Log in

Status of the HOLMES Experiment to Directly Measure the Neutrino Mass

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model-independent measurement of the absolute scale of neutrino mass. HOLMES is an experiment funded by the European Research Council to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of the artificial isotope \(^{163}\)Ho. In a calorimetric measurement, the energy released in the decay process is entirely contained into the detector, except for the fraction taken away by the neutrino. This approach eliminates both the issues related to the use of an external source and the systematic uncertainties arising from decays on excited final states. The most suitable detectors for this type of measurement are low-temperature thermal detectors, where all the energy released into an absorber is converted into a temperature increase that can be measured by a sensitive thermometer directly coupled with the absorber. This measurement was originally proposed by De Rujula and Lusignoli (Nucl Phys B 219:277, 1983. https://doi.org/10.1016/0550-3213(83)90642-9), but only in the last decade the technological progress in detectors development has allowed to design a sensitive experiment. HOLMES plans to deploy a large array of low-temperature microcalorimeters with implanted \(^{163}\)Ho nuclei. In this contribution we outline the HOLMES project with its physics reach and technical challenges, along with its status and perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V.N. Aseev et al., Phys. Rev. D 84, 112003 (2011). https://doi.org/10.1103/PhysRevD.84.112003

    Article  ADS  Google Scholar 

  2. Ch. Kraus, B. Bornschein, L. Bornschein, J. Bonn, B. Flatt et al., Eur. Phys. J. C 40, 447 (2005). https://doi.org/10.1140/epjc/s2005-02139-7

    Article  ADS  Google Scholar 

  3. Ch. Weinheimer, KATRIN collaboration, Prog. Part. Nucl. Phys. 48, 141 (2002). https://doi.org/10.1016/S0146-6410(02)00120-5

    Article  ADS  Google Scholar 

  4. A.A. Esfahani et al., J. Phys. G Nucl. Part. Phys. 44, 054004 (2017). https://doi.org/10.1088/1361-6471/aa5b4f

    Article  ADS  Google Scholar 

  5. B. Alpert et al., Eur. Phys. J. C 75, 112 (2015). https://doi.org/10.1140/epjc/s10052-015-3329-5

    Article  ADS  Google Scholar 

  6. L. Gastaldo et al., Eur. Phys. J. Spec. Top. 226, 1623 (2017). https://doi.org/10.1140/epjst/e2017-70071-y

    Article  Google Scholar 

  7. M.P. Croce et al., J. Low Temp. Phys. 184, 938 (2016). https://doi.org/10.1007/s10909-016-1595-8

    Article  ADS  Google Scholar 

  8. A. Nucciotti, Adv. High Energy Phys. 2016, 9153024 (2016). https://doi.org/10.1155/2016/9153024

    Article  Google Scholar 

  9. A. de Rújula, M. Lusignoli, Nucl. Phys. B 219, 277 (1983). https://doi.org/10.1016/0550-3213(83)90642-9

    Article  ADS  Google Scholar 

  10. C.W. Reich, B. Singh, Nucl. Data Sheets 111, 1211 (2010). https://doi.org/10.1016/j.nds.2010.04.001

    Article  ADS  Google Scholar 

  11. S. Eliseev et al., Phys. Rev. Lett. 115, 062501 (2015). https://doi.org/10.1103/PhysRevLett.115.062501

    Article  ADS  Google Scholar 

  12. A. Nucciotti, Eur. Phys. J. C 74, 3161 (2014). https://doi.org/10.1140/epjc/s10052-014-3161-3

    Article  ADS  Google Scholar 

  13. M. Sisti et al., Nucl. Instrum. Methods A 520, 125 (2004). https://doi.org/10.1016/j.nima.2003.11.273

    Article  ADS  Google Scholar 

  14. J.W. Engle et al., Nucl. Instrum. Methods B 311, 131 (2013). https://doi.org/10.1016/j.nimb.2013.06.017

    Article  ADS  Google Scholar 

  15. A. Giachero et al., J. Instrum. 12, C02046 (2017). https://doi.org/10.1088/1748-0221/12/02/C02046

    Article  Google Scholar 

  16. G. Gallucci et al., J. Low Temp. Phys. This Special Issue (2018)

  17. A. Orlando et al., J. Low Temp. Phys., This Special Issue (2018)

  18. J.P. Hays-Wehle et al., J. Low Temp. Phys. 184, 492 (2016). https://doi.org/10.1007/s10909-015-1416-5

    Article  ADS  Google Scholar 

  19. M. Faverzani et al., J. Low Temp. Phys. 184, 922 (2016). https://doi.org/10.1007/s10909-016-1540-x

    Article  ADS  Google Scholar 

  20. B. Alpert et al., J. Low Temp. Phys. 184, 263 (2016). https://doi.org/10.1007/s10909-015-1402-y

    Article  ADS  Google Scholar 

  21. E. Ferri et al., J. Low Temp. Phys. 184, 405 (2016). https://doi.org/10.1007/s10909-015-1466-8

    Article  ADS  Google Scholar 

  22. J.A.B. Mates et al., J. Low Temp. Phys., This Special Issue (2018)

  23. D. Decker et al., J. Low Temp. Phys., This Special Issue (2018)

  24. E. Ferri et al., Nucl. Instrum. Methods A 824, 179 (2016). https://doi.org/10.1016/j.nima.2015.10.019

    Article  ADS  Google Scholar 

  25. A. Puiu et al., J. Low Temp. Phys. 184, 45 (2016). https://doi.org/10.1007/s10909-015-1432-5

    Article  ADS  Google Scholar 

  26. A. Puiu et al., J. Low Temp. Phys., This Special Issue (2018)

Download references

Acknowledgements

The HOLMES experiment is funded by the European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 340321. We also acknowledge support from INFN for the MARE project, from the NIST Innovations in Measurement Science program for the TES detector development, and from Fundação para a Ciência e a Tecnologia (PTDC/FIS/116719/2010) for providing the enriched Er\(_2\hbox {O}_3\) used in preliminary \(^{163}\)Ho production by means of neutron irradiation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nucciotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nucciotti, A., Alpert, B., Balata, M. et al. Status of the HOLMES Experiment to Directly Measure the Neutrino Mass. J Low Temp Phys 193, 1137–1145 (2018). https://doi.org/10.1007/s10909-018-2025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2025-x

Keywords

Navigation