (2005)

    Article  MathSciNet  Google Scholar 

  49. Roy, P., Cela, A., Hamam, Y.: On the relation of FIM and Controllability Gramian. In: 2009 IEEE International Symposium on Industrial Embedded Systems, pp. 37–41 (2009). https://doi.org/10.1109/SIES.2009.5196189. ISSN: 2150-3117

  50. Séférian, R., Gehlen, M., Bopp, L., Resplandy, L., Orr, J.C., Marti, O., Dunne, J.P., Christian, J.R., Doney, S.C., Ilyina, T., et al.: Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model performance assessment. Geosci. Model Develop. 9(5), 1827–1851 (2016)

    Article  Google Scholar 

  51. Simoncini, V.: Computational methods for linear matrix equations. SIAM Rev. 58(3), 377–441 (2016)

    Article  MathSciNet  Google Scholar 

  52. Soize, C., Ghanem, R.G., Desceliers, C.: Sampling of Bayesian posteriors with a non-Gaussian probabilistic learning on manifolds from a small dataset. Statist. Comput. pp. 1–25 (2020)

  53. Spantini, A., Cui, T., Willcox, K., Tenorio, L., Marzouk, Y.: Goal-oriented optimal approximations of Bayesian linear inverse problems. SIAM J. Sci. Comput. 39(5), S167–S196 (2017)

    Article  MathSciNet  Google Scholar 

  54. Spantini, A., Solonen, A., Cui, T., Martin, J., Tenorio, L., Marzouk, Y.: Optimal low-rank approximations of Bayesian linear inverse problems. SIAM J. Sci. Comput. 37(6), A2451–A2487 (2015). https://doi.org/10.1137/140977308

    Article  MathSciNet  MATH  Google Scholar 

  55. Stuart, A.M.: Inverse Problems: a Bayesian Perspective. Acta Numer. 19, 451–559 (2010). https://doi.org/10.1017/S0962492910000061

    Article  MathSciNet  MATH  Google Scholar 

  56. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. Soc. Ind. Appl. Math. (2005). https://doi.org/10.1137/1.9780898717921

  57. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)

    Article  Google Scholar 

  58. Yang, F., Zheng, Y., Duan, J., Fu, L., Wiggins, S.: The tip** times in an arctic sea ice system under influence of extreme events. Chaos Interdiscip. J. Nonlinear Sci. 30(6), 063125 (2020)

    Article  MathSciNet  Google Scholar 

  59. Zhang, H., Zimmerman, D.L.: Towards Reconciling Two Asymptotic Frameworks in Spatial Statistics. Biometrika 92(4), 921–936 (2005). https://www.jstor.org/stable/20441245

  60. Zhu, Z., Zhang, H.: Spatial sampling design under the infill asymptotic framework. Environmetrics 17(4), 323–337 (2006) https://doi.org/10.1002/env.772. https://onlinelibrary.wiley.com/doi/abs/10.1002/env.772

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akil Narayan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This material is based upon work supported by the National Science Foundation under Grant No. DMS-1439786 and by the Simons Foundation Grant No. 50736 while the authors were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the “Model and dimension reduction in uncertain and dynamic systems” program. EQ was supported in part by the Fannie and John Hertz Foundation. JMT was partially supported by EPSRC grant EP/S027785/1. AN was partially supported by NSF DMS-1848508. CB and SG were partially supported by NSF DMS-1819110.

Appendices

Appendix A Proof of Proposition 4.1

Proof

The Eq. (4.1) can be solved by integrating factors in the standard way because the stochastic product rule applied to \(\mathrm {d}(\mathrm {e}^{\varvec{A}t}x)\) produces no corrections:

$$\begin{aligned} \varvec{x}(t)=\int _{-\infty }^t \mathrm {e}^{\varvec{A}(t-s)} \varvec{B}\, \mathrm {d}\varvec{W}(s) \end{aligned}$$

With the Ito isometry, which is equivalent to the formal rule \( \mathbb {E}[\mathrm {d}\varvec{W}(s) \mathrm {d}\varvec{W}(s')] = I \delta (s-s') \, \mathrm {d}s \, \mathrm {d}s'\), we compute:

$$\begin{aligned} \mathbb {E}[\varvec{x}(t)\varvec{x}^\top (t)]&= \int _{-\infty }^t \mathrm {e}^{\varvec{A}(t-s)} \varvec{B}(\mathrm {e}^{\varvec{A}(t-s)}\varvec{B})^\top \, \mathrm {d}s = \int _{-\infty }^t \mathrm {e}^{\varvec{A}(t-s)} \varvec{B}\varvec{B}^\top \mathrm {e}^{\varvec{A}^\top (t-s)} \, \mathrm {d}s \nonumber \\&= \int _0^\infty \mathrm {e}^{\varvec{A}s} \varvec{B}\varvec{B}^\top \mathrm {e}^{\varvec{A}^\top s} \, \mathrm {d}s, \end{aligned}$$
(6.1)

which also shows that \(\mathrm {d}\mathbb {E}[\varvec{x}\varvec{x}^\top ] = 0\). The method of moments gives:

$$\begin{aligned} d(\varvec{x}\varvec{x}^\top )&= (\varvec{A}\varvec{x}\,\mathrm {d}t + \varvec{B}\, \mathrm {d}\varvec{W}(t))x^\top + \varvec{x}( \varvec{x}^\top \varvec{A}^\top + \mathrm {d}\varvec{W}^\top (t) \varvec{B}^\top ) + \varvec{B}\,\mathrm {d}\varvec{W}(t) \mathrm {d}\varvec{W}(t)^\top \varvec{B}^\top \nonumber \\&= \varvec{A}\varvec{x}\varvec{x}^\top \, \mathrm {d}t + \varvec{x}\varvec{x}^\top \varvec{A}^\top \, \mathrm {d}t + \varvec{B}\,\mathrm {d}\varvec{W}(t) \varvec{x}^\top + \varvec{x}\,\mathrm {d}\varvec{W}(t)^\top \varvec{B}^\top + \varvec{B}\varvec{B}^\top \, \mathrm {d}t \end{aligned}$$
(6.2)

Taking expectations and using \(\mathbb {E}[\mathrm {d}\varvec{W}x]=0\), we recover the desired Lyapunov Eq. (4.3):

$$\begin{aligned} \mathrm {d}\mathbb {E}[\varvec{x}\varvec{x}^\top ] = 0 = (\varvec{A}\mathbb {E}[\varvec{x}\varvec{x}^\top ] + \mathbb {E}[\varvec{x}\varvec{x}^\top ] \varvec{A}^\top + \varvec{B}\varvec{B}^\top ) \, \mathrm {d}t. \end{aligned}$$

\(\square \)

Appendix B Optimality Property of Mahalanobis Distance for Gaussian Distributions

Proposition B.1

The neighborhood \( M\equiv \{\varvec{z}\in \mathbb {R}^d: D\left( \varvec{z}, \mathcal {N}( \varvec{\mu },\varSigma )\right) < \delta \}\) defined by the Mahalanobis distance (3.1) satisfies the following optimality condition:

$$\begin{aligned} M= \mathop {\mathrm{argmax}}\limits _{S \in \mathcal {O}: \lambda (S)=\lambda (M)} {\mathbb {P}}(S). \end{aligned}$$

where \( {\mathbb {P}}\) denotes the probability measure on \( \mathbb {R}^d\) corresponding to a multivariate Gaussian distribution with mean \( \varvec{\mu }\in \mathbb {R}^d\) and covariance matrix \( \varSigma \in \mathbb {R}^{d\times d}\), \(\mathcal {O} \) is the collection of open sets in \( \mathbb {R}^d\) and \( \lambda (S)\) denotes the Lebesgue measure of set S.

Proof

M can be verified by definition to correspond to an ellipsoidal level set of the multivariate Gaussian density, with the probability density strictly greater on the interior of M than on the complement. Consequently, for any \( S \in \mathcal {O}\), the probability density on \( S \setminus M\) is strictly greater than the probability density on \( M \setminus S\). If M and S have the same Lebesgue measure, then so do \( S \setminus M\) and \(M \setminus S\). Thus \( P(S \setminus M) \le P(M\setminus S)\), with equality holding only if \( P(S \setminus M)=0 \), which can only happen if \( S=M\) since both sets are open. \(\square \)

Appendix C Stochastic Forcing Continuing Through Positive Times

We consider here how the connection between balanced truncation and the optimal low-rank posterior update procedure described in [54] is affected if we were to consider the more natural case of a stochastic linear dynamical system driving consistently for both positive and negative times:

$$\begin{aligned} \mathrm {d}\varvec{x}= \varvec{A}\varvec{x}\, \mathrm {d}t + \varvec{B}\,\mathrm {d}\varvec{W}(t), \qquad -\infty< t < \infty . \end{aligned}$$
(6.3)

Now the observations involve noise not only from the measurement process, but from the dynamical noise at previous times. We can write in place of Eq. (2.2):

$$\begin{aligned} \varvec{m}_i&= \varvec{C}\mathrm {e}^{\varvec{A}t_i} \varvec{x}_0+ \varvec{\var** }_i, \end{aligned}$$

where

$$\begin{aligned} \varvec{\var** }_i= \int _0^{t_i} \varvec{C}\mathrm {e}^{\varvec{A}(t_i-s)} \varvec{B}\, d \varvec{W}(s) + \varvec{\epsilon }_i. \end{aligned}$$

In the expression of the abstract linear Bayesian inference problem:

$$\begin{aligned} \varvec{m}= \varvec{G}\varvec{x}_0+ \varvec{\var** }, \end{aligned}$$

the noisy component \( \varvec{\var** }\in \mathbb {R}^{d_{\mathrm{obs}}}\) of the measurements is now correlated across observation times. Thus, \(\varvec{\var** }\sim \mathcal {N}(0,\varvec{\varGamma }_{\mathrm {tot}})\) where \(\varvec{\varGamma }_{\mathrm {tot}}\in \mathbb {R}^{d_{\mathrm{obs}}\times d_{\mathrm{obs}}}\) has block structure:

$$\begin{aligned} \varvec{\varGamma }_{\!\mathrm {obs}}= \begin{bmatrix} \varvec{\varGamma }_{\varvec{\epsilon }_1,\varvec{\epsilon }_1} &{} \varvec{\varGamma }_{\varvec{\epsilon }_1,\varvec{\epsilon }_2} &{} \cdots &{} \varvec{\varGamma }_{\varvec{\epsilon }_1,\varvec{\epsilon }_{n}} \\ \varvec{\varGamma }_{\varvec{\epsilon }_2,\varvec{\epsilon }_1} &{} \varvec{\varGamma }_{\varvec{\epsilon }_2,\varvec{\epsilon }_2} &{} \cdots &{} \varvec{\varGamma }_{\varvec{\epsilon }_2,\varvec{\epsilon }_{n}} \\ \vdots &{} \vdots &{} \cdots &{} \vdots \\ \varvec{\varGamma }_{\varvec{\epsilon }_{n},\varvec{\epsilon }_1} &{} \varvec{\varGamma }_{\varvec{\epsilon }_{n},\varvec{\epsilon }_2} &{} \cdots &{} \varvec{\varGamma }_{\varvec{\epsilon }_{n},\varvec{\epsilon }_{n}} \end{bmatrix}. \end{aligned}$$
(6.4)

with covariances of measurements at different times given explicitly by;

$$\begin{aligned} \varvec{\varGamma }_{\varvec{\epsilon }_i,\varvec{\epsilon }_j} = \varvec{\varGamma }_{\varvec{\epsilon }_i}\delta _{ij}+ \int _{|t_i-t_j|}^{\max (t_i,t_j)} \varvec{C}\mathrm {e}^{\varvec{A}s} {\varvec{BB}}^\top \mathrm {e}^{\varvec{A}^\top s}\varvec{C}^\top \, \mathrm {d}s \end{aligned}$$

with Kronecker delta function \( \delta _{ij}\). The reason for the correlations is the influence of the common past driving noise. These correlations are indeed mitigated if the observation times are spaced sufficiently far apart so the minimal eigenvalue of \( -A |t_i-t_j|\) becomes large, but this is not a terribly interesting case as it would imply also weak dependence of the observations on the state \( \varvec{x}_0\). The correlation in the effective measurement noise would lead to a very different expression for the Fisher information matrix in Eq. (2.8)), as \( \varvec{\varGamma }_{\!\mathrm {obs}}^{-1}\) would no longer be block diagonal, and we would thereby lose interpretability of the Fisher information matrix as a discretized version of an observability Gramian.

Appendix D Modification of Covariance to Induce Prior-Compatibility

This appendix complements the discussion in Sect. 4.1.2: We provide below a Matlab routine that, given a system matrix A and a prior covariance Gamma0, returns the upper-triangular Cholesky factor R_Gam of a modified prior that is compatible with the state dynamics of A. Our matlab function listed below utilizes the lyapchol routine from the Control System Toolbox to solve (4.5) for the Cholesky factor E of the prior modification \(\varDelta \).

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, E., Tabeart, J.M., Beattie, C. et al. Model Reduction of Linear Dynamical Systems via Balancing for Bayesian Inference. J Sci Comput 91, 29 (2022). https://doi.org/10.1007/s10915-022-01798-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01798-8

Keywords

Navigation