Log in

Optimizing the Antibacterial Activity of Iron Oxide Nanoparticles Using Central Composite Design

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This work aims to optimize the antibacterial activity of iron oxide nanoparticles (IONPs) against both Gram-positive and Gram-negative bacteria. IONPs were greenly biosynthesized using Moringa oleifera leaves extract, and surface methodology (RSM) based on central composite design (CCD) was employed to investigate the combined effect of various experimental factors on the antibacterial activity of IONPs. The reaction and annealing temperatures besides precursor concentration were set as independent variables, while the antibacterial activity was set as a response to obtain the optimal conditions that maximizes IONPs antibacterial activity. Different characterization techniques such as UV–Vis, FTIR, XRD, SEM, and EDX were employed to study the properties of the biosynthesized nanoparticles. Meanwhile, the antibacterial activity was tested using the disk diffusion method. The characterizations results have confirmed the biosynthesis of Hematite (α-Fe2O3) nanoparticles of rhombohedral structure. The generated model has exhibited predicted values very close to the actual proving its validity to analyze and optimize the studied process. The model indicated that all the investigated parameters and their interactions have significantly affected IONPs antibacterial activity. An optimal antibacterial activity was achieved when biosynthesis factors at their lower levels (− 1). Furthermore, the effect of IONPs size on the antibacterial activity was studied and the results shown that the latter is significantly related to the nanoparticles size.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

Pre-Con:

Precursor concentration

RC Temp:

Reaction temperature

ANL Temp:

Annealing temperature

IONPs:

Iron oxide nanoparticles

RSM:

Response surface methodology

M. olivera :

M. oleifera

CCD:

Central composite design

E. coli :

Escherichia coli

S. aurus :

Staphylococcus aureus

ANOVA:

Analysis of variance

NPs:

Nanoparticles

References

  1. M.-C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004). https://doi.org/10.1021/cr030698

    Article  CAS  PubMed  Google Scholar 

  2. W. Wu, C.J. Changzhong Jiang, V.A.L. Roy, Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 7, 38–58 (2015). https://doi.org/10.1039/C4NR04244A

    Article  CAS  PubMed  Google Scholar 

  3. M. Rui, C. Ma, Y. Hao, J. Guo, Y. Rui, X. Tang, Q. Zhao, X. Fan, Z. Zhang, T. Hou, S. Zhu, Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci. 7, 815–825 (2016). https://doi.org/10.3389/fpls.2016.00815

    Article  PubMed  PubMed Central  Google Scholar 

  4. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. **e, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012). https://doi.org/10.1016/j.scitotenv.2012.02.023

    Article  CAS  PubMed  Google Scholar 

  5. A.A. Hernández-Hernández, G. Aguirre-Álvarez, R. Cariño-Cortés, L.H. Mendoza-Huizar, R. Jiménez-Alvarado, Iron oxide nanoparticles: synthesis, functionalization, and applications in diagnosis and treatment of cancer. Chem. Pap. 74, 3809–3824 (2020). https://doi.org/10.1007/s11696-020-01229-8

    Article  CAS  Google Scholar 

  6. C.F. Chee, B.F. Leo, C.W. Lai, Superparamagnetic iron oxide nanoparticles for drug delivery, in Applications of Nanocomposite Materials in Drug Delivery. ed. by I. Inamuddin, A.M. Asiri, A. Mohammad (Elsevier, Amsterdam, 2018), pp. 861–903

    Chapter  Google Scholar 

  7. A. Joy, G. Unnikrishnan, M. Megha, M. Haris, J. Thomas, E. Kolanthai, S. Muthuswamy, Polycaprolactone/graphene oxide-silver nanocomposite: a multifunctional agent for biomedical applications. J. Inorg. Organomet. Polym. Mater. 32, 912–930 (2022). https://doi.org/10.1007/s10904-021-02180-1

    Article  CAS  Google Scholar 

  8. T. Li, P. Huang, X. Li, R. Wang, Z. Lu, P. Song, Y. He, Synthesis of polymer nanospheres conjugated Ce (IV) complexes for constructing double antibacterial centers. J. Inorg. Organomet. Polym. Mater. 32, 883–894 (2022). https://doi.org/10.1007/s10904-021-02165-0

    Article  CAS  Google Scholar 

  9. M. Moosavifar, G. Zarrini, E. Mashmool-barjasteh, Design of Zn1−xCuxO nanocomposite Ag-doped as an efficient antimicrobial agent. J. Inorg. Organomet. Polym. Mater. 32, 781–790 (2022). https://doi.org/10.1007/s10904-021-02131-w

    Article  CAS  Google Scholar 

  10. F.Z. Souissi, M. Hajji, H. Ettoumi, M. Barre, J. Benkhalifa, T. Guerfel, Synthesis, thermal properties and electrical conductivity of Na-sialate geopolymer. J. Inorg. Organomet. Polym. Mater. (2022). https://doi.org/10.1007/s10904-022-02337-6

    Article  Google Scholar 

  11. D.E. Bloom, D. Cadarette, Infectious disease threats in the twenty-first century: strengthening the global response. Front. Immunol. 10, 549 (2019). https://doi.org/10.3389/fimmu.2019.00549

    Article  PubMed  PubMed Central  Google Scholar 

  12. P.V. Baptista, M.P. McCusker, A. Carvalho, D.A. Ferreira, N.M. Mohan, M. Martins, A.R. Fernandes, Nano-strategies to fight multidrug resistant bacteria-"A Battle of the Titans". Front. Microbiol. 9, 1441 (2018). https://doi.org/10.3389/fmicb.2018.01441

    Article  PubMed  PubMed Central  Google Scholar 

  13. L. Lin, S.F. Wang, T.Y. Yang, W.C. Hung, M.Y. Chan, S.P. Tseng, Antimicrobial resistance and genetic diversity in ceftazidime non-susceptible bacterial pathogens from ready-to-eat street foods in three Taiwanese cities. Sci. Rep. 7, 1–9 (2017). https://doi.org/10.1038/s41598-017-15627-8

    Article  CAS  Google Scholar 

  14. N. Jackson, L. Czaplewski, L.J.V. Piddock, Discovery and development of new antibacterial drugs: learning from experience? J. Antimicrob. Chemother. 73, 1452–1459 (2018). https://doi.org/10.1093/jac/dky019

    Article  CAS  PubMed  Google Scholar 

  15. S. Das, S. Diyali, G. Vinothini, B. Perumalsamy, G. Balakrishnan, T. Ramasamy, D. Dharumadurai, B. Biswas, Synthesis, morphological analysis, antibacterial activity of iron oxide nanoparticles and the cytotoxic effect on lung cancer cell line. Heliyon 6, e04953 (2020). https://doi.org/10.1016/j.heliyon.2020.e04953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. G. Saxena, R. Chandra, R.N. Bharagava, Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev. Environ. Contam. Toxicol. 240, 31–69 (2017). https://doi.org/10.1007/398_2015_5009

    Article  CAS  PubMed  Google Scholar 

  17. S. Soren, S. Kumar, S. Mishra, P.K. Jena, S.K. Verma, P. Parhi, Evaluation of antibacterial and antioxidant potential of the zinc oxide nanoparticles synthesized by aqueous and polyol method. Microb. Pathog. 119, 145–151 (2018). https://doi.org/10.1016/j.micpath.2018.03.048

    Article  CAS  PubMed  Google Scholar 

  18. S.F. Mossallam, E.I. Amer, R.G. Diab, Potentiated anti-microsporidial activity of Lactobacillus acidophilus CH1 bacteriocin using gold nanoparticles. Exp. Parasitol. 144, 14–21 (2014). https://doi.org/10.1016/j.exppara.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  19. H. Mohd Yusof, R. Mohamad, U.H. Zaidan, N.A. AbdulRahman, Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J. Anim. Sci. Biotechnol. 10, 57 (2019). https://doi.org/10.1186/s40104-019-0368-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. T.M. Laid, K. Abdelhamid, L.S. Eddine, B. Abderrhmane, Optimizing the biosynthesis parameters of iron oxide nanoparticles using central composite design. J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2020.129497

    Article  Google Scholar 

  21. L. Chen, J. **e, H. Wu, J. Li, Z. Wang, L. Song, F. Zang, M. Ma, N. Gu, Y. Zhang, Precise study on size-dependent properties of magnetic iron oxide nanoparticles for in vivo magnetic resonance imaging. J. Nanomater. 2018, 1–9 (2018). https://doi.org/10.1155/2018/3743164

    Article  CAS  Google Scholar 

  22. V. Patsula, M. Moskvin, S. Dutz, D. Horák, Size-dependent magnetic properties of iron oxide nanoparticles. J. Phys. Chem. Solids. 88, 24–30 (2016). https://doi.org/10.1016/j.jpcs.2015.09.008

    Article  CAS  Google Scholar 

  23. H. Parmar, I.S. Smolkova, N.E. Kazantseva, V. Babayan, P. Smolka, R. Moučka, J. Vilcakova, P. Saha, Size dependent heating efficiency of iron oxide single domain nanoparticles. Proc. Eng. 102, 527–533 (2015). https://doi.org/10.1016/j.proeng.2015.01.205

    Article  CAS  Google Scholar 

  24. M. Arakha, S. Pal, D. Samantarrai, T.K. Panigrahi, B.C. Mallick, K. Pramanik, B. Mallick, S. Jha, Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep. 5, 14813 (2015). https://doi.org/10.1038/srep14813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J.P. Yadav, S. Kumar, Characterization and antibacterial activity of synthesized silver and iron nanoparticles using aloe vera. J. Nanomed. Nanotechnol. 7, 2 (2016). https://doi.org/10.4172/2157-7439.1000384

    Article  CAS  Google Scholar 

  26. H. Padalia, S. Baluja, S. Chanda, Effect of pH on size and antibacterial activity of Salvadora oleoides leaf extract-mediated synthesis of zinc oxide nanoparticles. Bionanoscience 7, 40–49 (2017). https://doi.org/10.1007/s12668-016-0387-6

    Article  Google Scholar 

  27. W. **e, Z. Guo, F. Gao, Q. Gao, D. Wang, B. Liaw, Q. Cai, X. Sun, X. Wang, L. Zhao, Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 8, 3284–3307 (2018). https://doi.org/10.7150/thno.25220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. H. Sharifi Dehsari, A. Halda Ribeiro, B. Ersöz, W. Tremel, G. Jakob, K. Asadi, Effect of precursor concentration on size evolution of iron oxide nanoparticles. CrystEngComm 19, 6694–6702 (2017). https://doi.org/10.1039/c7ce01406f

    Article  CAS  Google Scholar 

  29. Â.L. Andrade, D.M. Souza, M.C. Pereira, J.D. Fabris, R.Z. Domingues, pH effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method. Quim. Nova. 33, 524–527 (2010). https://doi.org/10.1590/S0100-40422010000300006

    Article  CAS  Google Scholar 

  30. E. Ranjith Kumar, R. Jayaprakash, T. ArunKumar, S. Kumar, Effect of reaction time on particle size and dielectric properties of manganese substituted CoFe2O4 nanoparticles. J. Phys. Chem. Solids. 74, 110–114 (2013). https://doi.org/10.1016/j.jpcs.2012.08.008

    Article  CAS  Google Scholar 

  31. H. Liu, H. Zhang, J. Wang, J. Wei, Effect of temperature on the size of biosynthesized silver nanoparticle: deep insight into microscopic kinetics analysis. Arab. J. Chem. 13, 1011–1019 (2020). https://doi.org/10.1016/j.arabjc.2017.09.004

    Article  CAS  Google Scholar 

  32. N. Chomchoey, D. Bhongsuwan, T. Bhongsuwan, Effect of calcination temperature on the magnetic characteristics of synthetic iron oxide magnetic nanoparticles for arsenic adsorption. Chiang Mai J. Sci. 45, 528–539 (2018)

    CAS  Google Scholar 

  33. A. Dharr, A. Arjun, T. Raguram, K.S. Rajni, Influence of pH on the structural, spectral, optical, morphological and photocatalytic properties of ZrO 2 nanoparticles synthesized by sol–gel technique. J. Mater. Sci. Mater. Electron. 31, 15718–15730 (2020)

    Article  CAS  Google Scholar 

  34. C. Yuangyai, H.B. Nembhard, Design of experiments: a key to innovation in nanotechnology, in Emerging Nanotechnologies for Manufacturing. ed. by W. Ahmed, M. Jackson (Boston, Elsevier, 2010), pp. 207–234

    Chapter  Google Scholar 

  35. S. Saif, A. Tahir, Y. Chen, Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials (2016). https://doi.org/10.3390/nano6110209

    Article  PubMed  PubMed Central  Google Scholar 

  36. K. Hinkelmann, Design and Analysis of Experiments (Wiley, Hoboken, 2012)

    Book  Google Scholar 

  37. A. Tedjani, A. Benallal, Correction to: A novel cost-effective sparsity-aware algorithm with Kalman-based gain for the identification of long acoustic impulse responses (Signal, Image and Video Processing, (2020), 14, 8, (1679–1687), 10.1007/s11760-020-01715-2). Signal Image Video Process. 15, 439 (2021). https://doi.org/10.1007/s11760-020-01739-8

    Article  Google Scholar 

  38. A.A. Mariod, M.E. SaeedMirghani, I. Hussein, Chapter 35—Moringa oleifera seed oil, in Unconventional Oilseeds and Oil Sources. ed. by A.A. Mariod, M.E. SaeedMirghani, O.S. Hussein (Academic Press, Cmbridge, 2017), pp. 233–241

    Chapter  Google Scholar 

  39. H.S.U. Rebecca, M. Sharon, A. Arbainsyah, D. Lucienne, Moringa oleifera: medicinal and socio-economic uses. Int. Course Econ. Bot. 2006, 2–6 (2006)

    Google Scholar 

  40. S.M. Abdulkarim, K. Long, O.M. Lai, S.K.S. Muhammad, H.M. Ghazali, Some physico-chemical properties of Moringa oleifera seed oil extracted using solvent and aqueous enzymatic methods. Food Chem. 93, 253–263 (2005). https://doi.org/10.1016/j.foodchem.2004.09.023

    Article  CAS  Google Scholar 

  41. S.E. Laouini, A. Bouafia, A.V. Soldatov, H. Algarni, M.L. Tedjani, G.A.M. Ali, A. Barhoum, Green synthesized of Ag/Ag2O nanoparticles using aqueous leaves extracts of Phoenix dactylifera L. and their azo dye photodegradation. Membranes (2021). https://doi.org/10.3390/membranes11070468

    Article  PubMed  PubMed Central  Google Scholar 

  42. Y. Belaiche, A. Khelef, S.E. Laouini, A. Bouafia, M.L. Tedjani, A. Barhoum, Green synthesis and characterization of silver/silver oxide nanoparticles using aqueous leaves extract of artemisia herba-alba as reducing and cap** agents. Rev. Rom. Mater. 51, 342–352 (2021)

    CAS  Google Scholar 

  43. F.T. Thema, P. Beukes, A. Gurib-Fakim, M. Maaza, Green synthesis of monteponite CdO nanoparticles by Agathosma betulina natural extract. J. Alloys Compd. 646, 1043–1048 (2015). https://doi.org/10.1016/j.jallcom.2015.05.279

    Article  CAS  Google Scholar 

  44. A.T. Khalil, M. Ovais, I. Ullah, M. Ali, Z.K. Shinwari, M. Maaza, Biosynthesis of iron oxide (Fe 2 O 3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chem. Lett. Rev. 10, 186–201 (2017). https://doi.org/10.1080/17518253.2017.1339831

    Article  CAS  Google Scholar 

  45. A. Bouafia, S.E. Laouini, M.L. Tedjani, G.A.M. Ali, A. Barhoum, Green biosynthesis and physicochemical characterization of Fe3O4 nanoparticles using Punica granatum L. fruit peel extract for optoelectronic applications. Text. Res. J. (2021). https://doi.org/10.1177/00405175211006671

    Article  Google Scholar 

  46. A. Bouafia, S.E. Laouini, A. Khelef, M.L. Tedjani, F. Guemari, Effect of ferric chloride concentration on the type of magnetite (Fe3O4) nanoparticles biosynthesized by aqueous leaves extract of Artemisia and assessment of their antioxidant activities. J. Clust. Sci. (2020). https://doi.org/10.1007/s10876-020-01868-7

    Article  Google Scholar 

  47. O. Louafi, A. Khelef, S. Zeroual, S.E. Laouini, M.L. Tedjani, Effect of nickel nitrate concentration on the size of nickel oxide nanoparticles bio-synthesized by artemisia herba-alba aqueous leaves extract and improving their antioxidant activities. J. Inorg. Organomet. Polym. Mater. (2021). https://doi.org/10.1007/s10904-021-02152-5

    Article  Google Scholar 

  48. J.I. Langford, X-ray diffraction procedures for polycrystalline and amorphous materials by H. P. Klug and L. E. Alexander. J. Appl. Crystallogr. 8, 573–574 (1975). https://doi.org/10.1107/S0021889875011399

    Article  Google Scholar 

  49. H. Amiri, R. Nabizadeh, S. Silva Martinez, S. Jamaleddin Shahtaheri, K. Yaghmaeian, A. Badiei, S. Nazmara, K. Naddafi, Response surface methodology modeling to improve degradation of chlorpyrifos in agriculture runoff using TiO2 solar photocatalytic in a raceway pond reactor. Ecotoxicol. Environ. Saf. 147, 919–925 (2018). https://doi.org/10.1016/j.ecoenv.2017.09.062

    Article  CAS  PubMed  Google Scholar 

  50. A. Bouafia, S.E. Laouini, Green synthesis of iron oxide nanoparticles by aqueous leaves extract of Mentha pulegium L.: effect of ferric chloride concentration on the type of product. Mater. Lett. 265, 127364–127368 (2020). https://doi.org/10.1016/j.matlet.2020.127364

    Article  CAS  Google Scholar 

  51. J.K. Patra, K.-H. Baek, Green nanobiotechnology: factors affecting synthesis and characterization techniques. J. Nanomater. 2014, 1–12 (2014). https://doi.org/10.1155/2014/417305

    Article  CAS  Google Scholar 

  52. J.A.A. Abdullah, L. Salah Eddine, B. Abderrhmane, M. Alonso-González, A. Guerrero, A. Romero, Green synthesis and characterization of iron oxide nanoparticles by pheonix dactylifera leaf extract and evaluation of their antioxidant activity. Sustain. Chem. Pharm. 17, 100280–100287 (2020). https://doi.org/10.1016/j.scp.2020.100280

    Article  Google Scholar 

  53. G.E.P. Box, J.S. Hunter, Multi-factor experimental designs for exploring response surfaces. Ann. Math. Stat. 28, 195–241 (1957). https://doi.org/10.1214/aoms/1177707047

    Article  Google Scholar 

  54. X. Zhang, J. Chen, M. Mao, H. Guo, Y. Dai, Extraction optimization of the polysaccharide from Adenophorae radix by central composite design. Int. J. Biol. Macromol. 67, 318–322 (2014). https://doi.org/10.1016/j.ijbiomac.2014.03.039

    Article  CAS  PubMed  Google Scholar 

  55. P. Mondal, M.K. Purkait, Green synthesized iron nanoparticles supported on pH responsive polymeric membrane for nitrobenzene reduction and fluoride rejection study: optimization approach. J. Clean. Prod. 170, 1111–1123 (2018). https://doi.org/10.1016/j.jclepro.2017.09.222

    Article  CAS  Google Scholar 

  56. D. Badmapriya, I.V. Asharani, Dye degradation studies catalysed by green synthesized iron oxide nanoparticles. Int. J. ChemTech Res. 9, 409–416 (2016)

    CAS  Google Scholar 

  57. S. Groiss, R. Selvaraj, T. Varadavenkatesan, R. Vinayagam, Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora. J. Mol. Struct. 1128, 572–578 (2017). https://doi.org/10.1016/j.molstruc.2016.09.031

    Article  CAS  Google Scholar 

  58. W.H. Strehlow, E.L. Cook, Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J. Phys. Chem. Ref. Data. 2, 163–200 (1973). https://doi.org/10.1063/1.3253115

    Article  CAS  Google Scholar 

  59. P. Mallick, B.N. Dash, X-ray diffraction and UV-visible characterizations of α-Fe2O3 nanoparticles annealed at different temperature. J. Nanosci. Nanotechnol. 3, 130–134 (2013). https://doi.org/10.5923/j.nn.20130305.04

    Article  CAS  Google Scholar 

  60. P. Jayaprakash, M.P. Mohamed, M.L. Caroline, Growth, spectral and optical characterization of a novel nonlinear optical organic material: d-Alanine dl-Mandelic acid single crystal. J. Mol. Struct. 1134, 67–77 (2017). https://doi.org/10.1016/j.molstruc.2016.12.026

    Article  CAS  Google Scholar 

  61. M. Gartner, M. Crisan, A. Jitianu, R. Scurtu, R. Gavrila, I. Oprea, M. Zaharescu, Spectroellipsometric characterization of multilayer sol-gel Fe 2 O 3 films. J. Sol-Gel Sci. Technol. 26, 745–748 (2003). https://doi.org/10.1023/A:1020706423230

    Article  CAS  Google Scholar 

  62. N. Özer, F. Tepehan, Optical and electrochemical characteristics of sol–gel deposited iron oxide films. Sol. Energy Mater. Sol. Cells 56, 141–152 (1999). https://doi.org/10.1016/S0927-0248(98)00152-4

    Article  Google Scholar 

  63. G. Zotti, G. Schiavon, S. Zecchin, U. Casellato, Electrodeposition of amorphous Fe2 O 3 films by reduction of iron perchlorate in acetonitrile. J. Electrochem. Soc. 145, 385–389 (1998). https://doi.org/10.1149/1.1838273

    Article  CAS  Google Scholar 

  64. M.F. Al-Kuhaili, M. Saleem, S.M.A. Durrani, Optical properties of iron oxide (α-Fe2O3) thin films deposited by the reactive evaporation of iron. J. Alloys Compd. 521, 178–182 (2012). https://doi.org/10.1016/j.jallcom.2012.01.115

    Article  CAS  Google Scholar 

  65. L. Dghoughi, B. Elidrissi, C. Bernède, M. Addou, M.A. Lamrani, M. Regragui, H. Erguig, Physico-chemical, optical and electrochemical properties of iron oxide thin films prepared by spray pyrolysis. Appl. Surf. Sci. 253, 1823–1829 (2006). https://doi.org/10.1016/j.apsusc.2006.03.021

    Article  CAS  Google Scholar 

  66. G.B. Sakura, A.Y.T. Leung, Experimental study of particle collection efficiency of cylindrical inlet type cyclone separator. Int. J. Environ. Sci. Dev. 6, 160–164 (2015). https://doi.org/10.7763/ijesd.2015.v6.581

    Article  CAS  Google Scholar 

  67. N. Izza, S.R. Dewi, A. Setyanda, A. Sukoyo, P. Utoro, D.F. Al Riza, Y. Wibisono, Microwave-assisted extraction of phenolic compounds from Moringa oleifera seed as anti-biofouling agents in membrane processes. MATEC Web Conf. 204, 03003–03009 (2018). https://doi.org/10.1051/matecconf/201820403003

    Article  CAS  Google Scholar 

  68. O.S. Bello, K.A. Adegoke, O.O. Akinyunni, Preparation and characterization of a novel adsorbent from Moringa oleifera leaf. Appl. Water Sci. 7, 1295–1305 (2017). https://doi.org/10.1007/s13201-015-0345-4

    Article  CAS  Google Scholar 

  69. C.S.T. Araújo, E.I. Melo, V.N. Alves, N.M.M. Coelho, Moringa oleifera Lam. seeds as a natural solid adsorbent for removal of AgI in aqueous solutions. J. Braz. Chem. Soc. 21, 1727–1732 (2010). https://doi.org/10.1590/S0103-50532010000900019

    Article  Google Scholar 

  70. S. Kanagasubbulakshmi, K. Kadirvelu, Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Def. Life Sci. J. 2, 422–427 (2017). https://doi.org/10.14429/dlsj.2.12277

    Article  Google Scholar 

  71. N. Marooufpour, M. Alizadeh, M. Hatami, B. Asgari Lajayer, Biological synthesis of nanoparticles by different groups of bacteria, in Microbial Nanobionics. (Springer, Cham, 2019), pp. 63–85

    Chapter  Google Scholar 

  72. I. Abdulkadir, H.M.I. Abdallah, S.B. Jonnalagadda, B.S. Martincigh, The effect of synthesis method on the structure, and magnetic and photocatalytic properties of hematite (α-Fe2O3) nanoparticles—research article. S. Afr. J. Chem. 71, 68–78 (2018). https://doi.org/10.17159/0379-4350/2018/v71a9

    Article  CAS  Google Scholar 

  73. J. Vidal-Vidal, J. Rivas, M.A. López-Quintela, Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids Surf. A 288, 44–51 (2006). https://doi.org/10.1016/j.colsurfa.2006.04.027

    Article  CAS  Google Scholar 

  74. D.M. Yufanyi, A.M. Ondoh, J. Foba-Tendo, K.J. Mbadcam, Effect of decomposition temperature on the crystallinity of α-Fe 2 O 3 (hematite) obtained from an iron(III)-hexamethylenetetramine precursor. Am. J. Chem. 5, 1–9 (2015). https://doi.org/10.5923/j.chemistry.20150501.01

    Article  Google Scholar 

  75. E. Darezereshki, F. Bakhtiari, M. Alizadeh, A. Behrad vakylabad, M. Ranjbar, Direct thermal decomposition synthesis and characterization of hematite (α-Fe2O3) nanoparticles. Mater. Sci. Semicond. Process. 15, 91–97 (2012). https://doi.org/10.1016/j.mssp.2011.09.009

    Article  CAS  Google Scholar 

  76. S. Ahmadi, L. Mohammadi, C.A. Igwegbe, S. Rahdar, A.M. Banach, Application of response surface methodology in the degradation of reactive blue 19 using H2O2/MgO nanoparticles advanced oxidation process. Int. J. Ind. Chem. 9, 241–253 (2018). https://doi.org/10.1007/s40090-018-0153-4

    Article  CAS  Google Scholar 

  77. D.C. Montgomery, Design and Analysis of Experiments (Wiley, Hoboken, 2017)

    Google Scholar 

  78. C.A. Igwegbe, L. Mohmmadi, S. Ahmadi, A. Rahdar, D. Khadkhodaiy, R. Dehghani, S. Rahdar, Modeling of adsorption of Methylene Blue dye on Ho-CaWO4 nanoparticles using response surface methodology (RSM) and artificial neural network (ANN) techniques. MethodsX 6, 1779–1797 (2019). https://doi.org/10.1016/j.mex.2019.07.016

    Article  PubMed  PubMed Central  Google Scholar 

  79. E.K. Tetteh, S. Rathilal, M.N. Chollom, Pre-Treatment of industrial mineral oil wastewater using response surface methodology. WIT Trans. Ecol. Environ. 216, 181–191 (2017). https://doi.org/10.2495/WS170171

    Article  CAS  Google Scholar 

  80. M. Sarkar, P. Majumdar, Application of response surface methodology for optimization of heavy metal biosorption using surfactant modified chitosan bead. Chem. Eng. J. 175, 376–387 (2011). https://doi.org/10.1016/j.cej.2011.09.125

    Article  CAS  Google Scholar 

  81. D.F. Swinehart, The Beer-Lambert law. J. Chem. Educ. 39, 333–335 (1962). https://doi.org/10.1021/ed039p333

    Article  CAS  Google Scholar 

  82. C. Moya, X. Batlle, A. Labarta, The effect of oleic acid on the synthesis of Fe3-xO4 nanoparticles over a wide size range. Phys. Chem. Chem. Phys. 17, 27373–27379 (2015). https://doi.org/10.1039/c5cp03395k

    Article  CAS  PubMed  Google Scholar 

  83. J. Cao, Y. Wu, Y. **, P. Yilihan, W. Huang, Response surface methodology approach for optimization of the removal of chromium(VI) by NH2-MCM-41. J. Taiwan Inst. Chem. Eng. 45, 860–868 (2014). https://doi.org/10.1016/j.jtice.2013.09.011

    Article  CAS  Google Scholar 

  84. Y.-N. Chang, M. Zhang, L. **a, J. Zhang, G. **ng, The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials (2012). https://doi.org/10.3390/ma5122850

    Article  PubMed  PubMed Central  Google Scholar 

  85. W. Ahmad, K. Kumar Jaiswal, M. Amjad, Euphorbia herita leaf extract as a reducing agent in a facile green synthesis of iron oxide nanoparticles and antimicrobial activity evaluation. Inorg. Nano-Metal Chem. 51, 1147–1154 (2021). https://doi.org/10.1080/24701556.2020.1815062

    Article  CAS  Google Scholar 

  86. W. Ahmad, K.K. Jaiswal, S. Soni, Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties. Inorg. Nano-Metal Chem. 50, 1032–1038 (2020). https://doi.org/10.1080/24701556.2020.1732419

    Article  CAS  Google Scholar 

  87. V.V.T. Padil, M. Černík, Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomed. 8, 889 (2013)

    Google Scholar 

  88. X. Liang, M. Sun, L. Li, R. Qiao, K. Chen, Q. **ao, F. Xu, Preparation and antibacterial activities of polyaniline/Cu 0.05Zn 0.95O nanocomposites. Dalt. Trans. 41, 2804–2811 (2012). https://doi.org/10.1039/c2dt11823h

    Article  CAS  Google Scholar 

  89. O. Amadine, Y. Essamlali, A. Fihri, M. Larzek, M. Zahouily, Effect of calcination temperature on the structure and catalytic performance of copper–ceria mixed oxide catalysts in phenol hydroxylation. RSC Adv. 7, 12586–12597 (2017). https://doi.org/10.1039/C7RA00734E

    Article  CAS  Google Scholar 

  90. I.P.T. Indrayana, L.A. Tjuana, M.T. Tuny, Nanostructure and optical properties of Fe 3 O 4: effect of calcination temperature and dwelling time. J. Phys. Conf. Ser. 1341, 082044–082053 (2019). https://doi.org/10.1088/1742-6596/1341/8/082044

    Article  CAS  Google Scholar 

  91. C.-C. Diao, C.-Y. Huang, C.-F. Yang, C.-C. Wu, Morphological, optical, and electrical properties of p-type nickel oxide thin films by nonvacuum deposition. Nanomaterials 10, 636–651 (2020). https://doi.org/10.3390/nano10040636

    Article  CAS  PubMed Central  Google Scholar 

  92. F.N. Sayed, V. Polshettiwar, Facile and sustainable synthesis of shaped iron oxide nanoparticles: effect of iron precursor salts on the shapes of iron oxides. Sci. Rep. 5, 9733–9747 (2015). https://doi.org/10.1038/srep09733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. P. Rajiv, B. Bavadharani, M.N. Kumar, P. Vanathi, Synthesis and characterization of biogenic iron oxide nanoparticles using green chemistry approach and evaluating their biological activities. Biocatal. Agric. Biotechnol. 12, 45–49 (2017). https://doi.org/10.1016/j.bcab.2017.08.015

    Article  Google Scholar 

  94. S.S.U. Rahman, M.T. Qureshi, K. Sultana, W. Rehman, M.Y. Khan, M.H. Asif, M. Farooq, N. Sultana, Single step growth of iron oxide nanoparticles and their use as glucose biosensor. Results Phys. 7, 4451–4456 (2017). https://doi.org/10.1016/j.rinp.2017.11.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to EL MADJED Laboratory, El Oued, Algeria and (Abd El-hakim) Laboratory, Boudouaou, Algeria, for giving the opportunity to perform the antibacterial tests. Special thanks to Djihad Chenna and Mrs Meriem Guezgouz for their substantial help and generous instructions in the antibacterial activity tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Laid Tedjani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tedjani, M.L., Khelef, A., Laouini, S.E. et al. Optimizing the Antibacterial Activity of Iron Oxide Nanoparticles Using Central Composite Design. J Inorg Organomet Polym 32, 3564–3584 (2022). https://doi.org/10.1007/s10904-022-02367-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02367-0

Keywords

Navigation