Log in

Synthesis, Thermal Properties and Electrical Conductivity of Na-Sialate Geopolymer

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This work aims to study the thermal behavior of basic-geopolymers derived from metakaolin (clay). The geopolymers were characterized by different techniques: thermal analysis (DTA, TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and impedance spectroscopy. Some physicochemical properties of the products were also determined: the phases obtained after geopolymer heat treatment and their electrical properties. The results obtained after drying and heat treatment showed that the products kept their initial shapes, but revealed variable colors depending on the temperatures at which they were treated. The products obtained are amorphous between 300 up to 600 °C with peaks relating to the presence of nanocrystallites of muscovites and zeolite, thus at 900 °C it is quite amorphous but only contains nanocrystallites of muscovites. From the temperature of 950 °C, we notice that the geopolymer has been transformed into a crystalline compound predominated by the Nepheline (NaAlSiO4) with the presence of a crystalline phase by minor peaks of Muscovite, this crystalline character has been increased at 1100 °C to obtain a whole phase crystalline of a Nepheline. The treatment of this geopolymer for one hour at 1200 °C shows an amorphous phase again corresponding to corundum (α-Al2O3). This indicates that the dissolution of the grains by the liquid phase induces the conversion of the material structure from sialate [–Si–O–Al–O] to sialate siloxo [–Si–O–Al–O–Si–O–] and the formation of a new crystalline phase (α-Al2O3). This development of sialate to sialate-siloxo was confirmed by IR spectroscopy. As mentioned above, from 300 to 900 °C, Na-sialate geopolymer exhibits the same disorder structure of nepheline. The crystal structure of nepheline is characterized by layers of six-membered tetrahedral rings of exclusively oval conformation. The rings are built by Regularly alternating tetrahedral AlO4 and SiO4. Stacking the layer’s parallel to the c axis gives a three-dimensional network containing channels occupied by Na cations. This topology favors easy movement of Na+ ions throughout the structure. For this reason, ionic migration in nepheline is widely reported. The refinement of Na-Sialate geopolymer at room temperature gives bulk high ionic conductivity of about 5 × 10−5 S cm−1 and this is due to the probable joint contribution of H+ and Na+ ions. Above 200 °C, Na+ seems to remain the only charge carrier with a low activation energy of about Ea = 0.26 eV. At higher temperatures, the characteristic frequencies become so close that it is impossible to distinguish the contributions. A total resistance comprising both grain and grain boundaries contribution is then determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Xu, Z. Huang, C. Liu, H. Deng, X. Deng, D. Hui, X. Zhang, Z. Bai, Nanotechnol. Rev. 10, 779–792 (2021)

    Article  CAS  Google Scholar 

  2. S. Zinatloo-Ajabshir, Z. Salehi, M. Salavati-Niasari, J. RSC Adv. 6, 107785–107792 (2016)

    Article  CAS  Google Scholar 

  3. Z. Salehi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. RSC Adv. 6, 26895–26901 (2016)

    Article  CAS  Google Scholar 

  4. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, J. Mater. Sci. Mater. Electron. 28, 17849–17859 (2017)

    Article  CAS  Google Scholar 

  5. K. Mahdavi, S. Zinatloo-Ajabshir, Q.A. Yousif, M. Salavati-Niasari, Ultrason. Sonochem. 82, 105892 (2022)

    Article  CAS  Google Scholar 

  6. S. Zinatloo-Ajabshir, M. Baladi, O. Amiri, M. Salavati-Niasar, J. Sep. Purif.Technol. 248, 117062 (2020)

    Article  CAS  Google Scholar 

  7. A. Zonarsaghar, M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, Int. J. Hydrogen Energy 47, 5403–5417 (2022)

    Article  CAS  Google Scholar 

  8. S. Zinatloo-Ajabshir, M. Sadat Morassaei, O. Amiri, M. Salavati-Niasari, L. Kok Foong, J. Inorg. Chem. Commun. 136, 109144 (2022)

    Article  Google Scholar 

  9. S. Milad Tabatabaeinejad, S. Zinatloo-Ajabshir, O. Amiri, M. Salavati-Niasari, J. RSC Adv. 11, 40100–40111 (2021)

    Article  Google Scholar 

  10. S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Int. Appl. Ceram. Technol. 13, 108–115 (2016)

    Article  CAS  Google Scholar 

  11. S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 27, 3918–3928 (2015)

    Google Scholar 

  12. S. Hanjitsuwan, P. Chindaprasirt, K. Pimraksa, Int. J. Miner. Metall. Mater. 18, 94 (2011)

    Article  CAS  Google Scholar 

  13. J. Davidovits, J. Therm. Anal. 37, 1633–1656 (1991)

    Article  CAS  Google Scholar 

  14. A. Palomo, M.T. Blanco-Varela, M.L. Granizo, F. Puertas, T. Vazquez, M.W. Grutzeck, J. Cem. Concr. Res. 29, 997–1004 (1999)

    Article  CAS  Google Scholar 

  15. J. Davidovits, J. Therm. Anal. Calorim. 37, 1633–1656 (1991)

    Article  CAS  Google Scholar 

  16. J. Davidovits, World Resour. Rev. 6, 263–278 (1994)

    Google Scholar 

  17. J. Davidovits, Geopolymer, Green Chemistry and Sustainable Development Solutions (Geopolymer Institute, Saint-Quentin, 2005)

    Google Scholar 

  18. H. Xu, J.S.J. Van Deventer, Int. J. Miner. Process. 59, 247–266 (2000)

    Article  CAS  Google Scholar 

  19. H. Xu, J.S.J. Van Deventer, J. Coll. Surf. A Physicochem. Eng. Aspects 216(15), 27–44 (2003)

    Article  CAS  Google Scholar 

  20. H. Xu, J.S.J. Van Deventer, J. Miner. Eng. 15(12), 1131–1139 (2002)

    Article  CAS  Google Scholar 

  21. J.G.S. Van Jaarsveld, J.S.J. Van Deventer, L. Lorenzen, J. Miner. Eng. 10, 659–669 (1997)

    Article  Google Scholar 

  22. P. Duxson, G.C. Lukey, J.S.J. van Deventer, J. Mater. Sci. 42, 3044–3054 (2007)

    Article  CAS  Google Scholar 

  23. P. Duxson, G.C. Lukey, J.S.J. van Deventer, J. Non-Cryst. Solids 352, 5541–5555 (2006)

    Article  CAS  Google Scholar 

  24. A. Mogus-Milankovic, K. Sklepi, P. Mošner, L. Koudelka, P. Kalenda, J. Phys. Chem. 120, 3978 (2016). https://doi.org/10.1021/acs.jpcb.6b01424

    Article  CAS  Google Scholar 

  25. Rodriguez-Carvajal, Program FULLPROF, Version 2.6.1 (2005)

  26. G. Varga, J. Pítőanyag. 59, 1 (2007)

    Google Scholar 

  27. R.L. Frost, S.J. van der Gaast, J. Clay Miner. 32, 471–484 (1997)

    Article  CAS  Google Scholar 

  28. M.-C. Jodin-Caumon, B. Humbert, N. Phambu, F. Gaboriaud, J. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 72, 959–964 (2009)

    Article  Google Scholar 

  29. C.T. Johnston, J. Helsen, A. Schoonheydt, D.L. Bish, S.F. Agnew, J. Am. Mineral. 83, 75 (1998)

    Article  CAS  Google Scholar 

  30. E. Horváth, J. Kristóf, R.L. Frost, J. Princ. Methods Appl. 45, 130–147 (2010)

    Google Scholar 

  31. R.L. Frost, J. Kristof, J.M. Schmidt, J.T. Kloprogge, J. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 57, 603–609 (2001)

    Article  CAS  Google Scholar 

  32. V.F.F. Barbosa, K.J.D. Mackenzie, C. Thaumaturgo, Int. J. Inorg. Mater. 2, 309–317 (2000)

    Article  CAS  Google Scholar 

  33. U. Rattanasak, P. Chindaprasirt, J. Miner. Eng. 22, 1073–1078 (2009)

    Article  CAS  Google Scholar 

  34. C.A. Rees, J.L. Provis, G.C. Lukey, J.S.J. van Deventer, J. Langmuir 23, 9076–9082 (2007)

    Article  CAS  Google Scholar 

  35. A. Agarwal, M. Tomozawa, J. Non-Cryst. Solids 209, 166–174 (1997)

    Article  CAS  Google Scholar 

  36. M. Sitarz, M. Handke, W. Mozgawa, J. Spectrochim. Acta A 56, 1819–1823 (2000)

    Article  Google Scholar 

  37. S. Peng, L.D. Zhang, G.W. Meng, X.F. Wang, Y.W. Wang, C.Z. Wang, J. Phys. Chem. B 106, 11163–11167 (2002)

    Article  CAS  Google Scholar 

  38. V.K. Ahlenberg, H. Böhm, J. Am. Mineral. 83, 631–637 (1998)

    Article  Google Scholar 

  39. G. Roth, H. Böhm, J. Solid State Ion. 19, 553–556 (1986)

    Article  Google Scholar 

  40. A. Jones, D. Palmer, M.S. Islam, M. Mortimer, J. Phys. Chem. Miner. 28, 28–34 (2001)

    Article  CAS  Google Scholar 

  41. J. Marcial, J. Kabel, M. Saleh, N. Washton, Y. Shaharyar, A. Goel, J.S. McCloy, J. Am. Ceram. Soc. 101, 2840 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Professor Mohamed Toumi, for the beneficial discussions, and staff of ‘Le Mans Institute of Molecules and Materials (IMMM), CNRS UMR 6283, Le Mans University, avenue Olivier Messiaen, F-72085 LE MANS Cedex 9, France’

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Zahra Souissi.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souissi, F.Z., Hajji, M., Ettoumi, H. et al. Synthesis, Thermal Properties and Electrical Conductivity of Na-Sialate Geopolymer. J Inorg Organomet Polym 32, 3083–3092 (2022). https://doi.org/10.1007/s10904-022-02337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02337-6

Keywords

Navigation