Log in

Excellent visible light photocatalytic degradation and mechanism insight of Co2+-doped ZnO nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

According to the literature, Co2+ ions effectively tune the electronic and optical properties of ZnO in photocatalytic applications. Herein, an excellent degradation efficiency of 99.7% for Direct Blue 71 (DB71) under visible light excitation is obtained using the high-purity Co2+-doped ZnO nanoparticles synthesized by a facile hydrothermal method. The highest removal value is received at the level of the Co2+ ion of 3 mol%, the catalyst mass of 0.1 g, the initial DB71 concentration of 100 mg/L, and the pH value of 6. It is demonstrated that Co2+ could substitute for Zn2+ ions in the ZnO lattice at the low concentration (≤ 3 mol%) and locate the interstitial sites of Zn at the higher dopant level (≥ 5 mol%). The decrease in the optical-absorption edge with an increment in dopant level (1–7 mol%) could be attributed to charge carrier concentration and particles size. It is speculated that the degradation mechanism of DB71 is mainly based on the interaction between hydroxyl radicals (\(^{ \bullet } {\text{OH}}\)) and organic dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Kuriakose, B. Satpati, S. Mohapatra, Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method. Phys. Chem. Chem. Phys. 16, 12741–12749 (2014). https://doi.org/10.1039/c4cp01315h

    Article  Google Scholar 

  2. K. Hossienzadeh, A. Maleki, H. Daraei, M. Safari, R. Pawar, S.M. Lee, Sonocatalytic and photocatalytic efficiency of transition metal-doped ZnO nanoparticles in the removal of organic dyes from aquatic environments. Korean J. Chem. Eng. 36, 1360–1370 (2019). https://doi.org/10.1007/s11814-019-0299-6

    Article  Google Scholar 

  3. H. Zhai, B.Y. **a, H.S. Park, Ti-based electrode materials for electrochemical sodium ion storage and removal. J. Mater. Chem. A. 7, 22163–22188 (2019). https://doi.org/10.1039/D1TA03990C

    Article  Google Scholar 

  4. M.M. Sajid, H. Zhai, N.A. Shad, M. Shafique, A.M. Afzal, Y. Javed, S.B. Khan, N. Amin, Z. Zhang, Construction of 1T-MoS2 quantum dots-interspersed (Bi1xFex)VO4 heterostructures for electron transport and photocatalytic properties. RSC Adv. 11, 13105–13118 (2021). https://doi.org/10.1039/d1ra00807b

    Article  ADS  Google Scholar 

  5. M.M. Sajid, N.A. Shad, Y. Javed, S.B. Khan, Z. Zhang, N. Amin, H. Zhai, Preparation and characterization of Vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes. Surf. Interfaces 19, 100502 (2020). https://doi.org/10.1016/j.surfin.2020.100502

    Article  Google Scholar 

  6. H. Zhai, J. Qi, Y. Tan, L. Yang, H. Li, Y. Kang, H. Liu, J. Shang, H.S. Park, Construction of 1D-MoS2 nanorods/LiNb3O8 heterostructure for enhanced hydrogen evolution. Appl. Mater. Today 18, 100536 (2020). https://doi.org/10.1016/j.apmt.2019.100536

    Article  Google Scholar 

  7. L. Liu, S. Li, J. Zhuang, L. Wang, J. Zhang, H. Li, Z. Liu, Y. Han, X. Jiang, P. Zhang, Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning. Sensors Actuators B Chem. 155, 782–788 (2011). https://doi.org/10.1016/j.snb.2011.01.047

    Article  Google Scholar 

  8. M. Arshad, A. Azam, A.S. Ahmed, S. Mollah, A.H. Naqvi, Effect of Co substitution on the structural and optical properties of ZnO nanoparticles synthesized by sol-gel route. J. Alloys Compd. 509, 8378–8381 (2011). https://doi.org/10.1016/j.jallcom.2011.05.047

    Article  Google Scholar 

  9. M.G. Nair, M. Nirmala, K. Rekha, A. Anukaliani, Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater. Lett. 65, 1797–1800 (2011). https://doi.org/10.1016/j.matlet.2011.03.079

    Article  Google Scholar 

  10. S. Rasouli, S.J. Moeen, Combustion synthesis of Co-doped zinc oxide nanoparticles using mixture of citric acid-glycine fuels. J. Alloys Compd. 509, 1915–1919 (2011). https://doi.org/10.1016/j.jallcom.2010.10.087

    Article  Google Scholar 

  11. M. Nirmala, A. Anukaliani, Characterization of undoped and Co doped ZnO nanoparticles synthesized by DC thermal plasma method. Phys. B Condens. Matter. 406, 911–915 (2011). https://doi.org/10.1016/j.physb.2010.12.026

    Article  ADS  Google Scholar 

  12. U. Godavarti, V.D. Mote, M.V.R. Reddy, P. Nagaraju, Y.V. Kumar, K.T. Dasari, M.P. Dasari, Precipitated cobalt doped ZnO nanoparticles with enhanced low temperature xylene sensing properties. Phys. B Condens. Matter. 553, 151–160 (2019). https://doi.org/10.1016/j.physb.2018.10.034

    Article  ADS  Google Scholar 

  13. G. Thennarasu, A. Sivasamy, Mn doped ZnO nano material: a highly visible light active photocatalyst for environmental abatment. Inorg. Nano-Metal Chem. 48, 239–246 (2018). https://doi.org/10.1080/24701556.2018.1504073

    Article  Google Scholar 

  14. C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018). https://doi.org/10.1016/j.rser.2017.08.020

    Article  Google Scholar 

  15. H. Gu, W. Zhang, Y. Xu, M. Yan, Effect of oxygen deficiency on room temperature ferromagnetism in Co doped ZnO. Appl. Phys. Lett. 100, 261907 (2012). https://doi.org/10.1063/1.4717741

    Article  ADS  Google Scholar 

  16. H. Yue, Z. Shi, Q. Wang, Z. Cao, H. Dong, Y. Qiao, Y. Yin, S. Yang, MOF-derived cobalt-doped ZnO@C composites as a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces. 6, 17067–17074 (2014). https://doi.org/10.1021/am5046873

    Article  Google Scholar 

  17. K. Dib, M. Trari, Y. Bessekhouad, (S, C) co-doped ZnO properties and enhanced photocatalytic activity. Appl. Surf. Sci. 505, 144541 (2020). https://doi.org/10.1016/j.apsusc.2019.144541

    Article  Google Scholar 

  18. R. Ebrahimi, K. Hossienzadeh, A. Maleki, R. Ghanbari, R. Rezaee, M. Safari, B. Shahmoradi, H. Daraei, A. Jafari, K. Yetilmezsoy, S.H. Puttaiah, Effects of do** zinc oxide nanoparticles with transition metals (Ag, Cu, Mn) on photocatalytic degradation of Direct Blue 15 dye under UV and visible light irradiation. J. Environ. Heal. Sci. Eng. 17, 479–492 (2019). https://doi.org/10.1007/s40201-019-00366-x

    Article  Google Scholar 

  19. L. Xu, Y. Hu, C. Pelligra, C. Chen, L. **, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, S.L. Suib, ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity. Chem. Mater. 36, 2875–2885 (2009). https://doi.org/10.1021/cm900608d

    Article  Google Scholar 

  20. Z. Liu, Q. Zhang, Y. Li, H. Wang, Solvothermal synthesis, photoluminescence and photocatalytic properties of pencil-like ZnO microrods. J. Phys. Chem. Solids. 73, 651–655 (2012). https://doi.org/10.1016/j.jpcs.2012.01.003

    Article  ADS  Google Scholar 

  21. J. Jiao, Y. Wei, Y. Zhao, Z. Zhao, A. Duan, J. Liu, Y. Pang, J. Li, G. Jiang, Y. Wang, AuPd/3DOM-TiO2 catalysts for photocatalytic reduction of CO2: high efficient separation of photogenerated charge carriers. Appl. Catal. B Environ. 209, 228–239 (2017). https://doi.org/10.1016/j.apcatb.2017.02.076

    Article  Google Scholar 

  22. T.C. Bharat, Shubham, S. Mondal, H.S. Gupta, P.K. Singh, A.K. Das, Synthesis of doped zinc oxide nanoparticles: a review. Mater. Today Proc. 11, 767–775 (2019). https://doi.org/10.1016/j.matpr.2019.03.041

    Article  Google Scholar 

  23. Y. Lee, S. Kim, S.Y. Jeong, S. Seo, C. Kim, H. Yoon, H.W. Jang, S. Lee, Surface-modified Co-doped ZnO photoanode for photoelectrochemical oxidation of glycerol. Catal. Today. 359, 43–49 (2021). https://doi.org/10.1016/j.cattod.2019.06.065

    Article  Google Scholar 

  24. S. Nie, D. Dastan, J. Li, W.D. Zhou, S.S. Wu, Y.W. Zhou, X.T. Yin, Gas-sensing selectivity of n-ZnO/p-Co3O4 sensors for homogeneous reducing gas. J. Phys. Chem. Solids. 150, 109864 (2021). https://doi.org/10.1016/j.jpcs.2020.109864

    Article  Google Scholar 

  25. C. Xu, L. Cao, G. Su, W. Liu, X. Qu, Y. Yu, Preparation, characterization and photocatalytic activity of Co-doped ZnO powders. J. Alloys Compd. 497, 373–376 (2010). https://doi.org/10.1016/j.jallcom.2010.03.076

    Article  Google Scholar 

  26. O.A. Yildirim, H. Arslan, S. Sönmezoğlu, Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts. Appl. Surf. Sci. 390, 111–121 (2016). https://doi.org/10.1016/j.apsusc.2016.08.069

    Article  ADS  Google Scholar 

  27. S. Tunç, T. Gürkan, O. Duman, On-line spectrophotometric method for the determination of optimum operation parameters on the decolorization of Acid Red 66 and Direct Blue 71 from aqueous solution by Fenton process. Chem. Eng. J. 181–182, 431–442 (2012). https://doi.org/10.1016/j.cej.2011.11.109

    Article  Google Scholar 

  28. J. Saien, A.R. Soleymani, Degradation and mineralization of Direct Blue 71 in a circulating upflow reactor by UV/TiO2 process and employing a new method in kinetic study. J. Hazard. Mater. 144, 506–512 (2007). https://doi.org/10.1016/j.jhazmat.2006.10.065

    Article  Google Scholar 

  29. M. Zhang, Z. Shi, J. Zhang, K. Zhang, L. Lei, D. Dastan, B. Dong, Greatly enhanced dielectric charge storage capabilities of layered polymer composites incorporated with low loading fractions of ultrathin amorphous iron phosphate nanosheets. J. Mater. Chem. C. 9, 10414–10424 (2021). https://doi.org/10.1039/d1tc01974k

    Article  Google Scholar 

  30. P. Longchin, P. Pookmanee, S. Satienperakul, S. Sangsrichan, R. Puntharod, V. Kruefu, W. Kangwansupamonkon, S. Phanichphant, Characterization of bismuth vanadate (BiVO4) nanoparticle prepared by solvothermal method. Integr. Ferroelectr. 175, 18–24 (2016). https://doi.org/10.1080/10584587.2016.1199845

    Article  Google Scholar 

  31. P. Yin, Z. Shi, L. Sun, P. **e, D. Dastan, K. Sun, R. Fan, Improved breakdown strengths and energy storage properties of polyimide composites: The effect of internal interfaces of C/SiO2 hybrid nanoparticles. Polym. Compos. 42, 3000–3010 (2021). https://doi.org/10.1002/pc.26034

    Article  Google Scholar 

  32. N.K. Singh, V. Koutu, M.M. Malik, Enhancement of room temperature ferromagnetic behavior of Co-doped ZnO nanoparticles synthesized via sol–gel technique. J. Sol-Gel Sci. Technol. 91, 324–334 (2019). https://doi.org/10.1007/s10971-019-05004-4

    Article  Google Scholar 

  33. M. Shatnawi, A.M. Alsmadi, I. Bsoul, B. Salameh, G.A. Alna’Washi, F. Al-Dweri, F. El Akkad, Magnetic and optical properties of Co-doped ZnO nanocrystalline particles. J. Alloys Compd. 655, 244–252 (2016). https://doi.org/10.1016/j.jallcom.2015.09.166

    Article  Google Scholar 

  34. D. Anbuselvan, S. Muthukumaran, Defect related microstructure, optical and photoluminescence behaviour of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method. Opt. Mater. 42, 124–131 (2015). https://doi.org/10.1016/j.optmat.2014.12.030

    Article  ADS  Google Scholar 

  35. G.L. Tan, D. Tang, D. Dastan, A. Jafari, J.P.B. Silva, X.T. Yin, Effect of heat treatment on electrical and surface properties of tungsten oxide thin films grown by HFCVD technique. Mater. Sci. Semicond. Process. 122, 105506 (2021). https://doi.org/10.1016/j.mssp.2020.105506

    Article  Google Scholar 

  36. V. Gandhi, R. Ganesan, H.H. Abdulrahman Syedahamed, M. Thaiyan, Effect of cobalt do** on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method. J. Phys. Chem. C. 118, 9715–9725 (2014). https://doi.org/10.1021/jp411848t

    Article  Google Scholar 

  37. G.L. Tan, D. Tang, D. Dastan, A. Jafari, Z. Shi, Q.Q. Chu, J.P.B. Silva, X.T. Yin, Structures, morphological control, and antibacterial performance of tungsten oxide thin films. Ceram. Int. 47, 17153–17160 (2021). https://doi.org/10.1016/j.ceramint.2021.03.025

    Article  Google Scholar 

  38. N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, S. Jenefar, V. Kaviyarasan, Co-Doped ZnO nanoparticles: structural, morphological, optical, magnetic and antibacterial studies. J. Mater. Sci. Technol. 30, 1108–1117 (2014). https://doi.org/10.1016/j.jmst.2014.07.013

    Article  Google Scholar 

  39. K. Shan, F. Zhai, Z.Z. Yi, X.T. Yin, D. Dastan, F. Tajabadi, A. Jafari, S. Abbasi, Mixed conductivity and the conduction mechanism of the orthorhombic CaZrO3 based materials. Surf. Interfaces. 23, 100905 (2021). https://doi.org/10.1016/j.surfin.2020.100905

    Article  Google Scholar 

  40. N. Van Quang, N. Thi Huyen, N. Tu, D. Quang Trung, D. Duc Anh, M.T. Tran, H.D. Nguyen, D.X. Viet, H.T. Pham, N. Van Quang, N. Thi Huyen, D. Quang Trung, D. Duc Anh, M.T. Tran, H.D. Nguyen, D.X. Viet, H.T. Pham, A high quantum efficiency plant growth LED by using deep-red-emitting α-Al2O3:Cr3+ phosphor. Dalt. Trans. 50, 12570–12582 (2021). https://doi.org/10.1039/D1DT00115A

    Article  Google Scholar 

  41. K. Shan, Z.Z. Yi, X.T. Yin, D. Dastan, S. Dadkhah, B.T. Coates, H. Garmestani, Mixed conductivities of A-site deficient Y, Cr-doubly doped SrTiO3 as novel dense diffusion barrier and temperature-independent limiting current oxygen sensors. Adv. Powder Technol. 31, 4657–4664 (2020). https://doi.org/10.1016/j.apt.2020.10.015

    Article  Google Scholar 

  42. R. Bhardwaj, J. Pal, K. Hwa, N. Goyal, S. Gautam, Electronic and magnetic structure investigation of vanadium doped ZnO nanostructure. Vacuum 158, 257–262 (2018). https://doi.org/10.1016/j.vacuum.2018.09.053

    Article  ADS  Google Scholar 

  43. D.N. Montenegro, V. Hortelano, O. Martínez, M.C. Martínez-Tomas, V. Sallet, V. Muñoz-Sanjosé, J. Jiménez, Non-radiative recombination centres in catalyst-free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition. J. Phys. D Appl. Phys. 46, 235302 (2013). https://doi.org/10.1088/0022-3727/46/23/235302

    Article  ADS  Google Scholar 

  44. F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, B.H. Koo, C.G. Lee, Do** effects of Co2+ ions on structural and magnetic properties of ZnO nanoparticles. Microelectron. Eng. 89, 129–132 (2012). https://doi.org/10.1016/j.mee.2011.03.149

    Article  Google Scholar 

  45. K. Samanta, P. Bhattacharya, R.S. Katiyar, W. Iwamoto, P.G. Pagliuso, C. Rettori, Raman scattering studies in dilute magnetic semiconductor Zn1xCoxO. Phys. Rev. B 73, 245213 (2006). https://doi.org/10.1103/PhysRevB.73.245213

    Article  ADS  Google Scholar 

  46. A.C. Catto, L.F. da Silva, M.I.B. Bernardi, M.S. Li, E. Longo, P.N. Lisboa-Filho, O.R. Nascimento, V.R. Mastelaro, An investigation into the influence of zinc precursor on the microstructural, photoluminescence, and gas-sensing properties of ZnO nanoparticles. J. Nanopart. Res. 16, 2760 (2014). https://doi.org/10.1007/s11051-014-2760-0

    Article  ADS  Google Scholar 

  47. Y. Liang, S. Wicker, X. Wang, E.S. Erichsen, F. Fu, Organozinc precursor-derived crystalline ZnO nanoparticles: synthesis characterization and their spectroscopic properties. Nanomaterials 8, 22 (2018). https://doi.org/10.3390/nano8010022

    Article  Google Scholar 

  48. P. Jakes, E. Erdem, Finite size effects in ZnO nanoparticles: an electron paramagnetic resonance (EPR) analysis. Phys. Status Solidi RRL 5, 56–58 (2011). https://doi.org/10.1002/pssr.201004450

    Article  Google Scholar 

  49. R.V.S.S.N. Ravikumar, K. Ikeda, A.V. Chandrasekhar, Y.P. Reddy, P.S. Rao, J. Yamauchi, Site symmetry of Mn(II) and Co(II) in zinc phosphate glass. J. Phys. Chem. Solids 64, 2433–2436 (2003). https://doi.org/10.1016/S0022-3697(03)00286-5

    Article  ADS  Google Scholar 

  50. A. Mesaros, C.D. Ghitulica, M. Popa, R. Mereu, A. Popa, T. Petrisor, M. Gabor, A.I. Cadis, B.S. Vasile, Synthesis, structural and morphological characteristics, magnetic and optical properties of Co doped ZnO nanoparticles. Ceram. Int. 40, 2835–2846 (2014). https://doi.org/10.1016/j.ceramint.2013.10.030

    Article  Google Scholar 

  51. Y. Lu, Y. Lin, D. Wang, L. Wang, T. **e, T. Jiang, A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties. Nano Res. 4, 1144–1152 (2011). https://doi.org/10.1007/s12274-011-0163-4

    Article  Google Scholar 

  52. S. Fabbiyola, L.J. Kennedy, U. Aruldoss, M. Bououdina, A.A. Dakhel, J. JudithVijaya, Synthesis of Co-doped ZnO nanoparticles via co-precipitation: structural, optical and magnetic properties. Powder Technol. 286, 757–765 (2015). https://doi.org/10.1016/j.powtec.2015.08.054

    Article  Google Scholar 

  53. H. Ji, C. Cai, S. Zhou, W. Liu, Structure, photoluminescence, and magnetic properties of Co-doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 29, 12917–12926 (2018). https://doi.org/10.1007/s10854-018-9411-7

    Article  Google Scholar 

  54. M.M. Jaculine, C.J. Raj, S.J. Das, Hydrothermal synthesis of highly crystalline Zn2SnO4 nanoflowers and their optical properties. J. Alloys Compd. 577, 131–137 (2013). https://doi.org/10.1016/j.jallcom.2013.04.158

    Article  Google Scholar 

  55. X. Fu, X. Wang, J. Long, Z. Ding, T. Yan, G. Zhang, Z. Zhang, H. Lin, X. Fu, Hydrothermal synthesis, characterization, and photocatalytic properties of Zn2SnO4. J. Solid State Chem. 182, 517–524 (2009). https://doi.org/10.1016/j.jssc.2008.11.029

    Article  ADS  Google Scholar 

  56. S. Dinesh, S. Barathan, V.K. Premkumar, G. Sivakumar, N. Anandan, Hydrothermal synthesis of zinc stannate (Zn2SnO4) nanoparticles and its application towards photocatalytic and antibacterial activity. J. Mater. Sci. Mater. Electron. 27, 9668–9675 (2016). https://doi.org/10.1007/s10854-016-5027-y

    Article  Google Scholar 

  57. S. Kumar, R. Kumar, D.P. Singh, Swift heavy ion induced modifications in cobalt doped ZnO thin films: Structural and optical studies. Appl. Surf. Sci. 255, 8014–8018 (2009). https://doi.org/10.1016/j.apsusc.2009.05.005

    Article  ADS  Google Scholar 

  58. R. Saleh, S.P. Prakoso, A. Fishli, The influence of Fe do** on the structural, magnetic and optical properties of nanocrystalline ZnO particles. J. Magn. Magn. Mater. 324, 665–670 (2012). https://doi.org/10.1016/j.jmmm.2011.07.059

    Article  ADS  Google Scholar 

  59. T. Thangeeswari, A.T. George, A. ArunKumar, Optical properties and FTIR studies of cobalt doped zno nanoparticles by simple solution method. Indian J. Sci. Technol. 9, 31 (2016). https://doi.org/10.17485/ijst/2016/v9i1/85776

    Article  Google Scholar 

  60. B. Poornaprakash, U. Chalapathi, K. Subramanyam, S.V.P. Vattikuti, S.H. Park, Wurtzite phase Co-doped ZnO nanorods: morphological, structural, optical, magnetic, and enhanced photocatalytic characteristics. Ceram. Int. 46, 2931–2939 (2019). https://doi.org/10.1016/j.ceramint.2019.09.289

    Article  Google Scholar 

  61. T.T. Loan, N.N. Long, L.H. Ha, Photoluminescence properties of Co-doped ZnO nanorods synthesized by hydrothermal method. J. Phys. D. Appl. Phys. 42, 065412 (2009). https://doi.org/10.1088/0022-3727/42/6/065412

    Article  ADS  Google Scholar 

  62. R. He, B. Tang, C. Ton-That, M. Phillips, T. Tsuzuki, Physical structure and optical properties of Co-doped ZnO nanoparticles prepared by co-precipitation. J. Nanoparticle Res. 15, 1–8 (2013). https://doi.org/10.1007/s11051-013-2030-6

    Article  Google Scholar 

  63. W. Li, G. Wang, C. Chen, J. Liao, Z. Li, Enhanced visible light photocatalytic activity of ZnO nanowires doped with Mn2+ and Co2+ ions. Nanomaterials 7, 1–11 (2017). https://doi.org/10.3390/nano7010020

    Article  ADS  Google Scholar 

  64. X. Qiu, L. Li, J. Zheng, J. Liu, X. Sun, G. Li, Origin of the enhanced photocatalytic activities of semiconductors : a case study of ZnO doped with Mg2+. J. Phys. Chem. C 112, 12242–12248 (2008). https://doi.org/10.1021/jp803129e

    Article  Google Scholar 

  65. N. Haghnegahdar, M.A. Tarighat, D. Dastan, Curcumin-functionalized nanocomposite AgNPs/SDS/MWCNTs for electrocatalytic simultaneous determination of dopamine, uric acid, and guanine in co-existence of ascorbic acid by glassy carbon electrode. J. Mater. Sci. Mater. Electron. 32, 5602–5613 (2021). https://doi.org/10.1007/s10854-021-05282-1

    Article  Google Scholar 

  66. M. Fathinezhad, M.A. Tarighat, D. Dastan, Chemometrics heavy metal content clusters using electrochemical data of modified carbon paste electrode. Environ. Nanotechnol. Monit. Manag. 14, 100307 (2020). https://doi.org/10.1016/j.enmm.2020.100307

    Article  Google Scholar 

  67. F. Altaf, R. Batool, R. Gill, Z.U. Rehman, H. Majeed, A. Ahmad, M. Shafiq, D. Dastan, G. Abbas, K. Jacob, Synthesis and electrochemical investigations of ABPBI grafted montmorillonite based polymer electrolyte membranes for PEMFC applications. Renew. Energy. 164, 709–728 (2021). https://doi.org/10.1016/j.renene.2020.09.104

    Article  Google Scholar 

  68. A.P. Toor, A. Verma, C.K. Jotshi, P.K. Bajpai, V. Singh, Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor. Dyes Pigm. 68, 53–60 (2006). https://doi.org/10.1016/j.dyepig.2004.12.009

    Article  Google Scholar 

  69. A. Senthilraja, B. Subash, B. Krishnakumar, D. Rajamanickam, M. Swaminathan, M. Shanthi, Materials science in semiconductor processing synthesis, characterization and catalytic activity of co-doped Ag–Au–ZnO for MB dye degradation under UV-A light. Mater. Sci. Semicond. Process. 22, 83–91 (2014). https://doi.org/10.1016/j.mssp.2014.02.011

    Article  Google Scholar 

  70. F.A. Harraz, R.M. Mohamed, M.M. Rashad, Y.C. Wang, W. Sigmund, Magnetic nanocomposite based on titania–silica/cobalt ferrite for photocatalytic degradation of methylene blue dye. Ceram. Int. 40, 375–384 (2013). https://doi.org/10.1016/j.ceramint.2013.06.012

    Article  Google Scholar 

  71. M. Qamar, M. Muneer, A comparative photocatalytic activity of titanium dioxide and zinc oxide by investigating the degradation of vanillin. Desalination 249, 535–540 (2009). https://doi.org/10.1016/j.desal.2009.01.022

    Article  Google Scholar 

  72. M.A. Barakat, Adsorption and photodegradation of Procion yellow H-EXL dye in textile wastewater over TiO2 suspension. J. Hydro-Environment Res. 5, 137–142 (2011). https://doi.org/10.1016/j.jher.2010.03.002

    Article  Google Scholar 

  73. K. Salehi, A. Bahmani, B. Shahmoradi, M.A. Pordel, S. Kohzadi, Y. Gong, H. Guo, H.P. Shivaraju, R. Rezaee, R.R. Pawar, S.M. Lee, Response surface methodology (RSM) optimization approach for degradation of Direct Blue 71 dye using CuO–ZnO nanocomposite. Int. J. Environ. Sci. Technol. 14, 2067–2076 (2017). https://doi.org/10.1007/s13762-017-1308-0

    Article  Google Scholar 

  74. R. Saleh, N.F. Djaja, Transition-metal-doped ZnO nanoparticles: synthesis, characterization and photocatalytic activity under UV light. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 130, 581–590 (2014). https://doi.org/10.1016/j.saa.2014.03.089.s

    Article  ADS  Google Scholar 

  75. G. Thennarasu, A. Sivasamy, Ecotoxicology and environmental safety enhanced visible photocatalytic activity of cotton ball like nano structured Cu doped ZnO for the degradation of organic pollutant. Ecotoxicol. Environ. Saf. 134, 412–420 (2015). https://doi.org/10.1016/j.ecoenv.2015.10.030

    Article  Google Scholar 

  76. A. Zarei, H. Biglari, R. Amiri, G. Ebrahimzadeh, M.R. Narooie, E.A. Mehrizi, M. Mobini, The removal of blue 71 from aqueous solution using cotton pod ash. Poll Res. 36, 489–497 (2017)

    Google Scholar 

  77. A. Maleki, B. Shahmoradi, Solar degradation of direct blue 71 using surface modified iron doped ZnO hybrid nanomaterials. Water Sci. Technol. 65, 1923–1928 (2012). https://doi.org/10.2166/wst.2012.091

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.02–2019.32. The authors would sincerely like to thank Dr. Pham Thi Mai Phuong—Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), for supporting the measurement of EPR spectra in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Thi Lan Huong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huong, P.T.L., Van Quang, N., Tran, MT. et al. Excellent visible light photocatalytic degradation and mechanism insight of Co2+-doped ZnO nanoparticles. Appl. Phys. A 128, 24 (2022). https://doi.org/10.1007/s00339-021-05140-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05140-1

Keywords

Navigation