Log in

Self-Diffusion in a Spatially Modulated System of Electrons on Helium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present results of molecular dynamics simulations of the electron system on the surface of liquid helium. The simulations are done for 1600 electrons with periodic boundary conditions. Electron scattering by capillary waves and phonons in helium is explicitly taken into account. We find that the self-diffusion coefficient superlinearly decreases with decreasing temperature. In the free-electron system, it turns to zero essentially discontinuously, which we associate with the liquid-to-solid transition. In contrast, when the system is placed in the fully commensurate one-dimensional potential, the freezing of the diffusion occurs smoothly. We relate this change to the fact that, as we show, a Wigner crystal in such a potential is stable, in contrast to systems with a short-range inter-particle coupling. We find that the freezing temperature nonmonotonically depends on the commensurability parameter. We also find incommensurability solitons in the solid phase. The results reveal peculiar features of the dynamics of a strongly correlated system with long-range coupling placed into a periodic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Our fork of the HOOMD-Blue code can be found at https://github.com/kmoskovtsev/HOOMD-Blue-fork. The scripts used in the simulations are available at https://github.com/kmoskovtsev/Electrons-on-Helium-Scripts.

References

  1. E. Andrei (ed.), Two-Dimensional Electron Systems on Helium and Other Cryogenic Surfaces (Kluwer Academic, Dordrecht, 1997)

    Google Scholar 

  2. Y. Monarkha, K. Kono, Two-Dimensional Coulomb Liquids and Solids (Springer, Berlin, 2004)

    Book  Google Scholar 

  3. L. Menna, S. Yucel, E.Y. Andrei, Phys. Rev. Lett. 70, 2154 (1993)

    Article  ADS  Google Scholar 

  4. M.I. Dykman, M.J. Lea, P. Fozooni, J. Frost, Phys. Rev. Lett. 70, 3975 (1993)

    Article  ADS  Google Scholar 

  5. M.J. Lea, P. Fozooni, A. Kristensen, P.J. Richardson, K. Djerfi, M.I. Dykman, C. Fang-Yen, A. Blackburn, Phys. Rev. B 55, 16280 (1997). https://doi.org/10.1103/PhysRevB.55.16280

    Article  ADS  Google Scholar 

  6. M.I. Dykman, T. Sharpee, P.M. Platzman, Phys. Rev. Lett. 86, 2408 (2001)

    Article  ADS  Google Scholar 

  7. D. Konstantinov, M.I. Dykman, M.J. Lea, Y. Monarkha, K. Kono, Phys. Rev. Lett. 103, 096801 (2009)

    Article  ADS  Google Scholar 

  8. D. Konstantinov, Y. Monarkha, K. Kono, Phys. Rev. Lett. 111, 266802 (2013)

    Article  ADS  Google Scholar 

  9. A.D. Chepelianskii, M. Watanabe, K. Nasyedkin, K. Kono, D. Konstantinov, Nat. Commun. 6, 7210 (2015)

    Article  ADS  Google Scholar 

  10. H. Totsuji, Phys. Rev. A 17, 399 (1978)

    Article  ADS  Google Scholar 

  11. R.C. Gann, S. Chakravarty, G.V. Chester, Phys. Rev. B 20, 326 (1979)

    Article  ADS  Google Scholar 

  12. J.P. Hansen, D. Levesque, J.J. Weis, Phys. Rev. Lett. 43, 979 (1979)

    Article  ADS  Google Scholar 

  13. R.H. Morf, Phys. Rev. Lett. 43, 931 (1979). https://doi.org/10.1103/PhysRevLett.43.931

    Article  ADS  Google Scholar 

  14. R.K. Kalia, P. Vashishta, S.W. de Leeuw, Phys. Rev. B 23, 4794 (1981)

    Article  ADS  Google Scholar 

  15. R.K. Kalia, P. Vashishta, S.D. Mahanti, J.J. Quinn, J. Phys. C: Solid State Phys. 16, L491 (1983)

    Article  ADS  Google Scholar 

  16. K.J. Strandburg, Rev. Mod. Phys. 60, 161 (1988)

    Article  ADS  Google Scholar 

  17. C. FangYen, M.I. Dykman, M.J. Lea, Phys. Rev. B 55, 16272 (1997)

    Article  ADS  Google Scholar 

  18. S. Muto, H. Aoki, Phys. Rev. B 59, 14911 (1999)

    Article  ADS  Google Scholar 

  19. G. Piacente, F.M. Peeters, Phys. Rev. B 72, 205208 (2005)

    Article  ADS  Google Scholar 

  20. B.K. Clark, M. Casula, D.M. Ceperley, Phys. Rev. Lett. 103, 055701 (2009)

    Article  ADS  Google Scholar 

  21. P.F. Damasceno, C.J. DaSilva, J.P. Rino, L. Cândido, J. Low Temp. Phys. 160, 58 (2010)

    Article  ADS  Google Scholar 

  22. D.G. Rees, H. Totsuji, K. Kono, Phys. Rev. Lett. 108, 176801 (2012)

    Article  ADS  Google Scholar 

  23. M. Mazars, EPL 110, 26003 (2015)

    Article  ADS  Google Scholar 

  24. S. Khrapak, B. Klumov, L. Couedel, J. Phys. Commun. 2, 045013 (2018)

    Article  Google Scholar 

  25. P. Bak, Rep. Prog. Phys. 45, 587 (1982)

    Article  ADS  Google Scholar 

  26. V.L. Pokrovsky, A.L. Talapov, Zh Eksp, Teor. Fiz. 78, 269 (1980)

    Google Scholar 

  27. Q.-H. Wei, C. Bechinger, D. Rudhardt, P. Leiderer, Phys. Rev. Lett. 81, 2606 (1998)

    Article  ADS  Google Scholar 

  28. L. Radzihovsky, E. Frey, D. Nelson, Phys. Rev. E 63, 031503 (2001)

    Article  ADS  Google Scholar 

  29. M.I. Dykman, P. Platzman, P. Seddighrad, Phys. Rev. B 67, 155402 (2003)

    Article  ADS  Google Scholar 

  30. D.I. Schuster, A. Fragner, M.I. Dykman, S.A. Lyon, R.J. Schoelkopf, Phys. Rev. Lett. 105, 040503 (2010)

    Article  ADS  Google Scholar 

  31. M.I. Dykman, C. FangYen, M.J. Lea, Phys. Rev. B 55, 16249 (1997)

    Article  ADS  Google Scholar 

  32. P.G. De Gennes, Physica 25, 825 (1959)

    Article  ADS  Google Scholar 

  33. L. Bonsall, A.A. Maradudin, Phys. Rev. B 15, 1959 (1977)

    Article  ADS  Google Scholar 

  34. V.L. Pokrovsky, A.L. Talapov, Phys. Rev. Lett. 42, 65 (1979)

    Article  ADS  Google Scholar 

  35. A. Chowdhury, B.J. Ackerson, N.A. Clark, Phys. Rev. Lett. 55, 833 (1985)

    Article  ADS  Google Scholar 

  36. K. Mangold, P. Leiderer, C. Bechinger, Phys. Rev. Lett. 90, 158302 (2003)

    Article  ADS  Google Scholar 

  37. P.J. Lu, D.A. Weitz, Annu. Rev. Condens. Matter Phys. 4, 217 (2013)

    Article  ADS  Google Scholar 

  38. B. Li, D. Zhou, Y. Han, Nat. Rev. Mater. 1, 15011 (2016)

    Article  ADS  Google Scholar 

  39. M.I. Dykman, Y.G. Rubo, Phys. Rev. Lett. 78, 4813 (1997)

    Article  ADS  Google Scholar 

  40. W.F. Vinen, J. Phys. Condens. Matter 11, 9709 (1999)

    Article  ADS  Google Scholar 

  41. A. Kristensen, K. Djerfi, P. Fozooni, M.J. Lea, P.J. Richardson, A. Santrich-Badal, A. Blackburn, R.W. van der Heijden, Phys. Rev. Lett. 77, 1350 (1996)

    Article  ADS  Google Scholar 

  42. P. Glasson, V. Dotsenko, P. Fozooni, M.J. Lea, W. Bailey, G. Papageorgiou, S.E. Andresen, A. Kristensen, Phys. Rev. Lett. 87, 176802 (2001)

    Article  ADS  Google Scholar 

  43. D.G. Rees, N.R. Beysengulov, J.-J. Lin, K. Kono, Phys. Rev. Lett. 116, 206801 (2016)

    Article  ADS  Google Scholar 

  44. D.G. Rees, S.-S. Yeh, B.-C. Lee, K. Kono, J.-J. Lin, Phys. Rev. B 96, 205438 (2017)

    Article  ADS  Google Scholar 

  45. J.A. Anderson, C.D. Lorenz, A. Travesset, J. Comput. Phys. 227, 5342 (2008)

    Article  ADS  Google Scholar 

  46. J. Glaser, T.D. Nguyen, J.A. Anderson, P. Lui, F. Spiga, J.A. Millan, D.C. Morse, S.C. Glotzer, Comput. Phys. Commun. 192, 97 (2015)

    Article  ADS  Google Scholar 

  47. E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31 (Springer, New York, 2006)

    MATH  Google Scholar 

Download references

Acknowledgements

We are grateful for the discussion of the results of this paper to the participants of the International Workshop on Electrons and Ions in Quantum Fluids and Solids (Japan 2018) and the organizer of this workshop K. Kono. This research was supported in part by the NSF-DMR Grant 1708331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Dykman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Numerical Integration of the Equations of Motion

To study properties of the electrons on helium, we integrate classical equations of motion numerically. We use HOOMD-Blue [45, 46] as the base code for our simulations, with the integrator, interaction potentials, and external forces developed specifically for our study.Footnote 1 The code is designed to be used on a graphics processing unit (GPU). This gives up to 16-fold acceleration compared with a single CPU core. For integration, we use the standard velocity Verlet algorithm, which is symplectic [47]. The algorithm is implemented numerically as follows:

$$\begin{aligned} \varvec{v}_i\left( t + \Delta t/2\right)&= \varvec{v}_i(t) + \frac{1}{2}\varvec{a}_i(t)\Delta t,\nonumber \\ \varvec{r}_i\left( t + \Delta t\right)&= \varvec{r}_i(t) + \varvec{v}_i\left( t + \Delta t/2\right) \Delta t,\nonumber \\ \varvec{v}_i(t + \Delta t)&= \varvec{v}_i\left( t + \Delta t/2\right) + \frac{1}{2}\varvec{a}_i(t + \Delta t)\Delta t, \end{aligned}$$
(A.1)

where \(\varvec{v}_i\) is the ith particle velocity, and the acceleration \(\varvec{a}_i(t)\) is evaluated based on the forces derived from the positions \(\varvec{r}_j(t)\) of all particles at time t. In the calculation, time is discretized and \(\Delta t\) is the discretization step.

We modified the algorithm to incorporate discrete scattering events, which are described by an abrupt random change in the electron velocity \(\varvec{v}\rightarrow \varvec{v}'\), or the corresponding change in the electron momentum \(\hbar \varvec{k}\rightarrow \hbar (\varvec{k}+\Delta \varvec{k})\), that obeys a certain probability distribution. As mentioned in Sect. 2.2.1, electron positions do not change in scattering events, in the classical description. Therefore, the electron potential energy is not changed either. This is automatically satisfied in the calculation if the velocity is changed at integer time points. Importantly, in elastic scattering, which is the dominating scattering mechanism, \(|\varvec{v}(t) + \Delta \varvec{v}| = |\varvec{v}(t)|\), where \(\Delta \varvec{v}\) is the velocity change at time t, and then the total energy is conserved to the first order in \(\Delta t\). Indeed,

$$\begin{aligned} \varvec{v}(t+\Delta t)&= \varvec{v}(t) + \Delta \varvec{v}+ \frac{1}{2}(\varvec{a}(t) + \varvec{a}(t+\Delta t))\Delta t,\nonumber \\ \varvec{r}(t + \Delta t)&= \varvec{r}(t) + \Delta t\left[ \varvec{v}(t) + \Delta \varvec{v}+ \frac{1}{2}\varvec{a}(t)\Delta t \right] . \end{aligned}$$
(A.2)

Then, it is easy to see that the energy difference over one step vanishes in the first order in \(\Delta t\),

$$\begin{aligned} E(t + \Delta t) - E(t) = \frac{m}{2}\left( \varvec{v}^2(t + \Delta t) - \varvec{v}^2(t)\right) + U\left( \varvec{r}(t + \Delta t)\right) - U\left( \varvec{r}(t)\right) = O(\Delta t^2). \end{aligned}$$
(A.3)

Since the scattering events in our simulations are rare, about one scattering event per \(10^5\) time steps per particle, this accuracy is sufficient for our purpose.

We have chosen \(\Delta t \approx (2\pi /\omega _\mathrm{p})/50\) for most of the simulations, where \(\omega _\mathrm{p}\) is the short-wavelength plasma frequency given in Eq. (5). Reducing \(\Delta t\) proved to have no visible effect on the studied phenomena.

As described in Sect. 2.2.1, scattering processes are characterized by their rates \(w(\varvec{k}\rightarrow \varvec{k}')\), which are calculated separately for the ripplon and phonon scattering. Different scattering events are uncorrelated. The scattering by ripplons is effectively elastic. Therefore, its rate \(w^\mathrm{(rp)}(\varvec{k}\rightarrow \varvec{k}')\) depends only on the absolute value of \(\varvec{k}\) and the angle \(\theta \) between \(\varvec{k}\) and \(\varvec{k}'\). We tabulate the integrated over \(\theta \) scattering rate for a given magnitude \(k =|\varvec{k}|\) of \(\varvec{k}\) on a grid of 200 points. This rate is used to determine the probability to scatter at every time step. We then tabulate the inverse cumulative distribution of the scattering angles \(\theta \) on 400 points and use the inverse transform sampling to generate a random value of \(\theta \) if a scattering event occurs at a give time step.

In inelastic scattering, both \(k'\) and \(\theta \) must be determined for a scattering event. As Fig. 1 shows, the scattering rate varies quickly with \(k'\equiv |\varvec{k}'|\) and rather smoothly with \(\theta \) for each value of k. Therefore, it is convenient to implement the following radial scheme of generating \(\varvec{k}'\). For each value of k, we compute the probability distribution of \(k'\) by integrating the scattering rate over the scattering angle \(\theta \). If a scattering event occurs at a given time step, we first generate the absolute value \(k'\) based on this distribution. Then, for every pair \(k, k'\) we compute the probability distribution of \(\theta \). We draw a random \(\theta \) using again the inverse transform sampling after \(k'\) is generated in the previous step. The distributions are computed and tabulated in two arrays with sizes \(200\times 200\) and \(200\times 200\times 10\). In addition to these distributions, we also tabulate the total rate of scattering from a state with wave vector \(\varvec{k}\) into any other state to find the overall probability to scatter at each time step, as in the case of the ripplon scattering. For both scattering mechanisms, we use interpolation schemes to obtain continuous scattering distributions from the tabulated values.

An important test of the developed scheme is the stationary electron distribution function. The distribution over the electron momentum should be of the Maxwell–Boltzmann form with the temperature of the helium excitations. We checked that this is indeed the case both for noninteracting electrons and in the presence of the electron–electron interaction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskovtsev, K., Dykman, M.I. Self-Diffusion in a Spatially Modulated System of Electrons on Helium. J Low Temp Phys 195, 266–288 (2019). https://doi.org/10.1007/s10909-019-02148-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02148-z

Keywords

Navigation