Log in

Applications of Functionalized Carbon-Based Quantum Dots in Fluorescence Sensing of Iron(III)

  • REVIEW
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Iron, an essential trace element exhibits detrimental effects on human health when present at higher or lower concentration than the required. Therefore, there is a pressing demand for sensitive and selective detection of Fe3+ in water, food etc. Unfortunately, in several instances, the traditional approaches suffer from a number of shortcomings like complicated procedures, limited sensitivity, poor selectivity and more expensive and time consuming. The scope of optical tuning and excellent photophysical properties of carbon- based nanomaterials like carbon dots (C-dots) and graphene dots (g-dots) have made them promising optical sensors of metal ions. Moreover, high surface area, superior stability of such materials contributes towards the fruitful development of sensors. The present review offered critical information on the fabrication and fluorimetric applications of these functional nanomaterials for sensitive and selective detection of Fe3+. An in-depth discussion on fluorescent C-dots made from naturally occurring materials and chemical techniques were presented. Effect of do** in C-dots was also highlighted in terms of improved fluorescence response and selectivity. In a similar approach g-dots were also discussed. Many of these sensors exhibited great selectivity, superior sensitivity, high quantum yield, robust chemical and photochemical stability and real-time applicability. Further improvement in these factors can be targeted to develop new sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Abbreviations

C-dots:

Carbon dots

CNPs:

Carbon nanoparticles

g-dots:

Graphene quantum dots

References

  1. Willner MR, Vikesland PJ (2018) Nanomaterial enabled sensors for environmental contaminants. J Nanobiotechnol 16:95

    Article  CAS  Google Scholar 

  2. Wang L, Li M, Li W, Han Y, Liu Y, Li Z, Zhang B, Pan D (2018) Rationally designed efficient dual-mode colorimetric/fluorescence sensor based on carbon dots for detection of pH and Cu2+ Ions. ACS Sustain Chem Eng 6(10):12668–12674

    Article  CAS  Google Scholar 

  3. Singh H, Bamrah A, Bhardwaj SK, Deep A, Khatri M, Kim K, Bhardwaj N (2021) Nanomaterial-based fluorescent sensors for the detection of lead ions. J Hazard Mater 407:124379

    Article  CAS  PubMed  Google Scholar 

  4. Vandarkuzhali SAA, Natarajan S, Jeyabalan S, Sivaraman G, Singaravadivel S, Muthusubramanian S, Viswanathan B (2018) Pineapple peel-derived carbon dots: applications as sensor, molecular keypad lock, and memory device. ACS Omega 3:12584–12592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang J, ** X, Cheng Z, Zhou H, Gao L, Jiang D, Jie X, Ma Y, Chen W (2021) Facile and green synthesis of bifunctional carbon dots for detection of Cu2+ and ClO– in aqueous solution. ACS Sustain Chem Eng 9:13206–13214

    Article  CAS  Google Scholar 

  6. Swetha S, Okla M, Amri S, Alaraidh I, Maksoud M, Mohammed Aufyc C, Studenik SK (2023) Novel insight on chemo-specific detection of toxic environmental chromium residues existing as recalcitrant Cr(III)-carboxyl complexes using plasmonic silver nanoplatform bi-functionalized with citrate and PVP. Spectrochim Acta A 284:121789

    Article  CAS  Google Scholar 

  7. Sohal N, Maity B, Basu S (2020) Carbon dot–MnO2 nanosphere composite sensors for selective detection of glutathione. ACS Appl Nano Mater 3:5955–5964

    Article  CAS  Google Scholar 

  8. Mahajan MR, Nangare SN, Patil PV (2023) Nanosize design of carbon dots, graphene quantum dots, and metal–organic frameworks based sensors for detection of chlorpyrifos in food and water: a review. Micro J 193:109056

    CAS  Google Scholar 

  9. Li M, Chen T, Gooding JJ, Liu J (2019) Review of carbon and graphene quantum dots for sensing. ACS Sens 4:1732–1748

    Article  CAS  PubMed  Google Scholar 

  10. Himshweta M (2023) Singh, Nanosensor platforms for detection of milk adulterants. Sen Act Rep 5:100159

    Google Scholar 

  11. Sargazi S, Fatima I, Kiani M, Mohammadzadeh V (2022) Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: a comprehensive review. Int J Biol Macromol 206:115–147

    Article  CAS  PubMed  Google Scholar 

  12. Sun Y, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, **e S (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  CAS  PubMed  Google Scholar 

  13. Pawar S, Kaja S, Nag A (2020) Red-emitting carbon dots as a dual sensor for In3+ and Pd2+ in water. ACS Omega 5:8362–8372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19:164–174

    PubMed  PubMed Central  Google Scholar 

  15. Ndayisaba A, Kaindlstorfer C, Wenning GK (2019) Iron in neurodegeneration – cause or consequence? Front Neurosci 13:180

    Article  PubMed  PubMed Central  Google Scholar 

  16. Drinking Water Regulations and Contaminants, United States Environmental Protection Agency. https://www.epa.gov/sdwa/drinking-water-regulations-and-contaminants

  17. Sahoo SK, Crisponi G (2019) Recent advances on iron(III) selective fluorescent probes with possible applications in bioimaging. Molecules 24:3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chakraborty S, Mandal M, Rayalu S (2020) Detection of iron (III) by chemo and fluoro-sensing technology. Inorg Chem Commun 121:108189

    Article  CAS  Google Scholar 

  19. Sharma S, Chayawan, Jayaraman A, Debnath J, Ghosh KS (2023) A highly selective 2-hydroxybenzhydrazone based dual sensor for Cu2+ and Fe2+ ions: spectroscopic, computational, cell imaging studies and logic gate construction. J Mol Struct 1287:135683

    Article  CAS  Google Scholar 

  20. Sharif S, Shahbaz M, Şahin O, Khurshid MA, Anbar MM, Dar B (2023) Synthesis, crystal structure and fluorimetric study of 2-phenylphthalazin-1 (2H)-one: a highly selective florescent chemosensor for detection of Fe3+ and Fe2+ metal ions. J Fluoresc. https://doi.org/10.1007/s10895-023-03484-w

    Article  PubMed  Google Scholar 

  21. Raveendran V, Kizhakayil RN (2021) Fluorescent carbon dots as biosensor, green reductant, and biomarker. ACS Omega 6:23475–23484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ji C, Zhou Y, Leblanc RM, Peng Z (2020) Recent developments of carbon dots in biosensing: a review. ACS Sens 5(9):2724–2741

    Article  CAS  PubMed  Google Scholar 

  23. Tian J, An M, Zhao X, Wang Y, Hasan M (2023) Advances in fluorescent sensing carbon dots: an account of food analysis. ACS Omega 8:9031–9039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nie H, Li M, Li Q, Liang S, Tan Y, Sheng L, Shi W, Zhang SX (2014) Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater 26:3104–3112

    Article  CAS  Google Scholar 

  25. Qin Y, Bai Y, Huang P, Wu F (2021) Dual-emission carbon dots for ratiometric fluorescent water sensing, relative humidity sensing, and anticounterfeiting applications. ACS Appl Nano Mater 4:10674–10681

    Article  CAS  Google Scholar 

  26. Zulfajri M, Gedda G, Chang C, Chang Y, Huang GG (2019) Cranberry beans derived carbon dots as a potential fluorescence sensor for selective detection of Fe3+ ions in aqueous solution. ACS Omega 4:15382–15392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aslandaş AM, Balcı N, Arık M, Şakiroğlu H, Onganers Y, Meral K (2015) Liquid nitrogen-assisted synthesis of fluorescent carbon dots from Blueberry and their performance in Fe3+ detection. Appl Surf Sci 356:747–752

    Article  ADS  Google Scholar 

  28. Wang N, Wang Y, Guo T, Yang T, Chen M, Wang J (2016) Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichiacoli. Biosens Bioelectron 85:68–75

    Article  CAS  PubMed  Google Scholar 

  29. Gupta DA, Desai ML, Malek NI, Kailasa SK (2020) Fluorescence detection of Fe3+ ion using ultra-small fluorescent carbon dots derived from pineapple (Ananas comosus): development of miniaturized analytical method. J Mol Struct 1216:128343

    Article  CAS  Google Scholar 

  30. Vikneswaran R, Ramesh S, Yahya R (2014) Green synthesized carbon nano dots as a fluorescent probe for selective and sensitive detection of iron (III) ions. Mater Lett 136:179–182

    Article  CAS  Google Scholar 

  31. Diao H, Li T, Zhang R, Kang Y, Liu W, Cui Y, Wei S, Wang N, Li L, Wang H, Niu W, Sun T (2018) Facile and green synthesis of fluorescent carbon dots with tunable emission for sensors and cells imaging. Spectrochim Acta A 200:226–234

    Article  ADS  CAS  Google Scholar 

  32. Jayaweera S, Yin K, Hu X, Ng WJ (2019) Facile preparation of fluorescent carbon dots for label-free detection of Fe3+. J Photochem Photobiol A 370:156–163

    Article  CAS  Google Scholar 

  33. Nagaraj M, Ramalingam S, Murugan C, Aldawood S, ** J, Choi I, Kim M (2022) Detection of Fe3+ ions in aqueous environment using fluorescence carbon quantum dots synthesized from endosperm of Borassus flabellifer. Environ Res 212:113273

    Article  CAS  PubMed  Google Scholar 

  34. Sim LC, Tai JY, Leong KH, Saravanan P, Tan ST, Chong WC, Aziz AA (2021) Metal free and sunlight driven g-C3N4 based photocatalyst using carbon quantum dots from Arabian dates: Green strategy for photodegradation of 2,4- dichlorophenol and selective detection of Fe3+. Diam Relat Mater 120:108679

    Article  ADS  CAS  Google Scholar 

  35. Raja S, Buhl EM, Dreschers S, Schalla C, Zenke M, Sechi A, Mattoso LHC (2021) Curaua- derived carbon dots: fluorescent probe for effective Fe (III) ion detection, cellular labelling and bioimaging. Mater Sci Eng C 129:112409

    Article  CAS  Google Scholar 

  36. Mohapatra D, Pratap R, Pandey V, Dubey PK, Agrawal AK, Parmar AS, Sahu AN (2022) Tinospora cardifolia leaves derived carbon dots for cancer cell bioimaging, free radical scavenging, and Fe3+ sensing applications. J Fluoresc 32:275–292

    Article  CAS  PubMed  Google Scholar 

  37. Seesuea C, Sansenya S, Thangsunan P, Wechakorn K (2024) Green synthesis of elephant manure-derived carbon dots and multifunctional applications: metal sensing, antioxidant, and rice plant promotion. SM& T 39:e00786

    CAS  Google Scholar 

  38. Kathiravan A, Premkumar S, Jhonsi MA (2024) Nanoarchitectonics of Melia Dubia flowers to fluorescent carbon dots and its Ferritin sensing. Colloids Surf A 681:132824

    Article  CAS  Google Scholar 

  39. Feng J, Chen Y, Han Y, Liu J, Ren C, Chen X (2016) Fluorescent carbon nanoparticles: a low-temperature trypsin-assisted preparation and Fe3+ sensing. Anal Chim Acta 926:107–117

    Article  CAS  PubMed  Google Scholar 

  40. Qu K, Wang J, Ren J, Qu X (2013) Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron (III) ions and dopamine. Chem Eur J 19:7243–7249

    Article  CAS  PubMed  Google Scholar 

  41. Pang S, Liu S (2020) Dual-emission carbon dots for ratiometric detection of Fe3+ ions and acid phosphatase. Anal Chim Acta 1105:155–161

    Article  CAS  PubMed  Google Scholar 

  42. Zheng X, Ren S, Wang L, Gai Q, Dong Q, Liu W (2021) Controllable functionalization of carbon dots as fluorescent sensors for independent Cr(VI), Fe(III) and Cu(II) ions detection. J Photochem Photobiol A 417:113359

    Article  CAS  Google Scholar 

  43. Hamishehkar H, Ghasemzadeh B, Naseri A, Salehi R, Rasoulzadeh F (2015) Carbon dots preparation as a fluorescent sensing platform for highly efficient detection of Fe (III) ions in biological systems. Spectrochim Acta A 150:934–939

    Article  CAS  Google Scholar 

  44. Li L, Shi L, Jia J, Jiao Y, Gao Y, Liu Y, Dong C, Shuang S (2020) “On-off-on” detection of Fe3+ and F-, biological imaging, and its logic gate operation based on excitation-independent blue-fluorescent carbon dots. Spectrochim Acta A 227:117716

    Article  CAS  Google Scholar 

  45. Yu A, Tang Y, Li K, Gao J, Zheng Y, Zeng Z (2019) Tunable photoluminescence studies based on blue-emissive carbon dots and sequential determination of Fe (III) and pyrophosphate ions. Spectrochim Acta A 222:117231

    Article  CAS  Google Scholar 

  46. Nan Z, Hao C, Zhang X, Liu H, Sun R (2020) Carbon quantum dots (CQDs) modified ZnO/CdS nanoparticles based fluorescence sensor for highly selective and sensitive detection of Fe(III). Spectrochim Acta A 228:117717

    Article  CAS  Google Scholar 

  47. Cai H, Zhu Y, Xu H, Chu H, Zhang D, Li J (2021) Fabrication of fluorescent hybrid nanomaterials based on carbon dots and its applications for improving the selective detection of Fe (III) in different matrices and cellular imaging. Spectrochim Acta A 246:119033

    Article  CAS  Google Scholar 

  48. Chandra S, Mahto TK, Ray Chowdhuri A, Das B, Sahu SK (2017) One step synthesis of functionalized carbon dots for the ultrasensitive detection of coli and iron (III). Sens Actuators B 245:835–844

    Article  CAS  Google Scholar 

  49. Wang Y, Chang Q, Hu S (2017) Carbon dots with concentration-tunable multicolored photoluminescence for simultaneous detection of Fe3+ and Cu2+ ions. Sens Actuators B 253:928–933

    Article  CAS  Google Scholar 

  50. Wang Y, Lao S, Ding W, Zhang Z, Liu S (2019) A novel ratiometric fluorescent probe for detection of iron ions and zinc ions based on dual-emission carbon dots. Sens Actuators B 284:186–192

    Article  CAS  Google Scholar 

  51. Anusuyadevi K, Bose AC, Velmathi S (2023) Single step solid state synthesis of carbon nanoparticles for instantaneous detection of Fe (III) in water samples. J Fluoresc. https://doi.org/10.1007/s10895-023-03437-3

  52. Qiu Y, **a L, Shi R, Yuan L, Zhang Y, Chen A, Fu Q (2024) Cost-efficient and ultrasensitive hydrogel-based visual point-of-care sensor integrated with surface patterning and strongly emissive carbon dots directly from Prunus mume Carbonisatus. Sens Actuators B 401:134958

    Article  CAS  Google Scholar 

  53. Wu J, Luo Y, Cui C, Han Q, Peng Z (2024) Carbon dots as multifunctional fluorescent probe for Fe3+ sensing in ubiquitous water environments and living cells as well as lysine detection via “on-off-on” mechanism. Spectrochim Acta A 304:123840

  54. Ghosh M, Dasgupta U, Nayek S, Saha A, Bhattacharjee RR, Chowdhury AD (2023) PSS functionalized and stabilized carbon nanodots for specific sensing of iron in biological medium. Spectrochimi Acta A 293:122445

    Article  CAS  Google Scholar 

  55. Lianga Y, Liuc Y, Lib S, Lua B, Liua C, Yanga H, Rena X, Houb Y (2019) Hydrothermal growth of nitrogen-rich carbon dots as a precise multifunctional probe for both Fe3+ detection and cellular bio-imaging. Opt Mater 89:92–99

    Article  ADS  Google Scholar 

  56. Zhua J, Chua H, Wang T, Wanga C, Weia Y (2020) Fluorescent probe-based nitrogen doped carbon quantum dots with solid state fluorescence for the detection of Hg2+ and Fe3+ in aqueous solution. Microchem J 158:105142

  57. Safranko S, Jandel K, Kovacevic M, Stankovic A (2023) A facile synthetic approach toward obtaining N-doped carbon quantum dots from citric acid and amino acids and their application in selective detection of Fe(III) ions. Chemosensors 11(4):205

    Article  CAS  Google Scholar 

  58. Cui F, Sun J, Yang X, Ji J, Pi F, Zhang Y, Lei H, Sun X (2019) Ultrasensitive fluorometric determination of iron (III) and inositol hexaphosphate in cancerous and bacterial cells by using carbon dots with bright yellow fluorescent. Analyst 144:5010–5021

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Han C, Wang R, Wang K, Xu H, Sui M, Li J, Xu K (2016) Highly fluorescent carbon dots as selective and sensitive “on-off-on” probes for iron (III) ion and apoferritin detection and imaging in living cells. Biosens Bioelectron 83:229–236

    Article  CAS  PubMed  Google Scholar 

  60. Lv X, Man H, Dong L, Huang J, Wang X (2020) Preparation of highly crystalline nitrogen-doped carbon dots and their application in sequential fluorescent detection of Fe3+ and ascorbic acid. Food Chem 326:126935

    Article  CAS  PubMed  Google Scholar 

  61. Wang C, Hu T, Wen Z, Zhou J, Wang X, Wu Q, Wang C (2018) Concentration-dependent color tunability of nitrogen-doped carbon dots and their application for iron (III) detection and multicolor bioimaging. J Colloid Interface Sci 521:33–41

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Lv P, Yao Y, Zhou H, Zhang J, Pang Z, Ao K, Cai Y, Wei Q (2017) Synthesis of novel nitrogen-doped carbon dots for highly selective detection of iron ion. Nanotechnol 28:165502

    Article  ADS  Google Scholar 

  63. Wang R, Wang X, Sun Y (2017) One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH. Sens Actuators B 241:73–79

    Article  CAS  Google Scholar 

  64. Fan R, **ang J, Zhou P, Mei H, Li Y, Wang H, Liu X, Wang X (2022) Reuse of waste Myrica rubra for green synthesis of nitrogen-doped carbon dots as an “on-off-on” fluorescent probe for Fe3+ and ascorbic acid detection. Ecotoxicol Environ Saf 233:113350

    Article  CAS  PubMed  Google Scholar 

  65. Lu M, Duan Y, Song Y, Tan J, Zhou L (2018) Green preparation of versatile nitrogen-doped carbon quantum dots from watermelon juice for cell imaging, detection of Fe3+ ions, cysteine and optical thermometry. J Mol Liq 269:766–774

    Article  CAS  Google Scholar 

  66. Zhou Y, Chen G, Ma C, Gu J, Yang T, Zhang W (2023) Nitrogen-doped carbon dots with bright fluorescence for highly sensitive detection of Fe3+ in environmental waters. Spectrochim Acta A 293:122414

    Article  CAS  Google Scholar 

  67. Wang B, Guo L, Yan X, Hou F, Zhong L, Xu H (2023) Dual-mode detection sensor based on nitrogen-doped carbon dots from pine needles for the determination of Fe3+ and folic acid. Spectrochim Acta A 285:121891

    Article  CAS  Google Scholar 

  68. Yuan XY, Yu ZC, Hu JH, **ao B, Zhang TT, Li K, Chen C, Tao Z, **ao X (2024) A cucurbit[6]uril-based carbon dot for recognizing metal ions and anions in solutions. Spectrochim Acta A 307:123632

    Article  CAS  Google Scholar 

  69. Xu L, Qian Y, Bao L, Wang W, Deng N, Zhang L, Fu W (2024) Nitrogen-doped carbon quantum dots for fluorescence sensing, anti-counterfeiting and logic gate operations. New J Chem 48:155–161

    Article  CAS  Google Scholar 

  70. Annamalai K, Annamalai A, Ravichandran R, Jeevarathinam A, Annamalai P, Valdes H, Elumalai S (2024) Simple devising of N-doped carbon dots (N-CDs) as a low-cost probe for selective environmental toxin detection and security applications. New J Chem 48(1):216–227

    Article  CAS  Google Scholar 

  71. Chahnasir FS, Amiripour F, Ghasemi S (2024) Orange peel-derived carbon dots/Cu-MOF nanohybrid for fluorescence determination of l-ascorbic acid and Fe3+. Anal Chim Acta 1287:342066

    Article  Google Scholar 

  72. Rani M, Shanker U, Kaith BS, Sillanpaa M (2024) Green fabrication of fluorescent N-doped carbon quantum dots from Aegle marmelos leaves for highly selective detection of Fe3+ metal ions. Inorg Chem Commun 159:111878

    Article  Google Scholar 

  73. Li C, Liu L, Zhang D (2024) Aggregation enhanced emissive orange carbon dots for information encryption and detection of Fe3+ and tetracycline. Spectrochim Acta A 305:123504

    Article  CAS  Google Scholar 

  74. Atchudana R, Edison TNJI, Perumal S, Muthuchamy N, Lee YR (2020) Eco-friendly synthesis of tunable fluorescent carbon nanodots from Malus floribunda for sensors and multicolor bioimaging. J Photochem Photobiol A 390:112336

    Article  Google Scholar 

  75. Kalanidhi K, Nagaraaj P (2021) Facile and Green synthesis of fluorescent N-doped carbon dots from betel leaves for sensitive detection of Picric acid and Iron ion. J Photochem Photobiol A 418:113369

    Article  Google Scholar 

  76. Huang Q, Li Q, Chen Y, Tong L, Lin X, Zhu J, Tong Q (2018) High quantum yield nitrogen-doped carbon dots: green synthesis and application as “off-on” fluorescent sensors for the determination of Fe3+ and adenosine triphosphate in biological samples. Sens Actuators B 276:82–88

    Article  CAS  Google Scholar 

  77. Gao G, Jiang Y, Jia H, Yang J, Wu F (2018) On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots. Carbon 134:232–243

    Article  CAS  Google Scholar 

  78. Wang L, Chung JS, Hur SH (2019) Nitrogen and boron-incorporated carbon dots for the sequential sensing of ferric ions and ascorbic acid sensitively and selectively. Dyes Pigm 171:107752

    Article  CAS  Google Scholar 

  79. Wu H, Pang L, Fu M, Guo X, Wang H (2020) Boron and nitrogen codoped carbon dots as fluorescence sensor for Fe3+ with improved selectivity. J Pharm Biomed Anal 180:113052

    Article  CAS  PubMed  Google Scholar 

  80. Mohammed LJ, Omer KM (2020) Dual functional highly luminescence B, N Co-doped carbon nanodots as nanothermometer and Fe3+/Fe2+ sensor. Sci Rep 10:3028

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Azami M, Valizadehderakhshan M, Tukur P, Wei J (2024) Highly fluorescent N, B-doped carbon nanodots performing as optical turn-off probes discerning Fe (II). J Photochem Photobiol A 446:115111

    Article  CAS  Google Scholar 

  82. Chen S, Hao Y, Liu S, Liu Y, Zhang Z, Fang M, Geng L (2024) Boron and nitrogen co-doped carbon dots as the dual functional fluorescent probe for Fe3+ and pH detection. J Saudi Chem Soc 28(1):101775

    Article  CAS  Google Scholar 

  83. Cui X, Wang Y, Liu J, Yang Q, Zhang B, Gao Y, Wang Y, Lu G (2017) Dual functional N- and S-co-doped carbon dots as the sensor for temperature and Fe3+ions. Sens Actuators B 242:1272–1280

    Article  CAS  Google Scholar 

  84. Pei L, Zhang W, Yang S, Chen K, Zhu X, Zhao Y, Han S (2023) Nitrogen and sulfur co-doped carbon dots as a turn-off fluorescence probe for the detection of cerium and iron. J Fluoresc 33:1147–1156

    Article  CAS  PubMed  Google Scholar 

  85. Ye Q, Yan F, Luo Y, Wang Y, Zhou X, Chen L (2017) Formation of N, S-codoped fluorescent carbon dots from biomass and their application for the selective detection of mercury and iron ion. Spectrochim Acta A 173:854–862

    Article  ADS  CAS  Google Scholar 

  86. Du F, Cheng Z, Tan W, Sun L, Ruan G (2020) Development of sulfur doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe2+ and Fe3+ ions in oral ferrous gluconate samples. Spectrochim Acta A 226:117602

    Article  CAS  Google Scholar 

  87. Honga D, Denga X, Lianga J, Lia J, Taoc Y, Tana K (2019) One-step hydrothermal synthesis of down/up-conversion luminescence F doped carbon quantum dots for label-free detection of Fe3+. Microchem J 151:104217

    Article  Google Scholar 

  88. Zhang Y, Ma J, Yang Y, Ru J, Liu X, Ma Y, Guo H (2019) Synthesis of nitrogen-doped graphene quantum dots (N-GQDs) from marigold for detection of Fe3+ ion and bioimaging. Spectrochim Acta A 217:60–67

    Article  ADS  CAS  Google Scholar 

  89. Yang Y, Zou T, Wang Z, **ng X, Peng S, Zhao R, Zhang X, Wang Y (2019) The fluorescent quenching mechanism of N and S Co-doped graphene quantum dots with Fe3+ and Hg2+ ions and their application as a novel fluorescent sensor. Nanomaterials 9:738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang C, Cui Y, Song L, Liu X, Hu Z (2016) Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta 150:54–60

    Article  CAS  PubMed  Google Scholar 

  91. Tang W, Tian Y, Li B, Liu Q, Wang D, **g X, Zhang J, Xu S (2019) Fe3+-selective and sensitive “on-off” fluorescence probe based on the graphitic carbon nitride nanosheets. Spectrochim Acta A 210:341–347

    Article  ADS  CAS  Google Scholar 

  92. Yao Q, Wu H, ** Y, Wang C, Zhang R, Lin Y, Wu S (2022) One-pot synthesis of fluorescent nitrogen-doped graphene quantum dots for portable detection of iron ion. Curr Appl Phys 41:191–199

    Article  ADS  Google Scholar 

  93. Lia B, **ao X, Huc M, Wanga Y, Wanga Y, Yana X, Huanga Z, Servatic P, Huanga L, Tanga J (2022) Mn, B, N co-doped graphene quantum dots for fluorescence sensing and biological imaging. Arab J Chem 15:103856

    Article  Google Scholar 

  94. Zhang H, Wang J, Wei S, Wang C, Yin X, Song X, Jianga C, Sun G (2023) Nitrogen-doped graphene quantum dot-based portable fluorescent sensors for the sensitive detection of Fe3+ and ATP with logic gate operation. J Mater Chem B 11:6082

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Director, NIT Hamirpur for providing the research facilities. Sushma and SS are grateful to UGC, New Dehi and NIT Hamirpur respectively for their Research Fellowship.

Funding

The work did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

Literature was reviewed by Sushma and SS. Drafting of the manuscript was done by Sushma and KSG.

Corresponding author

Correspondence to Kalyan Sundar Ghosh.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushma, Sharma, S. & Ghosh, K.S. Applications of Functionalized Carbon-Based Quantum Dots in Fluorescence Sensing of Iron(III). J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03611-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03611-1

Keywords

Navigation