Log in

Information Entropy for a Two-Dimensional Rotating Bose–Einstein Condensate

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study the information entropy, order, disorder, and complexity for the two-dimensional (2D) rotating and nonrotating Bose–Einstein condensates. The choice of our system is a complete theoretical laboratory where the complexity is controlled by the two-body contact interaction strength and the rotation frequency (\(\varOmega \)) of the harmonic trap. The 2D nonrotating condensate shows the complexity of the category I where the disorder-order transition is triggered by the interaction strength. In the rotating condensates, \(\varOmega \) is chosen as the disorder parameter when the interaction strength is fixed. With respect to \(\varOmega \), the complexity shifts between maximum and minimum confirm the existence of category II complexity in the rotating condensate. Also, we consider the interaction strength as the disorder parameter when \(\varOmega \) is unchanged and complexity as a function of interaction strength exhibits category III complexity. The present work also includes the calculation of upper bound and lower bound of entropy for 2D quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.R. Gadre, S.B. Sears, J. Chem. Phys. 71, 432 (1979)

    Google Scholar 

  2. S.B. Sears, S.R. Gadre, J. Chem. Phys. 75, 4626 (1981)

    Article  ADS  Google Scholar 

  3. T. Koga, M. Morita, J. Chem. Phys. 79, 1933 (1983)

    Article  ADS  Google Scholar 

  4. N.L. Guevara, R.P. Sagar, R.O. Esquivel, J. Chem. Phys. 119, 7030 (2003)

    Article  ADS  Google Scholar 

  5. N.L. Guevara, R.P. Sagar, R.O. Esquivel, J. Chem. Phys. 122, 084101 (2005)

    Article  ADS  Google Scholar 

  6. R.P. Sagar, N.L. Guevara, J. Chem. Phys. 123, 044108 (2005)

    Article  ADS  Google Scholar 

  7. K.D. Sen, J. Chem. Phys. 123, 074110 (2005)

    Article  ADS  Google Scholar 

  8. P. Lambropoulos, D. Petrosyan, Fundamentals of Quantum Optics and Quantum Information (Springer, Berlin, 2007)

    Google Scholar 

  9. S.E. Massen, C.P. Panos, Phys. Lett. A 246, 530 (1998)

    Article  ADS  Google Scholar 

  10. S.E. Massen, C.P. Panos, Phys. Lett. A 280, 65 (2001)

    Article  ADS  Google Scholar 

  11. S.E. Massen, ChC Moustakidis, C.P. Panos, Phys. Lett. A 299, 131–136 (2002)

    Article  ADS  Google Scholar 

  12. I. Bialynicki-Birula, J. Mycielski, Commun. Math. Phys. 44, 129 (1975)

    Article  ADS  Google Scholar 

  13. S.R. Gadre, S.B. Sears, S.J. Chakravorty, R.D. Bendale, Phys. Rev. A 32, 2602 (1985)

    Article  ADS  Google Scholar 

  14. S.R. Gadre, R.D. Bendale, Phys. Rev. A 36, 1932 (1987)

    Article  ADS  Google Scholar 

  15. KCh. Chatzisavvas, ChC Moustakidis, C.P. Panos, J. Chem. Phys. 123, 174111 (2005)

    Article  ADS  Google Scholar 

  16. A. Saha, B. Talukdar, S. Chatterjee, Phys. A 474, 370 (2017)

    Article  Google Scholar 

  17. G.A. Sekh, A. Saha, B. Talukdar, Phys. Lett. A 382, 315–320 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. J.S. Shiner, M. Davison, P.T. Landsberg, Phys. Rev. E 59, 1459 (1999)

    Article  ADS  Google Scholar 

  19. T. Sriraman, B. Chakrabarti, A. Trombettoni, P. Muruganandam, J. Chem. Phys. 147, 044304 (2017)

    Article  ADS  Google Scholar 

  20. C.P. Panos, Phys. Lett. A 289, 287 (2001)

    Article  ADS  Google Scholar 

  21. P.T. Landsberg, J.S. Shiner, Phys. Lett. A 245, 228 (1998)

    Article  ADS  Google Scholar 

  22. M.B. Kim, A. Svidzinsky, G.S. Agarwal, M.O. Scully, Phys. Rev. A 97, 013605 (2018)

    Article  ADS  Google Scholar 

  23. A.L. Fetter, A.A. Svidzinsky, J. Phys. Condens. Matter 13, R135 (2001)

    Article  ADS  Google Scholar 

  24. A.L. Fetter, A.A. Svidzinsky, Int. J. Mod. Phys. B 19, 1835 (2005)

    Article  Google Scholar 

  25. A.L. Fetter, Rev. Mod. Phys. 81, 647 (2009)

    Article  ADS  Google Scholar 

  26. C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  27. N.P. Proukakis, D.W. Snoke, P.B. Littlewood, Universal Themes of Bose–Einstein Condensation (Cambridge University Press, Cambridge, 2017)

    Book  MATH  Google Scholar 

  28. M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 83, 2498 (1999)

    Article  ADS  Google Scholar 

  29. A.E. Leanhardt, A. Görlitz, A.P. Chikkatur, D. Kielpinski, Y. Shin, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 89, 190403 (2002)

    Article  ADS  Google Scholar 

  30. Y.J. Lin, R.L. Compton, K. Jimenez-Garcia, J.V. Porto, I.B. Spielman, Nature 462, 628 (2009)

    Article  ADS  Google Scholar 

  31. K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Phys. Rev. Lett. 84, 806 (2000)

    Article  ADS  Google Scholar 

  32. K.W. Madison, F. Chevy, V. Bretin, J. Dalibard, Phys. Rev. Lett. 86, 4443 (2001)

    Article  ADS  Google Scholar 

  33. D.L. Feder, C.W. Clark, B.I. Schneider, Phys. Rev. Lett. 82, 4956 (1999)

    Article  ADS  Google Scholar 

  34. D.L. Feder, C.W. Clark, B.I. Schneider, Phys. Rev. A 61, 011601(R) (1999)

    Article  ADS  Google Scholar 

  35. R.K. Kumar, P. Muruganandam, Eur. Phys. J. D 68, 289 (2014)

    Article  ADS  Google Scholar 

  36. R.K. Kumar, T. Sriraman, H. Fabrelli, P. Muruganandam, A. Gammal, J. Phys. B At. Mol. Opt. Phys. 49, 155301 (2016)

    Article  ADS  Google Scholar 

  37. R.K. Kumar, L. Tomio, B.A. Malomed, A. Gammal, Phys. Rev. A 96, 063624 (2017)

    Article  ADS  Google Scholar 

  38. W. Bao, H. Wang, P.A. Markowich, Commun. Math. Sci. 3, 55 (2005)

    Article  Google Scholar 

  39. M.C. Tsatsos, A.U.J. Lode, J. Low Temp. Phys. 181, 171 (2015)

    Article  ADS  Google Scholar 

  40. C.P. Panos, KCh. Chatzisavvas, ChC Moustakidis, E.G. Kyrkou, Phys. Lett. A 363, 78 (2007)

    Article  ADS  Google Scholar 

  41. R.G. Catalán, J. Garay, R. López-Ruiz, Phys. Rev. E 66, 011102 (2002)

    Article  ADS  Google Scholar 

  42. J.C. Angulo, J. Antolín, J. Chem. Phys. 128, 164109 (2008)

    Article  ADS  Google Scholar 

  43. R. López-Ruiz, H.L. Mancini, X. Calbet, Phys. Lett. A 209, 321 (1995)

    Article  ADS  Google Scholar 

  44. C.P. Panos et al., in Statistical complexity: applications in electronic structure, ed. by K.D. Sen (Springer, Dordrecht, 2011)

  45. A. Gammal, T. Frederico, L. Tomio, Phys. Rev. A 64, 055602 (2001)

    Article  ADS  Google Scholar 

  46. A. Gammal, L. Tomio, T. Frederico, Phys. Rev. A 66, 043619 (2002)

    Article  ADS  Google Scholar 

  47. M. Brtka, A. Gammal, L. Tomio, Phys. Lett. A 359, 339 (2006)

    Article  ADS  Google Scholar 

  48. P. Muruganandam, S.K. Adhikari, Comput. Phys. Commun. 180, 1888 (2009)

    Article  ADS  Google Scholar 

  49. D. Vudragović, I. Vidanović, A. Bala ž, P. Muruganandam, S.K. Adhikari, Comput. Phys. Commun. 183, 2021 (2012)

    Article  ADS  Google Scholar 

  50. H.A. Van der Vorst, J. Sci. Stat. Comput. 13(2), 631 (1992)

    Article  Google Scholar 

  51. J. Yang, J. Comput. Phys. 228, 7007 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  52. D.A. Butts, D.S. Rokhsar, Nature 397, 327 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

RKK, BC, and AG acknowledge the support by FAPESP of Brazil under Grants 2014/01668-8, 2016/19622-0 and 2016/17612-7, respectively. AG also acknowledges the support by CNPq of Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kishor Kumar.

Appendix A: Connection Between \(S_r\), \(S_k\) with the Total Kinetic Energy T and Mean Square Radius in Two Dimensions

Appendix A: Connection Between \(S_r\), \(S_k\) with the Total Kinetic Energy T and Mean Square Radius in Two Dimensions

Maximum value of entropy in momentum space for a 2D system is given by

$$\begin{aligned} S_{k_{\rho }} \le -\int n(\mathbf {k}_{\rho }) \ln n(\mathbf {k}_{\rho }) \hbox {d}\mathbf {k}_{\rho }. \end{aligned}$$
(10)

Dimensionless form of kinetic energy \(T=\frac{1}{2}\int n(\mathbf {k}_{\rho }) {\mathbf {k}}_{\rho }^2 \hbox {d}\mathbf {k}_{\rho }\), where \({\mathbf {k}}_{\rho }^2\,=\, \mathbf {k}_x^2+\mathbf {k}_y^2\). We consider the density in momentum space \(n(\mathbf {k}_{\rho })\,=\, A \exp [-\alpha {\mathbf {k}}_{\rho }^2]\), where A is the normalization constant and \(\alpha \) is the appropriate Lagrange multiplier. The normalization of the density with respect to N particles is defined \(\int _\infty ^ {-\infty } n(\mathbf {k}_{\rho }) \hbox {d}\mathbf {k}_{\rho }\, =\, N\). It calculates \(A\,=\,\alpha N/\pi \) and \(\alpha \,=\,N/2T\). Thus, maximum value of the momentum space is given by Eq. (10) and further simplification yields the maximum value of momentum space entropy is given by

$$\begin{aligned} S_{k_{\rho }} \le N (1+\ln \pi ) - N \ln N - N \ln \left( \frac{N}{2T}\right) . \end{aligned}$$
(11)

For the 2D model, we get the following relation from refs. [12, 13],

$$\begin{aligned} S_{\rho } + S_{k_{\rho }} \ge 2 N (1+\ln \pi ) - 2 N \ln N. \end{aligned}$$
(12)

From relations  (11) and (12), we obtain the lower bound to \(S_{\rho }\)

$$\begin{aligned} S_{\rho } \ge N (1+\ln \pi ) - N \ln N + N \ln \left( \frac{N}{2T}\right) . \end{aligned}$$
(13)

Addition of (11) and (13) provides the lower bound to the excess information entropy in the position space over that in the momentum space.

$$\begin{aligned} S_{\rho } - S_{k_{\rho }} \ge 2 N (1+\ln \pi ) - 2 N \ln (2T). \end{aligned}$$
(14)

Next, we calculate the upper as well as lower bounds for \(S_{\rho }\) and \(S_{k_{\rho }}\), respectively, in terms of \(\langle {{{\rho }}}^2\rangle \)

$$\begin{aligned} S_{\rho } \le N (1+\ln \pi ) - 2 N \ln N + N \ln \left( \langle {{\rho }}^2\rangle \right) , \end{aligned}$$
(15)

where \({{\rho }}^2=x^2+y^2\) and

$$\begin{aligned} S_{k_{\rho }} \ge N (1+\ln \pi ) +2 N \ln N - N \ln \left( \langle {{\rho }}^2\rangle \right) . \end{aligned}$$
(16)

For density distribution normalized to unity, the lower and upper limits of entropy in two dimensions took the form

$$\begin{aligned} {S_{\rho }}_{\text{ min }}= & {} (1+ \ln \pi ) - \ln \left( 2 T \right) , \end{aligned}$$
(17a)
$$\begin{aligned} {S_{\rho }}_{\text{ max }}= & {} (1+ \ln \pi ) + \ln \left( \langle {{\rho }}^{2} \rangle \right) , \end{aligned}$$
(17b)
$$\begin{aligned} {S_{k_{\rho }}}_{\text{ min }}= & {} (1+ \ln \pi ) - \ln \left( \langle {{\rho }}^{2} \rangle \right) , \end{aligned}$$
(17c)
$$\begin{aligned} {S_{k_{\rho }}}_{\text{ max }}= & {} (1+ \ln \pi ) + \ln \left( 2 T \right) , \end{aligned}$$
(17d)
$$\begin{aligned} {S}_{\text{ min }}= & {} 2(1+ \ln \pi ), \end{aligned}$$
(17e)
$$\begin{aligned} {S}_{\text{ max }}= & {} 2(1+ \ln \pi ) + \ln \left( 2 \langle {{\rho }}^{2} \rangle T \right) . \end{aligned}$$
(17f)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R.K., Chakrabarti, B. & Gammal, A. Information Entropy for a Two-Dimensional Rotating Bose–Einstein Condensate. J Low Temp Phys 194, 14–26 (2019). https://doi.org/10.1007/s10909-018-2051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2051-8

Keywords

Navigation