Log in

Mode of Action of Biogenic Silver, Zinc, Copper, Titanium and Cobalt Nanoparticles Against Antibiotics Resistant Pathogens

  • Review
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The rapid surge in antibiotic resistance to pathogens has emerged as a grave threat to public health, globally. This multiple drug resistance (MDR) is directly linked to the high rates of morbidity and mortality worldwide due to untreated microbial infections. Therefore, it is inevitable to identify some novel, efficient, and comparatively safer antimicrobial agents to rescue the declining health index. In this regard, nanomaterials with modified structure, size, and infinity have risen as the sole source to tackle the MDR either through ameliorating the efficacy of existing drugs or by triggering entirely new bactericidal mechanisms. Out of all the nanomaterials, metals, and metal oxide nanoparticles with biopolymer-induced reduction have fetched the attention of global researchers due to their significant and promising pathogen-killing ability without any hint of resistance. The current review covers the updated molecular modes of resistance development in Gram-positive and Gram-negative bacteria, comprehensively. This review also highlighted the detailed mode of action of various metallic nanoparticles (silver, zinc, copper, titanium, and cobalt) against MDR pathogens. Moreover, this review article thoroughly discussed the correlation between the mechanisms of resistance and alternative NPs bactericidal modes for better understanding for the readers. Last but not least, toxicity analysis is also explained for safe further use.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data supporting the findings of this study are available within the review article.

References

  1. S. Bassetti, S. Tschudin-Sutter, A. Egli, M. Osthoff, Optimizing antibiotic therapies to reduce the risk of bacterial resistance. European J. Intern. Med. (2022). https://doi.org/10.1016/j.ejim.2022.01.029

    Article  Google Scholar 

  2. S. Das, R. Samantaray, A. Mallick, S.K. Sahu, S. Sharma, Types of organisms and in-vitro susceptibility of bacterial isolates from patients with microbial keratitis: a trend analysis of 8 years. Indian J. Ophthalmol. 67(1), 49 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  3. A. Selvaraj, A. Valliammai, C. Sivasankar, M. Suba, G. Sakthivel, S.K. Pandian, Antibiofilm and antivirulence efficacy of myrtenol enhances the antibiotic susceptibility of Acinetobacter baumannii. Sci. Rep. 10(1), 21975 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A.M. Díez-Pascual, Antibacterial activity of nanomaterials. Nanomaterials 2018(8), 359 (2018)

    Article  Google Scholar 

  5. X. Pang, X. Song, M. Chen, S. Tian, Z. Lu, J. Sun, H.G. Yuk, Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry. Compr. Rev. Food Sci. Food Safety 21(2), 1657–1676 (2022)

    Article  CAS  Google Scholar 

  6. Q. **n, H. Shah, A. Nawaz, W. **e, M.Z. Akram, A. Batool, J.R. Gong, Antibacterial carbon-based nanomaterials. Adv. Mater. 31(45), 1804838 (2019)

    Article  CAS  Google Scholar 

  7. G. Dantas, M.O. Sommer, R.D. Oluwasegun, G.M. Church, Bacteria subsisting on antibiotics. Science 320(5872), 100–103 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. M. Lobanovska, G. Pilla, Focus: drug development: Penicillin’s discovery and antibiotic resistance: lessons for the future? Yale J. Biol. Med. 90(1), 135 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wuo, M. G., Dulberger, C. L., Brown, R. A., Sturm, A., Ultee, E., Bloom-Ackermann, Z., & Kiessling, L. L. (2022). Antibiotic action revealed by real-time imaging of the mycobacterial membrane. bioRxiv.

  10. M.E. Enany, A.M. Algammal, S.A. Nasef, S.A. Abo-Eillil, M. Bin-Jumah, A.E. Taha, A.A. Allam, The occurrence of the multidrug resistance (MDR) and the prevalence of virulence genes and QACs resistance genes in E. coli isolated from environmental and avian sources. AMB Exp. 9(1), 1–9 (2019)

    Google Scholar 

  11. K. Huang, H. **a, Y. Zhang, J. Li, G. Cui, F. Li, N. Wu, Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis. Bioresource Technol. 297, 122451 (2020)

    Article  CAS  Google Scholar 

  12. H.H. Kumburu, T. Sonda, M. van Zwetselaar, P. Leekitcharoenphon, O. Lukjancenko, B.T. Mmbaga, G.S. Kibiki, Using WGS to identify antibiotic resistance genes and predict antimicrobial resistance phenotypes in MDR Acinetobacter baumannii in Tanzania. J. Antimicrobial Chemother. 74(6), 1484–1493 (2019)

    Article  CAS  Google Scholar 

  13. S. Sanyasi, R.K. Majhi, S. Kumar, M. Mishra, A. Ghosh, M. Suar, L. Goswami, Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci. Rep. 6(1), 24929 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  14. M. Alavi, M.R. Hamblin, J.F. Kennedy, Antimicrobial applications of lichens: secondary metabolites and green synthesis of silver nanoparticles: a review. Nano Micro Biosystems 1(1), 15–21 (2022)

    Google Scholar 

  15. M. Alavi, R. Kowalski, R. Capasso, H. Douglas Melo Coutinho, I. De Rose Alencar Menezes, Various novel strategies for functionalization of gold and silver nanoparticles to hinder drug-resistant bacteria and cancer cells. Micro Nano Bio Aspects 1(1), 38–48 (2022)

    Google Scholar 

  16. M. Alavi, S. Thomas, M. Sreedharan, Modification of silica nanoparticles for antibacterial activities: mechanism of action. Micro Nano Bio Aspects 1(1), 49–58 (2022)

    Google Scholar 

  17. K. Marimuthu, H.K. Gautam, Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. J. Nanobiotechnol. 20(1), 375 (2022)

    Article  Google Scholar 

  18. D.L. Green, K. Keenan, K.J. Fredricks, S.I. Huque, M.F. Mushi, C. Kansiime, M. Clarkson, The role of multidimensional poverty in antibiotic misuse: a mixed-methods study of self-medication and non-adherence in Kenya, Tanzania, and Uganda. Lancet Glob. Health 11(1), e59–e68 (2023)

    Article  CAS  PubMed  Google Scholar 

  19. V. Kimothi, R.S. Dhariyal, Antibiotic resistance: a review. Int. J. Pharmacy Res. 10(2), 4–12 (2019)

    Google Scholar 

  20. U. Nations, No time to wait: securing the future from drug-resistant infections; report to the secretary-general of the United Nations (WHO, Geneva, 2019)

    Google Scholar 

  21. N. Chakraborty, D. Jha, I. Roy, P. Kumar, S.S. Gaurav, K. Marimuthu, H.K. Gautam, Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. J. Nanobiotechnol. 20(1), 375 (2022)

    Article  CAS  Google Scholar 

  22. R.M. Klevens, M.A. Morrison, J. Nadle, S. Petit, K. Gershman, S. Ray, Active Bacterial Core surveillance (ABCs) MRSA Investigators, Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298(15), 1763–1771 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. World Health Organization. Antibiotic resistance (2020). https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance accessed 11 November 2022).

  24. P.C. Appelbaum, 2012 and beyond: potential for the start of a second pre-antibiotic era? J. Antimicrob. Chemother. 67(9), 2062–2068 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. E. Cox, S. Nambiar, L. Baden, Needed: antimicrobial development. N. Engl. J. Med. 380(8), 783–785 (2019)

    Article  PubMed  Google Scholar 

  26. O. Pacios, L. Blasco, I. Bleriot, L. Fernandez-Garcia, M. González Bardanca, A. Ambroa, M. Tomás, Strategies to combat multidrug-resistant and persistent infectious diseases. Antibiotics 9(2), 65 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. World Health Organization, Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline (World Health Organization, 2019).

  28. D.D. Flannery, K. Chiotos, J.S. Gerber, K.M. Puopolo, Neonatal multidrug-resistant gram-negative infection: epidemiology, mechanisms of resistance, and management. Pediatr. Res. 91(2), 380–391 (2022)

    Article  PubMed  Google Scholar 

  29. S. Mortazavi-Derazkola, M.A. Ebrahimzadeh, O. Amiri, H.R. Goli, A. Rafiei, M. Kardan, M. Salavati-Niasari, Facile green synthesis and characterization of Crataegus microphylla extract-capped silver nanoparticles (CME@ Ag-NPs) and its potential antibacterial and anticancer activities against AGS and MCF-7 human cancer cells. J. Alloy. Compd. 820, 153186 (2020)

    Article  CAS  Google Scholar 

  30. A.A. Moussa, A.F. Md Nordin, R.A. Hamat, A.S. Jasni, High level aminoglycoside resistance and distribution of the resistance genes in Enterococcus faecalis and Enterococcus faecium from teaching hospital in Malaysia. Infection Drug Resist. (2019). https://doi.org/10.2147/IDR.S219544

    Article  Google Scholar 

  31. C.A. Rodriguez, C.D. Mitnick, M.F. Franke, Value of observational data for multidrug-resistant tuberculosis. Lancet Infect. Dis. 19(9), 930–931 (2019)

    Article  PubMed  Google Scholar 

  32. L. Xu, H.W. Liang, Y. Yang, S.H. Yu, Stability and reactivity: positive and negative aspects for nanoparticle processing. Chem. Rev. 118(7), 3209–3250 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. B. Naseer, G. Srivastava, O.S. Qadri, S.A. Faridi, R.U. Islam, K. Younis, Importance and health hazards of nanoparticles used in the food industry. Nanotechnol. Rev. 7(6), 623–641 (2018)

    Article  CAS  Google Scholar 

  34. A.A. Menazea, A.M. Ismail, A. Samy, Novel green synthesis of zinc oxide nanoparticles using orange waste and its thermal and antibacterial activity. J. Inorg. Organomet. Polym. Mater. 31, 4250–4259 (2021)

    Article  CAS  Google Scholar 

  35. H. Javid, S. Ahmadi, E. Mohamadian, Therapeutic applications of apigenin and its derivatives: micro and nano aspects. Micro Nano Bio Aspects 2(1), 30–38 (2023)

    Google Scholar 

  36. V. Singh, S. Shrivastava, S.K. Singh, A. Kumar, S. Saxena, Multi-scale temporal convolutional networks and continual learning based in silico discovery of alternative antibiotics to combat multi-drug resistance. Expert Syst. Appl. 215, 119295 (2023)

    Article  Google Scholar 

  37. A. Selmani, D. Kovačević, K. Bohinc, Nanoparticles: From synthesis to applications and beyond. Adv. Coll. Interface. Sci. 303, 102640 (2022)

    Article  CAS  Google Scholar 

  38. H. Ge, Y. Wang, X. Zhao, Research on the drug resistance mechanism of foodborne pathogens. Microb. Pathog. 162, 105306 (2022)

    Article  CAS  PubMed  Google Scholar 

  39. J.-H. Lee, Perspectives towards antibiotic resistance: from molecules to population. J. Microbiol. 57(3), 181–184 (2019)

    Article  PubMed  Google Scholar 

  40. J.H. Lee, Perspectives towards antibiotic resistance: from molecules to population. J. Microbiol. (2019). https://doi.org/10.1007/s12275-019-0718-8

    Article  PubMed  PubMed Central  Google Scholar 

  41. A. Antonoplis, X. Zang, T. Wegner, P.A. Wender, L. Cegelski, Vancomycin–arginine conjugate inhibits growth of carbapenem-resistant E. coli and targets cell-wall synthesis. ACS Chem. Biol. 14(9), 2065–2070 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. H.A. Kadhum, T.H. Hasan, The study of bacillus subtils antimicrobial activity on some of the pathological isolates. Int. J. Drug Deliv. Technol. 9(02), 193–196 (2019)

    Google Scholar 

  43. K. Klobucar, E.D. Brown, New potentiators of ineffective antibiotics: targeting the Gram-negative outer membrane to overcome intrinsic resistance. Curr. Opin. Chem. Biol. 66, 102099 (2022)

    Article  CAS  PubMed  Google Scholar 

  44. A.J. Baylay, L.J. Piddock, M.A. Webber, Molecular mechanisms of antibiotic resistance–Part I, in Bacterial resistance to antibiotics–from molecules to man. (Wiley, Hoboken, 2019), pp.1–26

    Google Scholar 

  45. A.A.J. Aljanaby, I.A.J. Aljanaby, Prevalence of aerobic pathogenic bacteria isolated from patients with burn infection and their antimicrobial susceptibility patterns in Al-Najaf City, Iraq-a three-year cross-sectional study. F1000Research 7(1157), 1157 (2018)

    Article  Google Scholar 

  46. D.I. Andersson, N.Q. Balaban, F. Baquero, P. Courvalin, P. Glaser, U. Gophna, T. Tønjum, Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol. Rev. 44(2), 171–188 (2020)

    Article  CAS  PubMed  Google Scholar 

  47. A.H. Holmes, L.S. Moore, A. Sundsfjord, M. Steinbakk, S. Regmi, A. Karkey, L.J. Piddock, Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387(10014), 176–187 (2016)

    Article  CAS  PubMed  Google Scholar 

  48. I. Álvarez-Rodríguez, L. Arana, B. Ugarte-Uribe, E. Gómez-Rubio, S. Martín-Santamaría, C. Garbisu, I. Alkorta, Type IV coupling proteins as potential targets to control the dissemination of antibiotic resistance. Front. Mol. Biosci. 7, 201 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  49. A. Magallon, L. Amoureux, T. Garrigos, M. Sonois, V. Varin, C. Neuwirth, J. Bador, Role of AxyABM overexpression in acquired resistance in Achromobacter xylosoxidans. J. Antimicrob. Chemother. 77(4), 926–929 (2022)

    Article  CAS  PubMed  Google Scholar 

  50. F. Han, C. Yu, G. Fu, Warming alters elevation distributions of soil bacterial and fungal communities in alpine grasslands. Global Ecol. Conserv. 39, e02306 (2022)

    Article  Google Scholar 

  51. K.K. Salimiyan Rizi, M. Noghondar, Adaptive antibiotic resistance: overview and perspectives. J. Infect. Dis. Ther 6, 1–3 (2018)

    Article  Google Scholar 

  52. Criswell & Daniel. The “Evolution” of Antibiotic Resistance. Institute for Creation Research. N.p., 2004. Web. 28.)

  53. Y. Liu, Y. Cai, G. Li, W. Wang, P.K. Wong, T. An, Response mechanisms of different antibiotic-resistant bacteria with different resistance action targets to the stress from photocatalytic oxidation. Water Res. 218, 118407 (2022)

    Article  CAS  PubMed  Google Scholar 

  54. F.J. Pérez-Llarena, G. Bou, Proteomics as a tool for studying bacterial virulence and antimicrobial resistance. Front. Microbiol. 7, 410 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  55. E. Christaki, M. Marcou, A. Tofarides, Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J. Mol. Evol. 88(1), 26–40 (2020)

    Article  CAS  PubMed  Google Scholar 

  56. J.M. Munita, C.A. Arias, Mechanisms of antibiotic resistance. Microbiol. Spectrum 4(2), 4 (2016)

    Article  Google Scholar 

  57. M. Cerezales, K. Xanthopoulou, J. Wille, O. Krut, H. Seifert, L. Gallego, P.G. Higgins, Mobile genetic elements harboring antibiotic resistance determinants in. Front. Microbiol. 11, 919 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  58. J.I. Hwang, J.K. Norsworthy, F. González-Torralva, G.L. Priess, L.T. Barber, T.R. Butts, Non-target-site resistance mechanism of barnyardgrass [Echinochloa crus-galli (L.) P. Beauv] to florpyrauxifen-benzyl. Pest Manag. Sci. 78(1), 287–295 (2022)

    Article  CAS  PubMed  Google Scholar 

  59. Z.T. Laughlin et al., 50S subunit recognition and modification by the Mycobacterium tuberculosis ribosomal RNA methyltransferase TlyA. Proc. Natl. Acad. Sci. 119(14), e2120352119 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. K. Prashanth, T. Vasanth, R. Saranathan, A.R. Makki, S. Pagal, Antibiotic resistance, biofilms and quorum sensing in Acinetobacter species, in Antibiotic resistant bacteria: a continuous challenge in the new millennium. ed. by V. Sjhal (InTech, Orlando, 2012), pp.179–212

    Google Scholar 

  61. M.C. Roberts, Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett. 245(2), 195–203 (2005)

    Article  CAS  PubMed  Google Scholar 

  62. S.B. Southon, S.B. Beres, P. Kachroo, M.O. Saavedra, H. Erlendsdóttir, G. Haraldsson, K.G. Kristinsson, Population genomic molecular epidemiological study of macrolide-resistant Streptococcus pyogenes in Iceland, 1995 to 2016: identification of a large clonal population with a pbp2x mutation conferring reduced in vitro β-lactam susceptibility. J. Clin. Microbiol. 58(9), 10–1128 (2020)

    Article  Google Scholar 

  63. G. Cox, G.D. Wright, Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int. J. Med. Microbiol. 303(6–7), 287–292 (2013)

    Article  CAS  PubMed  Google Scholar 

  64. X.Z. Li, H. Nikaido, Efflux-mediated drug resistance in bacteria. Drugs 69(12), 1555–1623 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. N.S. Macêdo, Z. de Sousa Silveira, P.P.M. Cordeiro, H.D.M. Coutinho, J.P.S. Júnior, L.J.Q. Júnior, M.V. Da Silva, Inhibition of Staphylococcus aureus efflux pump by O-eugenol and its toxicity in drosophila melanogaster animal model. BioMed Res. Int. (2022). https://doi.org/10.1155/2022/1440996

    Article  PubMed  PubMed Central  Google Scholar 

  66. J. Stephen et al., membrane efflux pumps of pathogenic vibrio species: role in antimicrobial resistance and virulence. Microorganisms 10(2), 382 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  67. E.B. Breidenstein, C. de la Fuente-Núñez, R.E. Hancock, Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 19(8), 419–426 (2011)

    Article  CAS  PubMed  Google Scholar 

  68. A. Sharma, R. Sharma, T. Bhattacharyya, T. Bhando, R. Pathania, Fosfomycin resistance in Acinetobacter baumannii is mediated by efflux through a major facilitator superfamily (MFS) transporter—AbaF. J. Antimicrob. Chemother. 72(1), 68–74 (2016)

    Article  PubMed  Google Scholar 

  69. M. Kok, L. Maton, M. van der Peet, T. Hankemeier, J.C. van Hasselt, Unraveling antimicrobial resistance using metabolomics. Drug Discov. Today (2022). https://doi.org/10.1016/j.drudis.2022.03.015

    Article  PubMed  Google Scholar 

  70. J. Tan, J. Tay, J. Hedrick, Y.Y. Yang, Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 252, 120078 (2020)

    Article  CAS  PubMed  Google Scholar 

  71. S. Santajit, N. Indrawattana, Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res. Int. (2016). https://doi.org/10.1155/2016/2475067

    Article  PubMed  PubMed Central  Google Scholar 

  72. J. Wang, S. Wang, C. Chen, J. Hu, S. He, Y. Zhou, J. Lin, Treatment of hospital wastewater by electron beam technology: removal of COD, pathogenic bacteria and viruses. Chemosphere 308, 136265 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. C. Aurilio, P. Sansone, M. Barbarisi, V. Pota, L.G. Giaccari, F. Coppolino, M.C. Pace, Mechanisms of action of carbapenem resistance. Antibiotics 11(3), 421 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. L. Fernández, R.E. Hancock, Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 25(4), 661–681 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  75. R. Diab, B. Khameneh, O. Joubert, R. Duval, Insights in nanoparticle-bacterium interactions: new frontiers to bypass bacterial resistance to antibiotics. Curr. Pharm. Des. 21(28), 4095–4105 (2015)

    Article  CAS  PubMed  Google Scholar 

  76. H.C. Flemming, E.D. van Hullebusch, T.R. Neu, P.H. Nielsen, T. Seviour, P. Stoodley, S. Wuertz, The biofilm matrix: multitasking in a shared space. Nat. Rev. Microbiol. 21(2), 70–86 (2023)

    Article  CAS  PubMed  Google Scholar 

  77. C. Uruén, G. Chopo-Escuin, J. Tommassen, R.C. Mainar-Jaime, J. Arenas, Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics 10(1), 3 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  78. J. Yan, B.L. Bassler, Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe 26(1), 15–21 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. M.S.A. Khan, M.M. Altaf, I. Ahmad, Chemical nature of biofilm matrix and its significance. Biofilms Plant Soil Health (2017). https://doi.org/10.1002/9781119246329.ch9

    Article  Google Scholar 

  80. M. Majumdar, S.A. Khan, S.C. Biswas, D.N. Roy, A.S. Panja, T.K. Misra, In vitro and in silico investigation of anti-biofilm activity of Citrus macroptera fruit extract mediated silver nanoparticles. J. Mol. Liq. 302, 112586 (2020)

    Article  CAS  Google Scholar 

  81. M. Majumdar, S.A. Khan, N.B. Nandi, S. Roy, A.S. Panja, D.N. Roy, T.K. Misra, Green synthesis of iron nanoparticles for investigation of biofilm inhibition property. ChemistrySelect 5(43), 13575–13583 (2020)

    Article  CAS  Google Scholar 

  82. M. Majumdar, S. Shivalkar, A. Pal, M.L. Verma, A.K. Sahoo, D.N. Roy, Nanotechnology for enhanced bioactivity of bioactive compounds, in Biotechnological production of bioactive compounds. (Elsevier, Amsterdam, 2020), pp.433–466

    Chapter  Google Scholar 

  83. S. Majumdar, S. Roy, S. Majumdar, S. Roy, talking about talking microbes, in Microbial communication: mathematical modeling, synthetic biology and the role of noise. (Springer Nature, Berlin, 2020), pp.9–24

    Chapter  Google Scholar 

  84. D.N. Roy, I. Ahmad, Combating biofilm of ESKAPE pathogens from ancient plant-based therapy to modern nanotechnological combinations, in A complete guidebook on biofilm study. (Academic Press, Cambridge, 2022), pp.59–94

    Google Scholar 

  85. T. Abee, Á.T. Kovács, O.P. Kuipers, S. Van der Veen, Biofilm formation and dispersal in Gram-positive bacteria. Curr. Opin. Biotechnol. 22(2), 172–179 (2011)

    Article  CAS  PubMed  Google Scholar 

  86. C. Solano, M. Echeverz, I. Lasa, Biofilm dispersion and quorum sensing. Curr. Opin. Microbiol. 18, 96–104 (2014)

    Article  CAS  PubMed  Google Scholar 

  87. M.J. Federle, B.L. Bassler, Interspecies communication in bacteria. J. Clin. Investig. 112(9), 1291–1299 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. H.C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S.A. Rice, S. Kjelleberg, Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14(9), 563–575 (2016)

    Article  CAS  PubMed  Google Scholar 

  89. S. Vasudevan, H.A. Joseph, S.S. Swamy, A.P. Solomon, Antibiotic resistance in biofilms, in Introduction to biofilm engineering. (American Chemical Society, Washington, 2019), pp.205–224

    Chapter  Google Scholar 

  90. X. Zhao, Z. Yu, T. Ding, Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms 8(3), 425 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. W.R. Galloway, J.T. Hodgkinson, S.D. Bowden, M. Welch, D.R. Spring, Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem. Rev. 111(1), 28–67 (2011)

    Article  CAS  PubMed  Google Scholar 

  92. Y. **ao, H. Zou, J. Li, T. Song, W. Lv, W. Wang, S. Tao, Impact of quorum sensing signaling molecules in gram-negative bacteria on host cells: current understanding and future perspectives. Gut Microbes 14(1), 2039048 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  93. V.S. Bhatt, Quorum sensing mechanisms in gram positive bacteria, in Implication of quorum sensing system in biofilm formation and virulence. (Springer Singapore, Singapore, 2018), pp.297–311

    Chapter  Google Scholar 

  94. G. Banerjee, A.K. Ray, Quorum-sensing network-associated gene regulation in Gram-positive bacteria. Acta Microbiol. Immunol. Hung. 64(4), 439–453 (2017)

    Article  CAS  PubMed  Google Scholar 

  95. A. Piketh, H. Alam, A. Ahmad, Quorum sensing as an alternative approach to combatting multidrug resistance, in Non-traditional approaches to combat antimicrobial drug resistance. (Springer Nature Singapore, Singapore, 2023), pp.191–220

    Chapter  Google Scholar 

  96. W.H. Zhao, Z.Q. Hu, β-lactamases identified in clinical isolates of Pseudomonas aeruginosa. Crit. Rev. Microbiol. 36(3), 245–258 (2010)

    Article  CAS  PubMed  Google Scholar 

  97. M. Uwate, Y.K. Ichise, A. Shirai, T. Omasa, T. Nakae, H. Maseda, Two routes of MexS-MexT-mediated regulation of MexEF-OprN and MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. Microbiol. Immunol. 57(4), 263–272 (2013)

    Article  CAS  PubMed  Google Scholar 

  98. Z. Pang, R. Raudonis, B.R. Glick, T.J. Lin, Z. Cheng, Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 37(1), 177–192 (2019)

    Article  CAS  PubMed  Google Scholar 

  99. M.H. Al-Agamy, A. Aljallal, H.H. Radwan, A.M. Shibl, Characterization of carbapenemases, ESBLs, and plasmid-mediated quinolone determinants in carbapenem-insensitive Escherichia coli and Klebsiella pneumoniae in Riyadh hospitals. J. Infect. Public Health 11(1), 64–68 (2018)

    Article  PubMed  Google Scholar 

  100. A. Stewart, P. Harris, A. Henderson, D. Paterson, Treatment of infections by OXA-48-producing enterobacteriaceae. Antimicrob. Agents Chemother. 62(11), e01195-e1218 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  101. M.C.P. Nguyen, P.L. Woerther, M. Bouvet, A. Andremont, R. Leclercq, A. Canu, Escherichia coli as reservoir for macrolide resistance genes. Emerg. Infect. Dis. 15(10), 1648 (2009)

    Article  CAS  PubMed Central  Google Scholar 

  102. M. Xu, Y.N. Zhou, B.P. Goldstein, D.J. **, Cross-resistance of Escherichia coli RNA polymerases conferring rifampin resistance to different antibiotics. J. Bacteriol. 187(8), 2783–2792 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mounsey, O. J. (2021). Characterization of Relationships Between Fluoroquinolone-Resistant E. coli from Humans, Dogs, and Dairy Cattle Living in South West England (Doctoral dissertation, University of Bristol).

  104. L.S. Tzouvelekis, A. Markogiannakis, M. Psichogiou, P.T. Tassios, G.L. Daikos, Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin. Microbiol. Rev. 25(4), 682–707 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. R.L. Ferreira, B.C. Da Silva, G.S. Rezende, R. Nakamura-Silva, A. Pitondo-Silva, E.B. Campanini, M.C.D.S. Pranchevicius, High prevalence of multidrug-resistant Klebsiella pneumoniae harboring several virulence and β-lactamase encoding genes in a Brazilian intensive care unit. Front. Microbiol. 9, 3198 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  106. Y. Doi, Y. Arakawa, 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin. Infect. Dis. 45(1), 88–94 (2007)

    Article  CAS  PubMed  Google Scholar 

  107. M.W. Vetting, C.H. Park, S.S. Hegde, G.A. Jacoby, D.C. Hooper, J.S. Blanchard, Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC (6′)-Ib and its bifunctional, fluoroquinolone-active AAC (6′)-Ib-cr variant. Biochemistry 47(37), 9825–9835 (2008)

    Article  CAS  PubMed  Google Scholar 

  108. S. Navon-Venezia, K. Kondratyeva, A. Carattoli, Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 41(3), 252–275 (2017)

    Article  CAS  PubMed  Google Scholar 

  109. Z.K. Sheng, F. Hu, W. Wang, Q. Guo, Z. Chen, X. Xu, M. Wang, Mechanisms of tigecycline resistance among Klebsiella pneumoniae clinical isolates. Antimicrob. Agents Chemother. 58(11), 6982–6985 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  110. G. Wang, G. Zhao, X. Chao, L. **e, H. Wang, The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. Int. J. Environ. Res. Public Health 17(17), 6278 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. L. Poirel, P. Nordmann, Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin. Microbiol. Infect. 12(9), 826–836 (2006)

    Article  CAS  PubMed  Google Scholar 

  112. W.F. Penwell, A.B. Shapiro, R.A. Giacobbe, R.F. Gu, N. Gao, J. Thresher, A.A. Miller, Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii. Antimicrobial Agents Chemother. 59(3), 1680–1689 (2015)

    Article  Google Scholar 

  113. Q. Chen, X. Li, H. Zhou, Y. Jiang, Y. Chen, X. Hua, Y. Yu, Decreased susceptibility to tigecycline in Acinetobacter baumannii mediated by a mutation in trm encoding SAM-dependent methyltransferase. J. Antimicrob. Chemother. 69(1), 72–76 (2014)

    Article  CAS  PubMed  Google Scholar 

  114. M. Asif, I.A. Alvi, S.U. Rehman, Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infection Drug Resist. 11, 1249 (2018)

    Article  CAS  Google Scholar 

  115. R. Vázquez-López, S.G. Solano-Gálvez, J.J. Juárez Vignon-Whaley, J.A. Abello Vaamonde, L.A. Padró Alonzo, A. Rivera Reséndiz, T. Barrientos Fortes, Acinetobacter baumannii resistance: a real challenge for clinicians. Antibiotics 9(4), 205 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  116. S. Jamal, A. Al Atrouni, R. Rafei, F. Dabboussi, M. Hamze, M. Osman, Molecular mechanisms of antimicrobial resistance in Acinetobacter baumannii, with a special focus on its epidemiology in Lebanon. J. Global Antimicrob. Resist. 15, 154–163 (2018)

    Article  Google Scholar 

  117. B. Jubeh, Z. Breijyeh, R. Karaman, Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules 25(12), 2888 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. W.T. Liu, E.Z. Chen, L. Yang, C. Peng, Q. Wang, Z. Xu, D.Q. Chen, Emerging resistance mechanisms for 4 types of common anti-MRSA antibiotics in Staphylococcus aureus: a comprehensive review. Microb. Pathog. 156, 104915 (2021)

    Article  CAS  PubMed  Google Scholar 

  119. A. Sommer, S. Fuchs, F. Layer, C. Schaudinn, R.E. Weber, H. Richard, B. Strommenger, Mutations in the gdpP gene are a clinically relevant mechanism for β-lactam resistance in meticillin-resistant Staphylococcus aureus lacking mec determinants. Microbial Genomics (2021). https://doi.org/10.1099/mgen.0.000623

    Article  PubMed  PubMed Central  Google Scholar 

  120. A. Kumar, M. Kaushal, Progression of β-lactam resistance in Staphylococcus aureus, in Insights into drug resistance in Staphylococcus aureus. (IntechOpen, London, 2021)

    Google Scholar 

  121. M. Afzal, A.K. Vijay, F. Stapleton, M. Willcox, The relationship between ciprofloxacin resistance and genotypic changes in S. aureus ocular isolates. Pathogens 11(11), 1354 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. S. Rajabi, A. Shivaee, M.A. Khosravi, M. Eshaghi, S. Shahbazi, F. Hosseini, Evaluation of multidrug efflux pump expression in clinical isolates of Staphylococcus aureus. Gene Reports 18, 100537 (2020)

    Article  Google Scholar 

  123. I.Y. Yoo, O.K. Kang, H.J. Shim, H.J. Huh, N.Y. Lee, Linezolid resistance in methicillin-resistant Staphylococcus aureus in Korea: high rate of false resistance to linezolid by the VITEK 2 system. Ann. Lab. Med. 40(1), 57–62 (2020)

    Article  CAS  PubMed  Google Scholar 

  124. Y. Zhu, C. Wang, S. Schwarz, W. Liu, Q. Yang, T. Luan, W. Zhang, Identification of a novel tetracycline resistance gene, tet (63), located on a multiresistance plasmid from Staphylococcus aureus. J. Antimicrobial Chemother. 76(3), 576–581 (2021)

    Article  CAS  Google Scholar 

  125. T.C. Dewé, J.C. D’Aeth, N.J. Croucher, Genomic epidemiology of penicillin-non-susceptible Streptococcus pneumoniae. Microbial Genomics (2019). https://doi.org/10.1099/mgen.0.000305

    Article  PubMed  PubMed Central  Google Scholar 

  126. C.Y. Wang, Y.H. Chen, C. Fang, M.M. Zhou, H.M. Xu, C.M. **g, C.H. Zhang, Antibiotic resistance profiles and multidrug resistance patterns of Streptococcus pneumoniae in pediatrics: a multicenter retrospective study in mainland China. Medicine (2019). https://doi.org/10.1097/MD.0000000000015942

    Article  PubMed  PubMed Central  Google Scholar 

  127. A.L. Bloemendaal, E.C. Brouwer, A.C. Fluit, Methicillin resistance transfer from Staphylocccus epidermidis to methicillin-susceptible Staphylococcus aureus in a patient during antibiotic therapy. PLoS ONE 5(7), e11841 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  128. A. Brenciani, E. Tiberi, E. Tili, M. Mingoia, C. Palmieri, P.E. Varaldo, E. Giovanetti, Genetic determinants and elements associated with antibiotic resistance in viridans group streptococci. J. Antimicrob. Chemother. 69(5), 1197–1204 (2014)

    Article  CAS  PubMed  Google Scholar 

  129. C. Sinel, M. Cacaci, P. Meignen, F. Guérin, B.W. Davies, M. Sanguinetti, V. Cattoir, Subinhibitory concentrations of ciprofloxacin enhance antimicrobial resistance and pathogenicity of Enterococcus faecium. Antimicrobial Agents Chemother. 61(5), 10–1128 (2017)

    Article  Google Scholar 

  130. X. Du, X. Hua, T. Qu, Y. Jiang, Z. Zhou, Y. Yu, Molecular characterization of Rifr mutations in Enterococcus faecalis and Enterococcus faecium. J. Chemother. 26(4), 217–221 (2014)

    Article  CAS  PubMed  Google Scholar 

  131. M. Khodabandeh, M. Mohammadi, M.R. Abdolsalehi, M. Hasannejad-Bibalan, M. Gholami, A. Alvandimanesh, R. Rajabnia, High-level aminoglycoside resistance in Enterococcus faecalis and Enterococcus faecium; as a serious threat in hospitals. Infectious Disorders-Drug 20(2), 223–228 (2020)

    CAS  Google Scholar 

  132. M. Georges, E. Odoyo, D. Matano, F. Tiria, C. Kyany’a, D. Mbwika, L. Musila, Determination of Enterococcus faecalis and Enterococcus faecium antimicrobial resistance and virulence factors and their association with clinical and demographic factors in Kenya. J. Pathog. (2022). https://doi.org/10.1155/2022/3129439

    Article  PubMed  PubMed Central  Google Scholar 

  133. W. Wehbeh, R. Rojas-Diaz, X. Li, N. Mariano, L. Grenner, S. Segal-Maurer, J.J. Rahal, Fluoroquinolone-resistant Streptococcus agalactiae: epidemiology and mechanism of resistance. Antimicrob. Agents Chemother. 49(6), 2495–2497 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nauta, K. M. (2021). The dissection of Β-lactam resistance in Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis (Doctoral dissertation, The University of Iowa).

  135. M. Hennart, L.G. Panunzi, C. Rodrigues, Q. Gaday, S.L. Baines, M. Barros-Pinkelnig, S. Brisse, Population genomics and antimicrobial resistance in Corynebacterium diphtheriae. Genome Med. 12, 1–18 (2020)

    Article  Google Scholar 

  136. L.T. Matereke, A.I. Okoh, Listeria monocytogenes virulence, antimicrobial resistance and environmental persistence: a review. Pathogens 9(7), 528 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  137. R.T. Aruleba, T.A. Adekiya, B.E. Oyinloye, P. Masamba, L.S. Mbatha, A. Pretorius, A.P. Kappo, PZQ therapy: how close are we in the development of effective alternative anti-schistosomal drugs? Infect. Disorders-Drug Targets 19(4), 337–349 (2019)

    Article  CAS  Google Scholar 

  138. J. Dey, S.R. Mahapatra, T.K. Raj, T. Kaur, P. Jain, A. Tiwari, M. Suar, Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut Pathogens 14(1), 1–20 (2022)

    Article  CAS  Google Scholar 

  139. L.D.R. Dos Santos, J.P.R. Furlan, M.S. Ramos, I.F.L. Gallo, L.V.P. de Freitas, E.G. Stehling, Co-occurrence of mcr-1, mcr-3, mcr-7 and clinically relevant antimicrobial resistance genes in environmental and fecal samples. Arch. Microbiol. 202, 1795–1800 (2020)

    Article  PubMed  Google Scholar 

  140. A. Haslam, J. Gill, V. Prasad, Estimation of the percentage of US patients with cancer who are eligible for immune checkpoint inhibitor drugs. JAMA Netw. Open 3(3), e200423–e200423 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  141. S. Roy, I. Hasan, B. Guo, Recent advances in nanoparticle-mediated antibacterial applications. Coord. Chem. Rev. 482, 215075 (2023)

    Article  CAS  Google Scholar 

  142. U. Anand, M. Carpena, M. Kowalska-Góralska, P. Garcia-Perez, K. Sunita, E. Bontempi, J. Simal-Gandara, Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: a comprehensive review on its potential applications, recent advances, and future perspective. Sci. Total. Environ. 821, 153472 (2022)

    Article  CAS  PubMed  Google Scholar 

  143. Y. Chen, X. Zheng, Y. **e, C. Ding, H. Ruan, C. Fan, Anti-bacterial and cytotoxic properties of plasma sprayed silver-containing HA coatings. J. Mater. Sci. - Mater. Med. 19, 3603–3609 (2008)

    Article  CAS  PubMed  Google Scholar 

  144. H. Li, H. Xu, Y.L. Yang, X.L. Yang, Y. Wu, S. Zhang, H.L. Song, Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland. Water Res. 165, 114988 (2019)

    Article  CAS  PubMed  Google Scholar 

  145. H. Cui, A.L. Smith, Impact of engineered nanoparticles on the fate of antibiotic resistance genes in wastewater and receiving environments: a comprehensive review. Environ. Res. 204, 112373 (2022)

    Article  CAS  PubMed  Google Scholar 

  146. A. Gupta, S. Mumtaz, C.H. Li, I. Hussain, V.M. Rotello, Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 48(2), 415–427 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  147. S. Mumtaz, S. Ali, S.A.R. Kazmi, T.A. Mughal, S. Mumtaz, H.M. Tahir, M.I. Rashid, Analysis of the antimicrobial potential of sericin-coated silver nanoparticles against human pathogens. Microscopy Res. Tech. (2022). https://doi.org/10.1002/jemt.24273

    Article  Google Scholar 

  148. M. Summer, H.M. Tahir, S. Ali, Sonication and heat-mediated synthesis, characterization and larvicidal activity of sericin-based silver nanoparticles against dengue vector (Aedes aegypti). Microsc. Res. Tech. (2023). https://doi.org/10.1002/jemt.24333

    Article  PubMed  Google Scholar 

  149. M. Summer, H.M. Tahir, S. Ali, R. Abaidullah, S. Mumtaz, S. Nawaz, Bactericidal potential of different size sericin-capped silver nanoparticles synthesized by heat, light, and sonication. J. Basic Microbiol. (2023). https://doi.org/10.1002/jobm.202200632

    Article  PubMed  Google Scholar 

  150. H.M. Tahir, F. Saleem, S. Ali, Q.U. Ain, A. Fazal, M. Summer, G. Murtaza, Synthesis of sericin-conjugated silver nanoparticles and their potential antimicrobial activity. J. Basic Microbiol. 60(5), 458–467 (2020)

    Article  Google Scholar 

  151. S. Muzammil, S. Hayat, M. Fakhar-E-Alam, B. Aslam, M.H. Siddique, M.A. Nisar, Z. Wang, Nanoantibiotics: future nanotechnologies to combat antibiotic resistance. Front Biosci 10, 352–374 (2018)

    Article  Google Scholar 

  152. X. Zhao, H. Tang, X. Jiang, Deploying gold nanomaterials in combating multi-drug-resistant bacteria. ACS Nano 16(7), 10066–10087 (2022)

    Article  CAS  PubMed  Google Scholar 

  153. M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J. de Aberasturi, IR d. Larramendi, T. Rojo, V. Serpooshan, WJ Parak and M. Mahmoudi. Trends Biotechnol. 30, 499–511 (2012)

    Article  CAS  PubMed  Google Scholar 

  154. E.P. Ivanova, J. Hasan, H.K. Webb, G. Gervinskas, S. Juodkazis, V.K. Truong, R.J. Crawford, Bactericidal activity of black silicon. Nat. Commun. (2013). https://doi.org/10.1038/ncomms3838

    Article  PubMed  Google Scholar 

  155. S. Medici, M. Peana, V.M. Nurchi, M.A. Zoroddu, Medical uses of silver: history, myths, and scientific evidence. J. Med. Chem. 62(13), 5923–5943 (2019)

    Article  CAS  PubMed  Google Scholar 

  156. A. Hamad, K.S. Khashan, A. Hadi, Silver nanoparticles and silver ions as potential antibacterial agents. J. Inorg. Organomet. Polym. Mater. 30(12), 4811–4828 (2020)

    Article  CAS  Google Scholar 

  157. H.H. Lara, L. Ixtepan-Turrent, M. Jose Yacaman, J. Lopez-Ribot, Inhibition of Candida auris biofilm formation on medical and environmental surfaces by silver nanoparticles. ACS Appl. Mater. Interfaces 12(19), 21183–21191 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. T.A.J. de Souza, L.R.R. Souza, L.P. Franchi, Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicol. Environ. Saf. 171, 691–700 (2019)

    Article  Google Scholar 

  159. D.R. Ibraheem, N.N. Hussein, G.M. Sulaiman, H.A. Mohammed, R.A. Khan, O. Al Rugaie, Ciprofloxacin-loaded silver nanoparticles as potent nano-antibiotics against resistant pathogenic bacteria. Nanomaterials 12(16), 2808 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. G.R. Tortella, O. Rubilar, N. Durán, M.C. Diez, M. Martínez, J. Parada, A.B. Seabra, Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J. Hazard. Mater. 390, 121974 (2020)

    Article  CAS  PubMed  Google Scholar 

  161. S. Ali, S. Perveen, M. Ali, T. Jiao, A.S. Sharma, H. Hassan, Q. Chen, Bioinspired morphology-controlled silver nanoparticles for antimicrobial application. Mater. Sci. Eng. C 108, 110421 (2020)

    Article  CAS  Google Scholar 

  162. M. Nilavukkarasi, S. Vijayakumar, S.P. Kumar, Biological synthesis and characterization of silver nanoparticles with Capparis zeylanica L. leaf extract for potent antimicrobial and anti-proliferation efficiency. Mater. Sci. Energy Technol. 3, 371–376 (2020)

    CAS  Google Scholar 

  163. L.H. Abdel-Rahman, B.S. Al-Farhan, D. Abou El-ezz, M.A. Abd-El Sayed, M.M. Zikry, A.M. Abu-Dief, Green biogenic synthesis of silver nanoparticles using aqueous extract of Moringa oleifera: access to a powerful antimicrobial, anticancer, pesticidal and catalytic agents. J. Inorg. Organomet. Polym. Mater. 32(4), 1422–1435 (2022)

    Article  CAS  Google Scholar 

  164. N. Feroze, B. Arshad, M. Younas, M.I. Afridi, S. Saqib, A. Ayaz, Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc. Res. Tech. 83(1), 72–80 (2020)

    Article  CAS  PubMed  Google Scholar 

  165. H. Ji, S. Zhou, Y. Fu, Y. Wang, J. Mi, T. Lu, C. Lü, Size-controllable preparation and antibacterial mechanism of thermo-responsive copolymer-stabilized silver nanoparticles with high antimicrobial activity. Mater. Sci. Eng. C 110, 110735 (2020)

    Article  CAS  Google Scholar 

  166. M.J. Sweet, I. Singleton, Silver nanoparticles: a microbial perspective. Adv. Appl. Microbiol. 77, 115–133 (2011)

    Article  CAS  PubMed  Google Scholar 

  167. G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero, Silver nanoparticles as potential antibacterial agents. Molecules 20(5), 8856–8874 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. M. Ramzan, M.I. Karobari, A. Heboyan, R.N. Mohamed, M. Mustafa, S.N. Basheer, B. Zeshan, Synthesis of silver nanoparticles from extracts of wild ginger (Zingiber zerumbet) with antibacterial activity against selective multidrug resistant oral bacteria. Molecules 27(6), 2007 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. P. Korshed, L. Li, D.-T. Ngo, T. Wang, Effect of storage conditions on the long-term stability of bactericidal effects for laser generated silver nanoparticles. Nanomaterials 8, 218 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  170. W. Ma, L. **g, A. Valladares, S.L. Mehta, Z. Wang, P. Andy Li, J.J. Bang, Silver nanoparticle exposure induced mitochondrial stress, caspase-3 activation and cell death: Amelioration by sodium selenite. Int. J. Biol. Sci. 11, 860–867 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. P. Aramwit, N. Bang, J. Ratanavaraporn, S. Ekgasit, Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity. Nanoscale Res. Lett. 9(1), 1–7 (2014)

    CAS  Google Scholar 

  172. J.M. DeSimone, Practical approaches to green solvents. Science 297(5582), 799–803 (2002)

    Article  CAS  PubMed  Google Scholar 

  173. S.H. Lee, B.H. Jun, Silver nanoparticles: synthesis and application for nanomedicine. Int. J. Mol. Sci. 20(4), 865 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. V. Lazar, Quorum sensing in biofilms—How to destroy the bacterial citadels or their cohesion/power? Anaerobe 17, 280–285 (2011)

    Article  PubMed  Google Scholar 

  175. S. Periasamy, H.S. Joo, A.C. Duong, T.H.L. Bach, V.Y. Tan, S.S. Chatterjee, M. Otto, How Staphylococcus aureus biofilms develop their characteristic structure. Proc. National Acad. Sci. 109(4), 1281–1286 (2012)

    Article  CAS  Google Scholar 

  176. L. Krce, M. Šprung, T. Rončević, A. Maravić, V. ČikešČulić, D. Blažeka, I. Aviani, Probing the mode of antibacterial action of silver nanoparticles synthesized by laser ablation in water: what fluorescence and AFM data tell us. Nanomaterials 10(6), 1040 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  177. M. Rai, K. Kon, A. Ingle, N. Duran, S. Galdiero, M. Galdiero, Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl. Microbiol. Biotechnol. 98(5), 1951–1961 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. A. Salleh, R. Naomi, N.D. Utami, A.W. Mohammad, E. Mahmoudi, N. Mustafa, M.B. Fauzi, The potential of silver nanoparticles for antiviral and antibacterial applications: a mechanism of action. Nanomaterials 10(8), 1566 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. T.L. Collins, E.A. Markus, D.J. Hassett, J.B. Robinson, The effect of a cationic porphyrin on Pseudomonas aeruginosa biofilms. Curr. Microbiol. 61, 411–416 (2010)

    Article  CAS  PubMed  Google Scholar 

  180. D. Wu, W. Fan, A. Kishen, J.L. Gutmann, B. Fan, Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. Journal of endodontics 40(2), 285–290 (2014)

    Article  PubMed  Google Scholar 

  181. L.A. Tamayo, P.A. Zapata, N.D. Vejar, M.I. Azócar, M.A. Gulppi, X. Zhou, M.A. Páez, Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater. Sci. Eng. C 40, 24–31 (2014)

    Article  CAS  Google Scholar 

  182. Z. Chen, Z. Zhang, X. Zhai, Y. Li, L. Lin, H. Zhao, G. Lin, Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal. Chem. 92(10), 7226–7231 (2020)

    Article  CAS  PubMed  Google Scholar 

  183. D. Muchintala, V. Suresh, D. Raju, R.B. Sashidhar, Synthesis and characterization of cecropin peptide-based silver nanocomposites: its antibacterial activity and mode of action. Mater. Sci. Eng. C 110, 110712 (2020)

    Article  CAS  Google Scholar 

  184. Y. Cai, D. Wu, X. Zhu, W. Wang, F. Tan, J. Chen, X. Qiao, X. Qiu, Sol-gel preparation of Ag-doped MgO nanoparticles with high efficiency for bacterial inactivation. Ceram. Int. 43(1), 1066–1072 (2017)

    Article  CAS  Google Scholar 

  185. S. Silver, Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 27(2–3), 341–353 (2003)

    Article  CAS  PubMed  Google Scholar 

  186. J.P. Rolim, M.A. de Melo, S.F. Guedes, F.B. Albuquerque-Filho, J.R. de Souza, N.A. Nogueira, I.C. Zanin, L.K. Rodrigues, The antimicrobial activity of photodynamic therapy against Streptococcus mutansusing different photosensitizers. J. Photochem. Photobiol. B. 106, 40–46 (2012)

    Article  CAS  PubMed  Google Scholar 

  187. N. Beyth, Y. Houri-Haddad, A. Domb, W. Khan, R. Hazan, Alternative antimicrobial approach: nano-antimicrobial materials. Evidence-Based Complement. Altern. Med. (2015). https://doi.org/10.1155/2015/246012

    Article  Google Scholar 

  188. N.R. Bury, F. Galvez, C.M. Wood, Effects of chloride, calcium, and dissolved organic carbon on silver toxicity: comparison between rainbow trout and fathead minnows. Environ. Toxicol. Chem.: Int. J. 18(1), 56–62 (1999)

    Article  CAS  Google Scholar 

  189. J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez, M.J. Yacaman, The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2353 (2005)

    Article  CAS  PubMed  Google Scholar 

  190. W.K. Jung, H.C. Koo, K.W. Kim, S. Shin, S.H. Kim, Y.H. Park, Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 74, 2171–2178 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. L. Chun-Nam, C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H.P. Sun, K.H. Tam, J.F. Chiu, C.M. Che, Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5, 916–924 (2006)

    Article  Google Scholar 

  192. P. Jena, M. Bhattacharya, G. Bhattacharjee, B. Satpati, P. Mukherjee, D. Senapati, R. Srinivasan, Bimetallic gold–silver nanoparticles mediate bacterial killing by disrupting the actin cytoskeleton MreB. Nanoscale 12(6), 3731–3749 (2020)

    Article  CAS  PubMed  Google Scholar 

  193. L. Wu, G. Zhu, X. Zhang, Y. Si, Silver nanoparticles inhibit denitrification by altering the viability and metabolic activity of Pseudomonas stutzeri. Sci. Total. Environ. 706, 135711 (2020)

    Article  CAS  PubMed  Google Scholar 

  194. M.S. Yousaf, A. Haider, A. Shahzadi, A. Ul-Hamid, M. Imran, M.A. Khan, M. Ikram, Aggrandized catalytic and bactericidal activity of silver and polyvinylpyrrolidone capped bismuth oxybromide quantum dots: in silico molecular docking studies. J. Inorg. Organomet. Polym. Mater. (2023). https://doi.org/10.1007/s10904-023-02821-7

    Article  Google Scholar 

  195. A.M. Elgorban, A.H. Bahkali, M.A. El-Metwally, M. Elsheshtawi, M.A. Abdel-Wahab, In vitro antifungal activity of some plant essential oils. Int. J. Pharmcol. 11(1), 56–61 (2015)

    Article  CAS  Google Scholar 

  196. R.S. Shaban, A.H. Bahkali, M.B. Marwa, Antibacterial activity of biogenic silver nanoparticles produced by Aspergillus terreus. Int. J. Pharmacol. 11, 858–863 (2015)

    Article  Google Scholar 

  197. J. Narware, R.N. Yadav, C. Keswani, S.P. Singh, H.B. Singh, Silver nanoparticle based biopesticides for phytopathogens: scope and potential in agriculture. Nano-Biopesticides Today Future Perspect. 2019, 303–314 (2019)

    Article  Google Scholar 

  198. N. Kaur, A. Singh, W. Ahmad, Microwave assisted green synthesis of silver nanoparticles and its application: a review. J. Inorg. Organomet. Polym. Mater. 33(3), 663–672 (2023)

    Article  CAS  Google Scholar 

  199. A. Pal, R. Goswami, D.N. Roy, A critical assessment on biochemical and molecular mechanisms of toxicity developed by emerging nanomaterials on important microbes. Environ. Nanotechnol. Monit. Manag. 16, 100485 (2021)

    CAS  Google Scholar 

  200. M.A. Biel, C. Sievert, M. Usacheva, M. Teichert, E. Wedell, N. Loebel, …& Zimmermann, R., Reduction of endotracheal tube biofilms using antimicrobial photodynamic therapy. Lasers Surg. Med. 43(7), 586–590 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  201. U.F. Gunputh, H. Le, K. Lawton, A. Besinis, C. Tredwin, R.D. Handy, Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus. Nanotoxicology 14(1), 97–110 (2020)

    Article  CAS  PubMed  Google Scholar 

  202. J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.Y. Hwang, Antimicrobial effects of silver nanoparticles. Nanomedicine 3, 95–101 (2007)

    Article  CAS  PubMed  Google Scholar 

  203. K. Shameli, M.B. Ahmad, S.D. Jazayeri, P. Shabanzadeh, P. Sangpour, H. Jahangirian, Y. Gharayebi, Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem. Cent. J. 6(1), 73 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. D.A. Kumar, V. Palanichamy, S.M. Roopan, Green synthesis of silver nanoparticles using alternanthera dentata leaf extract at room temperature and their antimicrobialactivity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 127, 168–171 (2014)

    Article  CAS  Google Scholar 

  205. S. Naraginti, A. Sivakumar, Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128, 357–362 (2014)

    Article  CAS  Google Scholar 

  206. P. Parvekar, J. Palaskar, S. Metgud, R. Maria, S. Dutta, The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater. Investigations Dentistry 7(1), 105–109 (2020)

    Article  CAS  Google Scholar 

  207. G.R. Salunke, S. Ghosh, R.J. Santosh Kumar, S. Khade, P. Vashisth, T. Kale, S. Chopade, V. Pruthi, G. Kundu, J.R. Bellare, Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanicaand their application in biofilm control. Int. J. Nanomed. 9, 2635–2653 (2014)

    Google Scholar 

  208. S. Wang, R. Su, S. Nie, M. Sun, J. Zhang, D. Wu, N. Moustaid-Moussa, Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J. Nutr. Biochem. 25(4), 363–376 (2014)

    Article  CAS  PubMed  Google Scholar 

  209. S.D. Nishu, J.H. No, T.K. Lee, Transcriptional response and plant growth promoting activity of Pseudomonas fluorescens DR397 under drought stress conditions. Microbiol. Spectrum 10(4), e00979-e1022 (2022)

    Article  Google Scholar 

  210. A.M. Badawy, R. Silva, B. Morris, K.G. Scheckel, M.T. Suidan, T.M. Tolaymat, Surface charge-dependent toxicity of silver nanoparticles. Environ. Sci. Technol. 45, 283–287 (2011). https://doi.org/10.1021/es1034188

    Article  CAS  PubMed  Google Scholar 

  211. D. Swolana, R.D. Wojtyczka, Activity of silver nanoparticles against Staphylococcus spp. Int. J. Mol. Sci. 23(8), 4298 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. X. Gu, Q. Cheng, P. He, Y. Zhang, Z. Jiang, Y. Zeng, Dihydroartemisinin-loaded chitosan nanoparticles inhibit the rifampicin-resistant mycobacterium tuberculosis by disrupting the cell wall. Front. Microbiol. 12, 735166 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  213. Estevez, H., Palacios, A., Gil, D., Anguita, J., Vallet-Regi, M., González, B., ... & Luque-Garcia, J. L. (2020). Antimycobacterial effect of selenium nanoparticles on Mycobacterium tuberculosis. Frontiers in microbiology11, 800.

  214. S. Djearamane, Z.C. Loh, J.J. Lee, L.S. Wong, R. Rajamani, P.A. Luque, S.X.T. Liang, Remedial aspect of zinc oxide nanoparticles against Serratia marcescens and Enterococcus faecalis. Front. Pharmacol. (2022). https://doi.org/10.3389/fphar.2022.891304

    Article  PubMed  PubMed Central  Google Scholar 

  215. A. Abdelghafar, N. Yousef, M. Askoura, Zinc oxide nanoparticles reduce biofilm formation, synergize antibiotics action and attenuate Staphylococcus aureus virulence in host; an important message to clinicians. BMC Microbiol. 22(1), 1–17 (2022)

    Article  Google Scholar 

  216. L. Shkodenko, I. Kassirov, E. Koshel, Metal oxide nanoparticles against bacterial biofilms: perspectives and limitations. Microorganisms 8(10), 1545 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. A.K. Keshari, R. Srivastava, P. Singh, V.B. Yadav, G. Nath, Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayurveda Integrative Med. 11(1), 37–44 (2020)

    Article  Google Scholar 

  218. U. Halder, R.K. Roy, R. Biswas, D. Khan, K. Mazumder, R. Bandopadhyay, Synthesis of copper oxide nanoparticles using capsular polymeric substances produced by Bacillus altitudinis and investigation of its efficacy to kill pathogenic Pseudomonas aeruginosa. Chem. Eng. J. Adv. 11, 100294 (2022)

    Article  CAS  Google Scholar 

  219. Y. Zhang, X. Pan, S. Liao, C. Jiang, L. Wang, Y. Tang, L. Chen, Quantitative proteomics reveals the mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa biofilms. J. Proteome Res. 19(8), 3109–3122 (2020)

    Article  CAS  PubMed  Google Scholar 

  220. A. Das Mahapatra, C. Patra, J. Mondal, C. Sinha, P. Chandra Sadhukhan, D. Chattopadhyay, Silver nanoparticles derived from Albizia lebbeck bark extract demonstrate killing of multidrug-resistant bacteria by damaging cellular architecture with antioxidant activity. Chem. Select 5(15), 4770–4777 (2020)

    CAS  Google Scholar 

  221. M. Saberpour, S. Najar-Peeraye, S. Shams, B. Bakhshi, Effects of chitosan nanoparticles loaded with mesenchymal stem cell conditioned media on gene expression in Vibrio cholerae and Caco-2 cells. Sci. Rep. 12(1), 1–9 (2022)

    Article  Google Scholar 

  222. R. Manjumeena, D. Duraibabu, J. Sudha, P.T. Kalaichelvan, Biogenic nanosilver incorporated reverse osmosis membrane for antibacterial and antifungal activities against selected pathogenic strains: an enhanced eco-friendly water disinfection approach. J. Environ. Sci.: Health ToxicHazard Substance Environ. England 49, 1125–1133 (2014)

    CAS  Google Scholar 

  223. M.H. Siddique, B. Aslam, M. Imran, A. Ashraf, H. Nadeem, S. Hayat, U. Qureshi, Effect of silver nanoparticles on biofilm formation and eps production of multidrug-resistant Klebsiella pneumoniae. BioMed. Res. Int. (2020). https://doi.org/10.1155/2020/6398165

    Article  PubMed  PubMed Central  Google Scholar 

  224. Pareek, V., Devineau, S., Sivasankaran, S. K., Bhargava, A., Panwar, J., Srikumar, S., & Fanning, S. (2020). Silver nanoparticles induce a triclosan-like antibacterial action mechanism in multi-drug resistant Klebsiella pneumoniae. bioRxiv.

  225. M.E. Lysakowska, A. Ciebiada-Adamiec, L. Klimek, M. Sienkiewicz, The activity of silver nanoparticles (Axonnite) on clinical and environmental strains of Acinetobacter spp. Burns 41, 364–371 (2015)

    Article  PubMed  Google Scholar 

  226. T.A. Salih, K.T. Hassan, S.R. Majeed, I.J. Ibraheem, O.M. Hassan, A.S. Obaid, In vitro scolicidal activity of synthesised silver nanoparticles from aqueous plant extract against Echinococcus granulosus. Biotechnol. Rep. 28, e00545 (2020)

    Article  Google Scholar 

  227. D.K. Singaravelu, D.N. Binjawhar, F. Ameen, A. Veerappan, Lectin-fortified cationic copper sulfide nanoparticles gain dual targeting capabilities to treat carbapenem-resistant Acinetobacter baumannii infection. ACS Omega 7(48), 43934–43944 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. S. Sharma, V.K. Singh, A. Kumar, S. Mallubhotla, Effect of nanoparticles on oxidative damage and antioxidant defense system in plants. Mole. Plant Abiotic Stress: Biol. Biotechnol. (2019). https://doi.org/10.1002/9781119463665.ch17

    Article  Google Scholar 

  229. E. Tvrdá, F. Benko, Free radicals: what they are and what they do, in Pathology. (Academic Press, Cambridge, 2020), pp.3–13

    Chapter  Google Scholar 

  230. N. Ghosh, A. Das, S. Chaffee, S. Roy, C.K. Sen, Reactive oxygen species, oxidative damage and cell death, in Immunity and inflammation in health and disease. (Academic Press, Cambridge, 2018), pp.45–55

    Chapter  Google Scholar 

  231. R.Z. Zhao, S. Jiang, L. Zhang, Z.B. Yu, Mitochondrial electron transport chain, ROS generation and uncoupling. Int. J. Mol. Med. 44(1), 3–15 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  232. R. Canaparo, F. Foglietta, T. Limongi, L. Serpe, Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials 14(1), 53 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  233. M. Alavi, R. Yarani, ROS and RNS modulation: the main antimicrobial, anticancer, antidiabetic, and antineurodegenerative mechanisms of metal or metal oxide nanoparticles. Nanotheranostics Treat. Nano Micro Biosyst. 2, 22–30 (2023)

    Google Scholar 

  234. K.S. Siddiqi, A. Husen, R.A. Rao, A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 16(1), 1–28 (2018)

    Article  Google Scholar 

  235. A. Abdal Dayem, M.K. Hossain, S.B. Lee, K. Kim, S.K. Saha, G.M. Yang, S.G. Cho, The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 18(1), 120 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  236. O. Metryka, D. Wasilkowski, A. Mrozik, Evaluation of the effects of Ag, Cu, ZnO and TiO2 nanoparticles on the expression level of oxidative stress-related genes and the activity of antioxidant enzymes in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. Int. J. Mol. Sci. 23(9), 4966 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. D. Manzanares, V. Ceña, Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics 12(4), 371 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. J. Mosquera, I. García, L.M. Liz-Marzán, Cellular uptake of nanoparticles versus small molecules: a matter of size. Acc. Chem. Res. 51(9), 2305–2313 (2018)

    Article  CAS  PubMed  Google Scholar 

  239. Q. Chen, N. Wang, M. Zhu, J. Lu, H. Zhong, X. Xue, H. Yin, TiO2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: a proteomic and metabolomic insight. Redox Biol. 15, 266–276 (2018)

    Article  CAS  PubMed  Google Scholar 

  240. T. **a, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, A.E. Nel, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6(8), 1794–1807 (2006)

    Article  CAS  PubMed  Google Scholar 

  241. S.J. Soenen, P. Rivera-Gil, J.M. Montenegro, W.J. Parak, S.C. De Smedt, K. Braeckmans, Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6(5), 446–465 (2011)

    Article  CAS  Google Scholar 

  242. P.V. AshaRani, G. Low Kah Mun, M.P. Hande, S. Valiyaveettil, Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2), 279–290 (2009)

    Article  CAS  PubMed  Google Scholar 

  243. K.B. Holt, A.J. Bard, Interaction of silver (I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44(39), 13214–13223 (2005)

    Article  CAS  PubMed  Google Scholar 

  244. A. Manke, L. Wang, Y. Rojanasakul, Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res. Int. (2013). https://doi.org/10.1155/2013/942916

    Article  PubMed  PubMed Central  Google Scholar 

  245. S. Zhang, T. Ouyang, B.M. Reinhard, Multivalent ligand-nanoparticle conjugates amplify reactive oxygen species second messenger generation and enhance epidermal growth factor receptor phosphorylation. Bioconjug. Chem. 33(9), 1716–1728 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. T.C. Dakal, A. Kumar, R.S. Majumdar, V. Yadav, Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 7, 1831 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  247. Y. Gao, M.A.V. Anand, V. Ramachandran, V. Karthikkumar, V. Shalini, S. Vijayalakshmi, D. Ernest, Biofabrication of zinc oxide nanoparticles from Aspergillus niger, their antioxidant, antimicrobial and anticancer activity. J. Cluster Sci. 30(4), 937–946 (2019)

    Article  CAS  Google Scholar 

  248. K.S. Khashan, G.M. Sulaiman, S.A. Hussain, T.R. Marzoog, M.S. Jabir, Synthesis, characterization and evaluation of anti-bacterial, anti-parasitic and anti-cancer activities of aluminum-doped zinc oxide nanoparticles. J. Inorg. Organomet. Polym. Mater. 30(9), 3677–3693 (2020)

    Article  CAS  Google Scholar 

  249. S. Shahid, S.A. Khan, W. Ahmad, U. Fatima, S. Knawal, Size-dependent bacterial growth inhibition and antibacterial activity of Ag-doped ZnO nanoparticles under different atmospheric conditions. Indian J. Pharm. Sci. 80(1), 173–180 (2018)

    Article  CAS  Google Scholar 

  250. H.M. Yusof, R. Mohamad, U.H. Zaidan, Abdul Rahman NA Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J. Anim. Sci. Biotechnol 10, 57 (2019)

    Article  Google Scholar 

  251. N.A.A. Yusof, N.M. Zain, N. Pauzi, Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria. Int. J. Biol. Macromol. 124, 1132–1136 (2019)

    Article  CAS  PubMed  Google Scholar 

  252. X. Zhu, J. Wang, L. Cai, Y. Wu, M. Ji, H. Jiang, J. Chen, Dissection of the antibacterial mechanism of zinc oxide nanoparticles with manipulable nanoscale morphologies. J. Hazard. Mater. 430, 128436 (2022)

    Article  CAS  PubMed  Google Scholar 

  253. S.E. **, H.E. **, Synthesis, characterization, and three-dimensional structure generation of zinc oxide-based nanomedicine for biomedical applications. Pharmaceutics 11(11), 575 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. E. Sánchez-López, D. Gomes, G. Esteruelas, L. Bonilla, A.L. Lopez-Machado, R. Galindo, E.B. Souto, Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials 10(2), 292 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  255. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, D. Mohamad, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7(3), 219–242 (2015)

    Article  CAS  Google Scholar 

  256. M. Moharramnejad, A. Ehsani, S. Salmani, M. Shahi, R.E. Malekshah, Z.S. Robatjazi, H. Parsimehr, Zinc-based metal-organic frameworks: synthesis and recent progress in biomedical application. J. Inorg. Organomet. Polym. Mater. 32(9), 3339–3354 (2022)

    Article  CAS  Google Scholar 

  257. M. Pal, Nanotechnology: a new approach in food packaging. J Food Microbiol Safety Hyg 2, 121 (2017)

    Google Scholar 

  258. V. Tiwari, N. Mishra, K. Gadani, P.S. Solanki, N.A. Shah, M. Tiwari, Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Front. Microbiol. 9, 1218 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  259. D.K. Tiwari, J. Behari, P. Sen, Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by top-down approach. Curr. Sci. 95, 647–655 (2008)

    CAS  Google Scholar 

  260. P.J.P. Espitia, N.D.F.F. Soares, J.S. dos Reis Coimbra, N.J. de Andrade, R.S. Cruz, E.A.A. Medeiros, Food Bioprocess Tech. 5, 1447–1464 (2012)

    Article  CAS  Google Scholar 

  261. B. Abebe, H.A. Murthy, E. Amare, Enhancing the photocatalytic efficiency of ZnO: defects, heterojunction, and optimization. Environ. Nanotechnol. Monit. Manag. 14, 100336 (2020)

    Google Scholar 

  262. B.A. Fahimmunisha, R. Ishwarya, M.S. AlSalhi, S. Devanesan, M. Govindarajan, B. Vaseeharan, Green fabrication, characterization and antibacterial potential of zinc oxide nanoparticles using Aloe socotrina leaf extract: a novel drug delivery approach. J. Drug Deliv. Sci. Technol. 55, 101465 (2020)

    Article  CAS  Google Scholar 

  263. B.L. da Silva, B.L. Caetano, B.G. Chiari-Andréo, R.C.L.R. Pietro, L.A. Chiavacci, Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids Surf. B 177, 440–447 (2019)

    Article  Google Scholar 

  264. K. Dulta, G. Koşarsoy Ağçeli, P. Chauhan, R. Jasrotia, P.K. Chauhan, A novel approach of synthesis zinc oxide nanoparticles by bergenia ciliata rhizome extract: antibacterial and anticancer potential. J. Inorg. Organomet. Polym. Mater. 31, 180–190 (2021)

    Article  CAS  Google Scholar 

  265. S.S.N. Fernando, T.D.C.P. Gunasekara, J. Holton, Antimicrobial nanoparticles: applications and mechanisms of action. Sri Lankan J. Infec. Dis. (2018). https://doi.org/10.4038/sljid.v8i1.8167

    Article  Google Scholar 

  266. P.T.L. Huong, N. Van Quang, M.T. Tran, D.Q. Trung, D.T.B. Hop, T.T.H. Tam, V.D. Dao, Excellent visible light photocatalytic degradation and mechanism insight of Co2+-doped ZnO nanoparticles. Appl. Phys. A 128(1), 1–16 (2022)

    Article  Google Scholar 

  267. A. Joe, S.H. Park, K.D. Shim, D.J. Kim, K.H. Jhee, H.W. Lee, E.S. Jang, Antibacterial mechanism of ZnO nanoparticles under dark conditions. J. Ind. Eng. Chem. 45, 430–439 (2017)

    Article  CAS  Google Scholar 

  268. K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028 (2011)

    Article  CAS  PubMed  Google Scholar 

  269. L.K. Adams, D.Y. Lyon, P.J. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40(19), 3527–3532 (2006)

    Article  CAS  PubMed  Google Scholar 

  270. K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, H. Sugimoto, Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceram. Int. 36(2), 497–506 (2010)

    Article  CAS  Google Scholar 

  271. V. Lakshmi Prasanna, R. Vijayaraghavan, Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir 31(33), 9155–9162 (2015)

    Article  CAS  PubMed  Google Scholar 

  272. E. Jeong, C.U. Kim, J. Byun, J. Lee, H.E. Kim, E.J. Kim, S.W. Hong, Quantitative evaluation of the antibacterial factors of ZnO nanorod arrays under dark conditions: physical and chemical effects on Escherichia coli inactivation. Sci. Total. Environ. 712, 136574 (2020)

    Article  CAS  PubMed  Google Scholar 

  273. H.T. Hoang, T.T.T. Nguyen, H.M. Do, T.K.N. Nguyen, H.T. Pham, A novel finding of intra-genus inhibition of quorum sensing in Vibrio bacteria. Sci. Rep. 12(1), 15203 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. S. Khanna, D.S. Pardi, C.R. Kelly, C.S. Kraft, T. Dhere, M.R. Henn, E.L. Hohmann, A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection. J. Infectious Dis. 214(2), 173–181 (2016)

    Article  Google Scholar 

  275. N. Thakur, P. Manna, J. Das, Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J. Nanobiotechnol. 17(1), 1–27 (2019)

    Article  CAS  Google Scholar 

  276. S. Tang, J. Zheng, Antibacterial activity of silver nanoparticles: structural effects. Adv. Healthcare Mater. 7(13), 1701503 (2018)

    Article  Google Scholar 

  277. Y. **e, Y. He, P.L. Irwin, T. **, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7), 2325–2331 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. E.A. Campbell, R. Greenwell, J.R. Anthony, S. Wang, L. Lim, K. Das, S.A. Darst, A conserved structural module regulates transcriptional responses to diverse stress signals in bacteria. Mole. Cell 27(5), 793–805 (2007)

    Article  CAS  Google Scholar 

  279. M. Cerasi, S. Ammendola, A. Battistoni, Competition for zinc binding in the host-pathogen interaction. Front. Cell. Infect. Microbiol. 3, 108 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. M.J. Hakeem, J. Feng, A. Nilghaz, L. Ma, H.C. Seah, M.E. Konkel, X. Lu, Active packaging of immobilized zinc oxide nanoparticles controls Campylobacter jejuni in raw chicken meat. Appl. Environ. Microbiol. 86(22), e01195-e1220 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. U. Kadiyala, E.S. Turali-Emre, J.H. Bahng, N.A. Kotov, J.S. VanEpps, Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA). Nanoscale 10(10), 4927–4939 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. B. Lallo da Silva, M.P. Abuçafy, E. Berbel Manaia, J.A. Oshiro Junior, B.G. Chiari-Andréo, R.C.R. Pietro, L.A. Chiavacci, Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: an overview. Int. J. Nanomed. (2019). https://doi.org/10.2147/IJN.S216204

    Article  Google Scholar 

  283. D.E. Navarro-López, R. Garcia-Varela, O. Ceballos-Sanchez, A. Sanchez-Martinez, G. Sanchez-Ante, K. Corona-Romero, E.R. López-Mena, Effective antimicrobial activity of ZnO and Yb-doped ZnO nanoparticles against Staphylococcus aureus and Escherichia coli. Mater. Sci. Eng. C 123, 112004 (2021)

    Article  Google Scholar 

  284. M. Li, L. Zhu, D. Lin, Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45(5), 1977–1983 (2011)

    Article  CAS  PubMed  Google Scholar 

  285. J. Pasquet, Y. Chevalier, E. Couval, D. Bouvier, M.A. Bolzinger, Zinc oxide as a new antimicrobial preservative of topical products: Interactions with common formulation ingredients. Int. J. Pharm. 479(1), 88–95 (2015)

    Article  CAS  PubMed  Google Scholar 

  286. Y. Li, W. Zhang, J. Niu, Y. Chen, Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6(6), 5164–5173 (2012)

    Article  CAS  PubMed  Google Scholar 

  287. A. Akbar, M.B. Sadiq, I. Ali, N. Muhammad, Z. Rehman, M.N. Khan, A.K. Anal, Synthesis and antimicrobial activity of zinc oxide nanoparticles against foodborne pathogens Salmonella typhimurium and Staphylococcus aureus. Biocatal. Agric. Biotechnol. 17, 36–42 (2019)

    Article  Google Scholar 

  288. L. Palanikumar, S.N. Ramasamy, C. Balachandran, Size-dependent antimicrobial response of zinc oxide nanoparticles. IET Nanobiotechnol. 8(2), 111–117 (2014)

    Article  CAS  PubMed  Google Scholar 

  289. M.A. Al-Holy, L.F. Castro, H.M. Al-Qadiri, Inactivation of Cronobacter spp. (Enterobacter sakazakii) in infant formula using lactic acid, copper sulfate and monolaurin. Lett. Appl. Microbiol. 50(3), 246–251 (2010)

    Article  CAS  PubMed  Google Scholar 

  290. G. Faúndez, M. Troncoso, P. Navarrete, G. Figueroa, Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol. 4(1), 1–7 (2004)

    Article  Google Scholar 

  291. D.S. Idris, A. Roy, Biogenic synthesis of Ag–CuO nanoparticles and its antibacterial, antioxidant, and catalytic activity. J. Inorg. Organomet. Polym. Mater. (2023). https://doi.org/10.1007/s10904-023-02873-9

    Article  Google Scholar 

  292. L. Weaver, H.T. Michels, C.W. Keevil, Potential for preventing spread of fungi in air-conditioning systems constructed using copper instead of aluminum. Lett. Appl. Microbiol. 50(1), 18–23 (2010)

    Article  CAS  PubMed  Google Scholar 

  293. M. Vincent, R.E. Duval, P. Hartemann, M. Engels-Deutsch, Contact killing and antimicrobial properties of copper. J. Appl. Microbiol. 124(5), 1032–1046 (2018)

    Article  CAS  PubMed  Google Scholar 

  294. M.I. Devi, N. Nallamuthu, N. Ra**i, T.S.M. Kumar, S. Siengchin, A.V. Rajulu, N. Ayrilmis, Biodegradable poly (propylene) carbonate using in-situ generated CuNPs coated Tamarindus indica filler for biomedical applications. Mater. Today Commun. 19, 106–113 (2019)

    Article  Google Scholar 

  295. M. Hasanin, M.A. Al Abboud, M.M. Alawlaqi, T.M. Abdelghany, A.H. Hashem, Ecofriendly synthesis of biosynthesized copper nanoparticles with starch-based nanocomposite: antimicrobial, antioxidant, and anticancer activities. Biol. Trace Elem. Res. 200(5), 2099–2112 (2022)

    Article  CAS  PubMed  Google Scholar 

  296. A.P. Ingle, N. Duran, M. Rai, Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl. Microbiol. Biotechnol. 98(3), 1001–1009 (2014)

    Article  CAS  PubMed  Google Scholar 

  297. G. Wang, W. **, A.M. Qasim, A. Gao, X. Peng, W. Li, P.K. Chu, Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species. Biomaterials 124, 25–34 (2017)

    Article  CAS  PubMed  Google Scholar 

  298. L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227 (2017)

    Article  CAS  Google Scholar 

  299. M.F. Gutiérrez, P. Malaquias, V. Hass, T.P. Matos, L. Lourenço, A. Reis, P.V. Farago, The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces. J. Dent. 61, 12–20 (2017)

    Article  PubMed  Google Scholar 

  300. N. Jayarambabu, A. Akshaykranth, T.V. Rao, K.V. Rao, R.R. Kumar, Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Mater. Lett. 259, 126813 (2020)

    Article  CAS  Google Scholar 

  301. Q. Maqbool, S. Iftikhar, M. Nazar, F. Abbas, A. Saleem, T. Hussain, N. Jabeen, Green fabricated CuO nanobullets via Olea europaea leaf extract shows auspicious antimicrobial potential. IET Nanobiotechnol. 11(4), 463–468 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  302. Y. Yuan, Y. Wu, V. Chinnadurai, M. Saravanan, A. Chinnathambi, S.A. Alharbi, A. Pugazhendhi, In vitro analysis of green synthesized copper nanoparticles using Chloroxylon swietenia leaves for dye degradation and antimicrobial application. Food Chem. Toxicol. 168, 113367 (2022)

    Article  CAS  PubMed  Google Scholar 

  303. K.Y. Yoon, J.H. Byeon, J.H. Park, J. Hwang, Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total. Environ. 373(2–3), 572–575 (2007)

    Article  CAS  PubMed  Google Scholar 

  304. M.S. Usman, M.E. El Zowalaty, K. Shameli, N. Zainuddin, M. Salama, N.A. Ibrahim, Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int. J. Nanomedicine 8, 4467–4479 (2013)

    PubMed  PubMed Central  Google Scholar 

  305. K. Cheirmadurai, S. Biswas, R. Murali, P. Thanikaivelan, Green synthesis of copper nanoparticles and conducting nanobiocomposites using plant and animal sources. RSC Adv. 4(37), 19507–19511 (2014)

    Article  CAS  Google Scholar 

  306. M. Pérez-Alvarez, G. Cadenas-Pliego, O. Pérez-Camacho, V.E. Comparán-Padilla, C.J. Cabello-Alvarado, E. Saucedo-Salazar, Green synthesis of copper nanoparticles using cotton. Polymers 13(12), 1906 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  307. K.S. Siddiqi, A. Husen, Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: a review. Biomater. Res. 24, 1–15 (2020)

    Article  Google Scholar 

  308. J.Y. Song, H.K. Jang, B.S. Kim, Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem. 44(10), 1133–1138 (2009)

    Article  CAS  Google Scholar 

  309. K. Gopalakrishnan, C. Ramesh, V. Ragunathan, M. Thamilselvan, Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from Tridax procumbens leaf extract and surface coating with polyaniline. Digest J. Nanomater. Biostruct. 7(2), 833–839 (2012)

    Google Scholar 

  310. M. Raffi, S. Mehrwan, T.M. Bhatti, J.I. Akhter, A. Hameed, W. Yawar, Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of microbiology 60(1), 75–80 (2010)

    Article  CAS  Google Scholar 

  311. S. Rajeshkumar, S. Menon, S.V. Kumar, M.M. Tambuwala, H.A. Bakshi, M. Mehta, K. Dua, Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. J. Photochem. Photobiol. B: Biol. 197, 111531 (2019)

    Article  CAS  Google Scholar 

  312. S. Saleem, B. Ahmed, M.S. Khan, M. Al-Shaeri, J. Musarrat, Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants. Microb. Pathog. 111, 375–387 (2017)

    Article  CAS  PubMed  Google Scholar 

  313. T. Foteva, N. Georgieva, Antimicrobial properties of silica/hydroxypropylcellulose hybrids doped with copper ions. J. Chem. Metall. 57(5), 930–936 (2022)

    CAS  Google Scholar 

  314. M. Rai, A.P. Ingle, R. Pandit, P. Paralikar, S. Shende, I. Gupta, S.S. da Silva, Copper and copper nanoparticles: role in management of insect-pests and pathogenic microbes. Nanotechnol. Rev. 7(4), 303–315 (2018)

    Article  CAS  Google Scholar 

  315. G. Ren, D. Hu, E.W. Cheng, M.A. Vargas-Reus, P. Reip, R.P. Allaker, Characterization of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 33(6), 587–590 (2009)

    Article  CAS  PubMed  Google Scholar 

  316. A.K. Chatterjee, R. Chakraborty, T. Basu, Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25(13), 135101 (2014)

    Article  PubMed  Google Scholar 

  317. J.H. Kim, H. Cho, S.E. Ryu, M.U. Choi, Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch. Biochem. Biophys. 382(1), 72–80 (2000)

    Article  CAS  PubMed  Google Scholar 

  318. Q. Lv, B. Zhang, X. **ng, Y. Zhao, R. Cai, W. Wang, Q. Gu, Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: novel approach and mechanisms investigation. J. Hazard. Mater. 347, 141–149 (2018)

    Article  CAS  PubMed  Google Scholar 

  319. H. Zhang, Z. Ji, T. **a, H. Meng, C. Low-Kam, R. Liu, A.E. Nel, Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5), 4349–4368 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. W. **e, S. Zhang, F. Pan, S. Chen, L. Zhong, J. Wang, X. Pei, Nanomaterial-based ROS-mediated strategies for combating bacteria and biofilms. J. Mater. Res. 36, 822–845 (2021)

    Article  CAS  Google Scholar 

  321. G. Applerot, J. Lellouche, A. Lipovsky, Y. Nitzan, R. Lubart, A. Gedanken, E. Banin, Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8(21), 3326–3337 (2012)

    Article  CAS  PubMed  Google Scholar 

  322. S. Banerjee, K. Vishakha, S. Das, P.D. Sangma, S. Mondal, A. Ganguli, Oxidative stress, DNA, and membranes targets as modes of antibacterial and antibiofilm activity of facile synthesized biocompatible keratin-copper nanoparticles against multidrug resistant uro-pathogens. World J. Microbiol. Biotechnol. 38(2), 1–16 (2022)

    Article  Google Scholar 

  323. R.K. Swarnkar, J.K. Pandey, K.K. Soumya, P. Dwivedi, S. Sundaram, S. Prasad, R. Gopal, Enhanced antibacterial activity of copper/copper oxide nanowires prepared by pulsed laser ablation in water medium. Appl. Phys. A 122(7), 1–7 (2016)

    Article  CAS  Google Scholar 

  324. C. Kaweeteerawat, P. Na Ubol, S. Sangmuang, S. Aueviriyavit, R. Maniratanachote, Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J. Toxicol. Environ. Health A 80(23–24), 1276–1289 (2017)

    Article  CAS  PubMed  Google Scholar 

  325. O. Metryka, D. Wasilkowski, A. Mrozik, Insight into the antibacterial activity of selected metal nanoparticles and alterations within the antioxidant defence system in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. Int. J. Mol. Sci. 22(21), 11811 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. P. Sharma, D. Goyal, B. Chudasama, Antibacterial activity of colloidal copper nanoparticles against Gram-negative (Escherichia coli and Proteus vulgaris) bacteria. Lett. Appl. Microbiol. 74(5), 695–706 (2022)

    Article  CAS  PubMed  Google Scholar 

  327. J. Li, K. Rong, H. Zhao, F. Li, Z. Lu, R. Chen, Highly selective antibacterial activities of silver nanoparticles against Bacillus subtilis. J. Nanosci. Nanotechnol. 13(10), 6806–6813 (2013)

    Article  PubMed  Google Scholar 

  328. D.N. Phan, N. Dorjjugder, Y. Saito, M.Q. Khan, A. Ullah, X. Bie, I.S. Kim, Antibacterial mechanisms of various copper species incorporated in polymeric nanofibers against bacteria. Mater. Today Commun. 25, 101377 (2020)

    Article  CAS  Google Scholar 

  329. H. Li, Q. Chen, J. Zhao, K. Urmila, Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci. Rep. 5(1), 1–13 (2015)

    Google Scholar 

  330. L. Yadav, R.M. Tripathi, R. Prasad, R.N. Pudake, J. Mittal, Antibacterial activity of Cu nanoparticles against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. Nano Biomed. Eng 9(1), 9–14 (2017)

    Article  CAS  Google Scholar 

  331. C.L. de Dicastillo, M.G. Correa, F.B. Martínez, C. Streitt, M.J. Galotto, Antimicrobial effect of titanium dioxide nanoparticles, in Antimicrobial resistance-a one health perspectivem. (IntechOpen, London, 2020)

    Google Scholar 

  332. A. Kösemen, Z.A. Kösemen, B. Canimkubey, M. Erkovan, F. Başarir, S.E. San, A.V. Tunç, Fe doped TiO2 thin film as electron selective layer for inverted solar cells. Sol. Energy 132, 511–517 (2016)

    Article  Google Scholar 

  333. S. Sagadevan, S. Vennila, P. Singh, J.A. Lett, W.C. Oh, S. Paiman, P.K. Obulapuram, Exploration of the antibacterial capacity and ethanol sensing ability of Cu-TiO2 nanoparticles. J. Exp. Nanosci. 15(1), 337–349 (2020)

    Article  CAS  Google Scholar 

  334. M.A. Sebak, T.F. Qahtan, G.M. Asnag, E.M. Abdallah, The role of TiO2 nanoparticles in the structural, thermal and electrical properties and antibacterial activity of PEO/PVP blend for energy storage and antimicrobial application. J. Inorg. Organomet. Polym. Mater. 32(12), 4715–4728 (2022)

    Article  CAS  Google Scholar 

  335. J.T. Seil, T.J. Webster, Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomed. 7, 2767 (2012)

    CAS  Google Scholar 

  336. A. Ansari, V.U. Siddiqui, W.U. Rehman, M.K. Akram, W.A. Siddiqi, A.M. Alosaimi, M.A. Hussein, M. Rafatullah, Green synthesis of TiO2 nanoparticles using acorus calamus leaf extract and evaluating its photocatalytic and in vitro antimicrobial activity. Catalysts 12, 181 (2022). https://doi.org/10.3390/catal12020181

    Article  CAS  Google Scholar 

  337. I. Santana, H. Wu, P. Hu, J.P. Giraldo, Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11(1), 1–12 (2020)

    Article  Google Scholar 

  338. S. Albukhaty, L. Al-Bayati, H. Al-Karagoly, S. Al-Musawi, Preparation and characterization of titanium dioxide nanoparticles and in vitro investigation of their cytotoxicity and antibacterial activity against Staphylococcus aureus and Escherichia coli. Animal Biotechnol. (2020). https://doi.org/10.1080/10495398.2020.1842751

    Article  Google Scholar 

  339. M.N. Alomary, M.A. Ansari, proanthocyanin-capped biogenic TiO2 nanoparticles with enhanced penetration, antibacterial and ROS mediated inhibition of bacteria proliferation and biofilm formation: a comparative approach. Chem. European J. 27(18), 5817–5829 (2021)

    Article  CAS  Google Scholar 

  340. U.L.N.H. Senarathna, S.S.N. Fernando, T.D.C.P. Gunasekara, M.M. Weerasekera, H.G.S.P. Hewageegana, N.D.H. Arachchi, P.M. Jayaweera, Enhanced antibacterial activity of TiO2 nanoparticle surface modified with Garcinia zeylanica extract. Chem. Central J. 11(1), 1–8 (2017)

    Article  Google Scholar 

  341. M. Azizi-Lalabadi, A. Ehsani, B. Divband, M. Alizadeh-Sani, Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci. Rep. 9(1), 1–10 (2019)

    Article  Google Scholar 

  342. C. López de Dicastillo, C. Patiño, M.J. Galotto, J.L. Palma, D. Alburquenque, J. Escrig, Novel antimicrobial titanium dioxide nanotubes obtained through a combination of atomic layer deposition and electrospinning technologies. Nanomaterials 8(2), 128 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  343. M.F. Song, Y.S. Li, H. Kasai, K. Kawai, Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. J. Clin. Biochem. Nutr. 50(3), 211–216 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. T.J. Battin, F.V. Kammer, A. Weilhartner, S. Ottofuelling, T. Hofmann, Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions. Environ. Sci. Technol. 43(21), 8098–8104 (2009)

    Article  CAS  PubMed  Google Scholar 

  345. A. Kumar, A.K. Pandey, S.S. Singh, R. Shanker, A. Dhawan, Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Biol. Med. 51(10), 1872–1881 (2011)

    Article  CAS  Google Scholar 

  346. C. Pagnout, S. Jomini, M. Dadhwal, C. Caillet, F. Thomas, P. Bauda, Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli. Colloids Surf. B 92, 315–321 (2012)

    Article  CAS  Google Scholar 

  347. J. Rajkumari, C.M. Magdalane, B. Siddhardha, J. Madhavan, G. Ramalingam, N.A. Al-Dhabi, K. Kaviyarasu, Synthesis of titanium oxide nanoparticles using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1. J. Photochem. Photobiol. B: Biol. 201, 111667 (2019)

    Article  CAS  Google Scholar 

  348. P. Maheswari, S. Ponnusamy, S. Harish, M.R. Ganesh, Y. Hayakawa, Hydrothermal synthesis of pure and bio modified TiO2: characterization, evaluation of antibacterial activity against gram positive and gram negative bacteria and anticancer activity against KB Oral cancer cell line. Arab. J. Chem. 13(1), 3484–3497 (2020)

    Article  CAS  Google Scholar 

  349. M. Ovais, A.T. Khalil, M. Ayaz, I. Ahmad, S.K. Nethi, S. Mukherjee, Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int. J. Mol. Sci. 19(12), 4100 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  350. J. Hou, L. Wang, C. Wang, S. Zhang, H. Liu, S. Li, X. Wang, Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J. Environ. Sci. 75, 40–53 (2019)

    Article  CAS  Google Scholar 

  351. E.B. Kurutas, The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J. 15(1), 1–22 (2015)

    Article  Google Scholar 

  352. S. Sagadevan, S. Imteyaz, B. Murugan, J.A. Lett, N. Sridewi, G.K. Weldegebrieal, W.C. Oh, A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications. Green Proc. Synthesis 11(1), 44–63 (2022)

    Article  CAS  Google Scholar 

  353. B. Sohm, F. Immel, P. Bauda, C. Pagnout, Insight into the primary mode of action of TiO2 nanoparticles on Escherichia coli in the dark. Proteomics 15(1), 98–113 (2015)

    Article  CAS  PubMed  Google Scholar 

  354. M. Nemattalab, M. Rohani, M. Evazalipour, Z. Hesari, Formulation of Cinnamon (Cinnamomum verum) oil loaded solid lipid nanoparticles and evaluation of its antibacterial activity against multi-drug resistant Escherichia coli. BMC Complement. Med. Therapies 22(1), 1–10 (2022)

    Article  Google Scholar 

  355. C. Pagnout, A. Razafitianamaharavo, B. Sohm, C. Caillet, A. Beaussart, E. Delatour, J.F. Duval, Osmotic stress and vesiculation as key mechanisms controlling bacterial sensitivity and resistance to TiO2 nanoparticles. Commun. Biol. 4(1), 1–15 (2021)

    Article  Google Scholar 

  356. S. Khan, M. Ul-Islam, W.A. Khattak, M.W. Ullah, J.K. Park, Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose 22(1), 565–579 (2015)

    Article  CAS  Google Scholar 

  357. S. Shaikh, N. Nazam, S.M.D. Rizvi, K. Ahmad, M.H. Baig, E.J. Lee, I. Choi, Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int. J. Mol. Sci. 20(10), 2468 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  358. N.B.A. Abdulrahman, Z.M. Nssaif, Antimicrobial activity of zinc oxide, titanium dioxide and silver nanoparticles against mithicillin-resistant Staphylococcus aureus Isolates. Tikrit J. Pure Sci. 21(3), 49–53 (2016)

    Article  Google Scholar 

  359. E.T. Bekele, B.A. Gonfa, O.A. Zelekew, H.H. Belay, F.K. Sabir, Synthesis of titanium oxide nanoparticles using root extract of Kniphofia foliosa as a template, characterization, and its application on drug resistance bacteria. J. Nanomater. (2020). https://doi.org/10.1155/2020/2817037

    Article  Google Scholar 

  360. S. Albukhaty, L. Al-Bayati, H. Al-Karagoly, S. Al-Musawi, Preparation and characterization of titanium dioxide nanoparticles and in vitro investigation of their cytotoxicity and antibacterial activity against Staphylococcus aureus and Escherichia coli. Anim. Biotechnol. 33(5), 864–870 (2022)

    Article  CAS  PubMed  Google Scholar 

  361. T. Saito, T. Iwase, J. Horie, T. Morioka, Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci. J. Photochem. Photobiol. B. 14(4), 369–379 (1992)

    Article  CAS  PubMed  Google Scholar 

  362. A. Besinis, T. De Peralta, R.D. Handy, The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 8(1), 1–16 (2014)

    Article  CAS  PubMed  Google Scholar 

  363. M. Pourhajibagher, A. Bahador, Synergistic biocidal effects of metal oxide nanoparticles-assisted ultrasound irradiation: antimicrobial sonodynamic therapy against Streptococcus mutans biofilms. Photodiagn. Photodyn. Ther. 35, 102432 (2021)

    Article  CAS  Google Scholar 

  364. C. Miron, A. Roca, S. Hoisie, P. Cozorici, L. Sirghi, Photoinduced bactericidal activity of TiO2 thin films obtained by radiofrequency magnetron sputtering deposition. J. Optoelectron. Adv. Mater. 7, 915–919 (2004)

    Google Scholar 

  365. F. Khan, D.T.N. Pham, S.F. Oloketuyi, P. Manivasagan, J. Oh, Y.M. Kim, Chitosan and their derivatives: antibiofilm drugs against pathogenic bacteria. Colloids Surf. B 185, 110627 (2020)

    Article  CAS  Google Scholar 

  366. P. Amezaga-Madrid, R. Silveyra-Morales, L. Cordoba-Fierro, G.V. Nevarez-Moorillon, M. Miki-Yoshida, E. Orrantia-Borunda, F.J. Solıs, TEM evidence of ultrastructural alteration on Pseudomonas aeruginosa by photocatalytic TiO2 thin films. J. Photochem. Photobiol. B. 70(1), 45–50 (2003)

    Article  CAS  PubMed  Google Scholar 

  367. S. Arya, H. Sonawane, S. Math, P. Tambade, M. Chaskar, D. Shinde, Biogenic titanium nanoparticles (TiO2 NPs) from Tricoderma citrinoviride extract: synthesis, characterization and antibacterial activity against extremely drug-resistant Pseudomonas aeruginosa. Int. Nano Lett. 11, 35–42 (2021)

    Article  CAS  Google Scholar 

  368. W.J. Parak, L. Manna, F.C. Simmel, D. Gerion, P. Alivisatos, Nanoparticles: from theory to application (Wiley-VCH, Weinheim, 2004)

    Google Scholar 

  369. S.J. Hoseyni, M. Manoochehri, M.D. Asli, Synthesis of cobalt nanoparticles by complex demolition method using the reaction between organic ligand Schiff base and cobalt chloride by ultrasonication. Bull. Soc. Roy. Sci. Liège 86, 325–331 (2017)

    Article  Google Scholar 

  370. O.U. Igwe, E.S. Ekebo, Biofabrication of cobalt nanoparticle odorata and their potential. Res. J. Chem. 8(1), 11–17 (2018)

    CAS  Google Scholar 

  371. M. Azharuddin, G.H. Zhu, D. Das, E. Ozgur, L. Uzun, A.P. Turner, H.K. Patra, A repertoire of biomedical applications of noble metal nanoparticles. Chem. Commun. 55(49), 6964–6996 (2019)

    Article  CAS  Google Scholar 

  372. A.K. Singh, A review on plant extract-based route for synthesis of cobalt nanoparticles: photocatalytic, electrochemical sensing and antibacterial applications. Curr. Res. Green Sustain. Chem. (2022). https://doi.org/10.1016/j.crgsc.2022.100270

    Article  Google Scholar 

  373. N.E. Eleraky, A. Allam, S.B. Hassan, M.M. Omar, Nanomedicine fight against antibacterial resistance: an overview of the recent pharmaceutical innovations. Pharmaceutics 12(2), 142 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. T. Varaprasad, B. Govindh, B.V. Rao, Green synthesized cobalt nanoparticles using Asparagus racemosus root extract & evaluation of antibacterial activity. Int. J. Chem. Tech. Res. 10(9), 339–345 (2017)

    CAS  Google Scholar 

  375. C.T. Anuradha, P. Raji, Effect of annealing temperature on antibacterial, antifungal and structural properties of bio-synthesized Co3O4 nanoparticles using Hibiscus Rosa-sinensis. Mater. Res. Exp. 6(9), 095063 (2019)

    Article  CAS  Google Scholar 

  376. M.M. Naik, H.B. Naik, G. Nagaraju, M. Vinuth, K. Vinu, R. Viswanath, Green synthesis of zinc doped cobalt ferrite nanoparticles: structural, optical, photocatalytic and antibacterial studies. Nano-Structures & Nano-Objects 19, 100322 (2019)

    Article  Google Scholar 

  377. D. Kharade Suvarta, H. Nikam Gurunath, J. Mane Gavade Shubhangi, R. Patil Sachinkumar, V. Gaikwad Kishor, Biogenic synthesis of cobalt nanoparticles using Hibiscus cannabinus leaf extract and their antibacterial activity. Res. J. Chem. Environ 24(5), 9–13 (2020)

    Google Scholar 

  378. P.P. Shriniwas, T.K. Subhash, Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves. Biochem. Biophys. Rep 10, 76–81 (2017)

    Google Scholar 

  379. H. Guan, W. Dong, Y. Lu, M. Jiang, D. Zhang, Y. Aobuliaximu, S. Lu, Distribution and antibiotic resistance patterns of pathogenic bacteria in patients with chronic cutaneous wounds in China. Front. Med. 8, 609584 (2021)

    Article  Google Scholar 

  380. M. Hafeez, R. Shaheen, B. Akram, S. Haq, S. Mahsud, S. Ali, R.T. Khan, Green synthesis of cobalt oxide nanoparticles for potential biological applications. Mater. Res. Exp. 7(2), 025019 (2020)

    Article  CAS  Google Scholar 

  381. S. Iravani, R.S. Varma, Sustainable synthesis of cobalt and cobalt oxide nanoparticles and their catalytic and biomedical applications. Green Chem. 22(9), 2643–2661 (2020)

    Article  CAS  Google Scholar 

  382. G. Satpathy, E. Manikandan, Cobalt nanoparticle as the antibacterial tool. Int. J. Eng. Adv. Technol. (IJEAT) 8, 3684–3687 (2019)

    Article  Google Scholar 

  383. V. Dogra, G. Kaur, S. **dal, R. Kumar, S. Kumar, N.K. Singhal, Bactericidal effects of metallosurfactants based cobalt oxide/hydroxide nanoparticles against Staphylococcus aureus. Sci. Total. Environ. 681, 350–364 (2019)

    Article  CAS  PubMed  Google Scholar 

  384. S. Chattopadhyay, S.K. Dash, S. Tripathy, B. Das, D. Mandal, P. Pramanik, S. Roy, Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chem. Biol. Interact. 226, 58–71 (2015)

    Article  CAS  PubMed  Google Scholar 

  385. J.S. Ajarem, S.N. Maodaa, A.A. Allam, M.M. Taher, M. Khalaf, Benign synthesis of cobalt oxide nanoparticles containing red algae extract: antioxidant, antimicrobial, anticancer, and anticoagulant activity. J. Clust. Sci. (2021). https://doi.org/10.1007/s10876-021-02004-9

    Article  Google Scholar 

  386. M. Sivachidambaram, J.J. Vijaya, K. Kaviyarasu, L.J. Kennedy, H.A. Al-Lohedan, R.J. Ramalingam, A novel synthesis protocol for Co3O4 nanocatalysts and their catalytic applications. RSC Adv. 7(62), 38861–38870 (2017)

    Article  CAS  Google Scholar 

  387. L. Du, S. Ahmad, L. Liu, L. Wang, J. Tang, A review of antibiotics and antibiotic resistance genes (ARGs) adsorption by biochar and modified biochar in water. Sci. Total. Environ. 858, 159815 (2023)

    Article  CAS  PubMed  Google Scholar 

  388. C.J. Murray, K.S. Ikuta, F. Sharara, L. Swetschinski, G.R. Aguilar, A. Gray, N. Tasak, Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399(10325), 629–655 (2022)

    Article  CAS  Google Scholar 

  389. A.R. Mahoney, M.M. Safaee, W.M. Wuest, A.L. Furst, The silent pandemic: emergent antibiotic resistances following the global response to SARS-CoV-2. IScience 24(4), 102304 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  390. R.F. O’Toole, K.W. Leong, V. Cumming, S.J. van Hal, Vancomycin-resistant Enterococcus faecium and the emergence of new sequence types associated with hospital infection. Res. Microbiol. (2023). https://doi.org/10.1016/j.resmic.2023.104046

    Article  PubMed  Google Scholar 

  391. J. Tabcheh, J. Vergalli, A. Davin-Régli, N. Ghanem, C. Al-Bayssari, J.M. Brunel, Rejuvenating the activity of usual antibiotics on resistant gram-negative bacteria: recent issues and perspectives. Int. J. Mol. Sci. 24(2), 1515 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. J.M. Morris, K. Mercoulia, M. Valcanis, C.L. Gorrie, N.L. Sherry, B.P. Howden, Hidden resistances: how routine whole-genome sequencing uncovered an otherwise undetected bla NDM-1 gene in vibrio alginolyticus from imported seafood. Microbiol. Spectrum (2023). https://doi.org/10.1128/spectrum.04176-22

    Article  Google Scholar 

  393. E. Altun, M.O. Aydogdu, E. Chung, G. Ren, S. Homer-Vanniasinkam, M. Edirisinghe, Metal-based nanoparticles for combating antibiotic resistance. Appl. Phys. Rev. (2021). https://doi.org/10.1063/5.0060299

    Article  Google Scholar 

  394. A. Frei, A.D. Verderosa, A.G. Elliott, J. Zuegg, M.A. Blaskovich, Metals to combat antimicrobial resistance. Nat. Rev. Chem. (2023). https://doi.org/10.1038/s41570-023-00463-4

    Article  PubMed  PubMed Central  Google Scholar 

  395. A. Chahardoli, M. Mavaei, Y. Shokoohinia, A. Fattahi, Galbanic acid, a sesquiterpene coumarin as a novel candidate for the biosynthesis of silver nanoparticles: in vitro hemocompatibility, antiproliferative, antibacterial, antioxidant, and anti-inflammatory properties. Adv. Powder Technol. 34(1), 103928 (2023)

    Article  CAS  Google Scholar 

  396. I.H. Ifijen, M. Maliki, N.U. Udokpoh, I.J. Odiachi, B. Atoe, A concise review of the antibacterial action of gold nanoparticles against various bacteria, in TMS annual meeting & exhibition. (Springer Nature, Cham, 2023), pp.655–664

    Google Scholar 

  397. M. Alherek, O.D. Basu, Impact of low-levels of silver, zinc and copper nanoparticles on bacterial removal and potential synergy in water treatment applications. J. Chem. Technol. Biotechnol. 98(5), 1137–1146 (2023)

    Article  CAS  Google Scholar 

  398. A.I. Doulgeraki, C.S. Kamarinou, G.J.E. Nychas, A.A. Argyri, C.C. Tassou, G. Moulas, N. Chorianopoulos, Role of microbial interactions across food-related bacteria on biofilm population and biofilm decontamination by a TiO2-nanoparticle-based surfactant. Pathogens 12(4), 573 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. S.S. Hassan, K.A. Hubeatir, R.M.S. Al-Haddad, Characterization and antibacterial activity of silica-coated bismuth (Bi@ SiO2) nanoparticles synthesized by pulsed laser ablation in liquid. Optik (2023). https://doi.org/10.1016/j.ijleo.2022.170453

    Article  Google Scholar 

  400. P.R. More, S. Pandit, A.D. Filippis, G. Franci, I. Mijakovic, M. Galdiero, Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms 11(2), 369 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  401. M. Paesa, C.R. de Ganuza, T. Alejo, C. Yus, S. Irusta, M. Arruebo, G. Mendoza, Elucidating the mechanisms of action of antibiotic-like ionic gold and biogenic gold nanoparticles against bacteria. J. Colloid Interface Sci. 633, 786–799 (2023)

    Article  CAS  PubMed  Google Scholar 

  402. R. Abreu, T. Semedo-Lemsaddek, E. Cunha, L. Tavares, M. Oliveira, Antimicrobial drug resistance in poultry production: current status and innovative strategies for bacterial control. Microorganisms 11(4), 953 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Y. Zaman, M.Z. Ishaque, S. Ajmal, M. Shahzad, A.B. Siddique, M.U. Hameed, G. Yasin, Tamed synthesis of AgNPs for photodegradation and anti-bacterial activity: effect of size and morphology. Inorg. Chem. Commun. 150, 110523 (2023)

    Article  CAS  Google Scholar 

  404. V. Mageshwaran, P. Sivasubramanian, P. Kumar, Y. Nagaraju, Antibacterial response of nanostructured chitosan hybrid materials. Chitosan Nanocomposites: Bionanomech. Appl. (2023). https://doi.org/10.1007/978-981-19-9646-7_7

    Article  Google Scholar 

  405. J. Ge, D. Li, J. Ding, X. **ao, Y. Liang, Microbial coexistence in the rhizosphere and the promotion of plant stress resistance: a review. Environ. Res. (2023). https://doi.org/10.1016/j.envres.2023.115298

    Article  PubMed  Google Scholar 

  406. A.K. Halder, A.S. Moura, M.N.D. Cordeiro, Predicting the ecotoxicity of endocrine disruptive chemicals: multitasking in silico approaches towards global models. Sci. Total. Environ. 889, 164337 (2023)

    Article  CAS  PubMed  Google Scholar 

  407. W. Hu, C. Wang, D. Gao, Q. Liang, Toxicity of transition metal nanoparticles: a review of different experimental models in the gastrointestinal tract. J. Appl. Toxicol. 43(1), 32–46 (2023)

    Article  CAS  PubMed  Google Scholar 

  408. D. Nath Roy, R. Goswami, A. Pal, Nanomaterial and toxicity: what can proteomics tell us about the nanotoxicology? Xenobiotica 47(7), 632–643 (2017)

    Article  CAS  PubMed  Google Scholar 

  409. A.M. Schrand, M.F. Rahman, S.M. Hussain, J.J. Schlager, D.A. Smith, A.F. Syed, Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2(5), 544–568 (2010)

    CAS  PubMed  Google Scholar 

  410. A. Sukhanova, S. Bozrova, P. Sokolov, M. Berestovoy, A. Karaulov, I. Nabiev, Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett. 13(1), 44 (2018). https://doi.org/10.1186/s11671-018-2457-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  411. S. Hua, M.B. De Matos, J.M. Metselaar, G. Storm, Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol. 9, 790 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  412. A. Elsaesser, C.V. Howard, Toxicology of nanoparticles. Adv. Drug Deliv. Rev. 64(2), 129–137 (2012)

    Article  CAS  PubMed  Google Scholar 

  413. OECD, Publications in the series on the safety of manufactured nanomaterials, www.oecd.org, 2019

  414. S.J. Choi, J.K. Lee, J. Jeong, J.H. Choy, Toxicity evaluation of inorganic nanoparticles: considerations and challenges. Mol. Cell. Toxicol. 9, 205–210 (2013)

    Article  CAS  Google Scholar 

  415. S.C. Gad, Drug safety evaluation (John Wiley, New York, 2002)

    Book  Google Scholar 

  416. V. De Matteis, Exposure to inorganic nanoparticles: routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics 5(4), 29 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  417. R. Mohammadpour, M.A. Dobrovolskaia, D.L. Cheney, K.F. Greish, H. Ghandehari, Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv. Drug Deliv. Rev. 144, 112–132 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. C.D. Klaassen, Toxic responses of the respiratory system, in Casarett and & Doull’s toxicology: the basic science of poisons, 5th edn. (McGraw-Hill Companies Inc, New York, 1996), pp.515–534

    Google Scholar 

  419. E.O. Erhirhie, C.P. Ihekwereme, E.E. Ilodigwe, Advances in acute toxicity testing: strengths, weaknesses and regulatory acceptance. Interdiscip. Toxicol. 11, 5–12 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  420. S. Parasuraman, Toxicological screening. J. Pharmacol. Pharmacother. 2, 74 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  421. C. Bai, M. Tang, Toxicological study of metal and metal oxide nanoparticles in zebrafish. J. Appl. Toxicol. 40(1), 37–63 (2020)

    Article  CAS  PubMed  Google Scholar 

  422. H. Nehoff, S. Taurin, K. Greish, Toxicological assessment of nanomedicine (Wiley, Hoboken, 2013)

    Book  Google Scholar 

  423. K. Greish, G. Thiagarajan, H. Ghandehari, In vivo methods of nanotoxicology. Methods Mol. Biol. 926, 235–253 (2012)

    Article  CAS  PubMed  Google Scholar 

  424. S. Haldar, Y. Muralidaran, D. Míguez, S.I. Mulla, P. Mishra, Eco-toxicity of nano-plastics and its implication on human metabolism: current and future perspective. Sci. Total. Environ. 861, 160571 (2023)

    Article  CAS  PubMed  Google Scholar 

  425. J. Bahamonde, B. Brenseke, M.Y. Chan, R.D. Kent, P.J. Vikesland, M.R. Prater, Gold nanoparticle toxicity in mice and rats: species differences. Toxicol. Pathol. 46(4), 431–443 (2018). https://doi.org/10.1177/0192623318770608

    Article  CAS  PubMed  Google Scholar 

  426. Y. Cao, S. Li, J. Chen, Modeling better in vitro models for the prediction of nanoparticle toxicity: a review. Toxicol. Mech. Methods 31(1), 1–17 (2021). https://doi.org/10.1080/15376516.2020.1828521

    Article  CAS  PubMed  Google Scholar 

  427. M. Xu, G. Halimu, Q. Zhang, Y. Song, X. Fu, Y. Li et al., Internalization and toxicity: a preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci. Total. Environ. 694, 133794 (2019). https://doi.org/10.1016/j.scitotenv.2019.133794

    Article  CAS  PubMed  Google Scholar 

  428. P. Khanna, C. Ong, B.H. Bay, G.H. Baeg, Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials 5(3), 1163–1180 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. P. Makhdoumi, H. Karimi, M. Khazaei, Review on metal-based nanoparticles: role of reactive oxygen species in renal toxicity. Chem. Res. Toxicol. 33(10), 2503–2514 (2020). https://doi.org/10.1021/acs.chemrestox.9b00438

    Article  CAS  PubMed  Google Scholar 

  430. M. Mishra, M. Panda, Reactive oxygen species: The root cause of nanoparticle-induced toxicity in Drosophila melanogaster. Free Radic. Res. 55(6), 919–935 (2021). https://doi.org/10.1080/10715762.2021.1914335

    Article  CAS  Google Scholar 

  431. W. Yang, L. Wang, E.M. Mettenbrink, P.L. DeAngelis, S. Wilhelm, Nanoparticle toxicology. Annu. Rev. Pharmacol. Toxicol. 61, 269–289 (2021)

    Article  CAS  PubMed  Google Scholar 

  432. S. Yu, J. Liu, Y. Yin, M. Shen, Interactions between engineered nanoparticles and dissolved organic matter: a review on mechanisms and environmental effects. J. Environ. Sci. 63, 198–217 (2018)

    Article  CAS  Google Scholar 

  433. M. Horie, Y. Tabei, Role of oxidative stress in nanoparticles toxicity. Free Radical Res. 55(4), 331–342 (2021)

    Article  CAS  Google Scholar 

  434. S.J. Forrester, D.S. Kikuchi, M.S. Hernandes, Q. Xu, K.K. Griendling, Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 122(6), 877–902 (2018). https://doi.org/10.1161/circresaha.117.311401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  435. K. Jakubczyk, K. Dec, J. Kaldunska, D. Kawczuga, J. Kochman, K. Janda, Reactive oxygen species - sources, functions, oxidative damage. Pol. Merkur. Lek. 48(284), 124–127 (2020)

    Google Scholar 

  436. P.D. Ray, B.W. Huang, Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24(5), 981–990 (2012). https://doi.org/10.1016/j.cellsig.2012.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  437. R. Wang, B. Song, J. Wu, Y. Zhang, A. Chen, L. Shao, Potential adverse effects of nanoparticles on the reproductive system. Int. J. Nanomed. 13, 8487 (2018)

    Article  CAS  Google Scholar 

  438. C. Egbuna, V.K. Parmar, J. Jeevanandam, S.M. Ezzat, K.C. Patrick-Iwuanyanwu, C.O. Adetunji, C.G. Ibeabuchi, Toxicity of nanoparticles in biomedical application: nanotoxicology. J. Toxicol. 2021, 1–21 (2021)

    Article  Google Scholar 

  439. C. Liao, Y. Li, S.C. Tjong, Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 20(2), 449 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding was not available for this study.

Author information

Authors and Affiliations

Authors

Contributions

MS wrote and edited the manuscript and did the software work. SA edited and evaluated the manuscript. HMT edited and evaluated the manuscript. RA edited the manuscript and help in data acquisition regarding mechanism of NPs action. UF did the graphical and pictorial work. SM did the reference management several times. AH provided the data for manuscript when required. TAM evaluated the data. MAF assisted in software work. HF provided the information regarding antibiotics resistance mechanism.

Corresponding author

Correspondence to Shaukat Ali.

Ethics declarations

Competing Interests

There were no competing interests declared unanimously by the authors.

Ethical Approval

Not applicable.

Consent to Participate

All authors have shown consent to participate.

Consent to Publication

All authors showed consent to publish the current review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Summer, M., Ali, S., Tahir, H.M. et al. Mode of Action of Biogenic Silver, Zinc, Copper, Titanium and Cobalt Nanoparticles Against Antibiotics Resistant Pathogens. J Inorg Organomet Polym 34, 1417–1451 (2024). https://doi.org/10.1007/s10904-023-02935-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02935-y

Keywords

Navigation