Log in

Schiff Bases: A Versatile Fluorescence Probe in Sensing Cations

  • REVIEW
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Metal cations such as Zn2+, Al3+, Hg2+, Cd2+, Sn2+, Fe2+, Fe3+ and Cu2+ play important roles in biology, medicine, and the environment. However, when these are not maintained in proper concentration, they can be lethal to life. Therefore, selective sensing of metal cations is of great importance in understanding various metabolic processes, disease diagnosis, checking the purity of environmental samples, and detecting toxic analytes. Schiff base probes have been largely used in designing fluorescent sensors for sensing metal ions because of their easy processing, availability, fast response time, and low detection limit. Herein, an in-depth report on metal ions recognition by some Schiff base fluorescent sensors, their sensing mechanism, their practical applicability in cell imaging, building logic gates, and analysis of real-life samples has been presented. The metal ions having biological, industrial, and environmental significance are targeted. The compiled information is expected to prove beneficial in designing and synthesis of the related Schiff base fluorescent sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 3
Scheme 4
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Scheme 5
Fig. 18
Fig. 19
Scheme 6
Scheme 7
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Scheme 8
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Scheme 9
Fig. 32
Fig. 33

Similar content being viewed by others

Availability of Data and Materials

Nil.

Abbreviations

CHEF:

Chelation enhanced fluorescence

FRET:

Fluorescence resonance energy transfer

CHEQ:

Chelation enhanced quenching

ICT:

Intramolecular charge transfer

PET:

Photoinduced electron transfer

ESIPT:

Excited-state intramolecular proton transfer

LOD:

Limit of detection

Ka :

Association constant

References

  1. Gokel GW, Leevy WM, Weber ME (2004) Crown ethers: Sensors for ions and molecular scaffolds for materials and biological models. Chem Rev 104:2723–2750. https://doi.org/10.1021/cr020080k

    Article  CAS  PubMed  Google Scholar 

  2. Chen X, Pradhan T, Wang F et al (2012) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112:1910–1956. https://doi.org/10.1021/cr200201z

    Article  CAS  PubMed  Google Scholar 

  3. Ren Y, Chen X, Li X et al (2010) Quantitative prediction of the thermal motion and intrinsic disorder of protein cofactors in crystalline state: A case study on halide anions. J Theor Biol 266:291–298. https://doi.org/10.1016/j.jtbi.2010.06.038

    Article  CAS  PubMed  Google Scholar 

  4. Maurya N, Bhardwaj S, Singh AK (2016) A modest colorimetric chemosensor for investigation of CN- in semi-aqueous environment with high selectivity and sensitivity. Sens Actuators B Chem 229:483–491. https://doi.org/10.1016/j.snb.2016.02.014

    Article  CAS  Google Scholar 

  5. Michalski R, Kurzyca I (2006) Determination of nitrogen species (nitrate, nitrite and ammonia ions) in environmental samples by ion chromatography. Pol J Environ Stud 15:5–18

    CAS  Google Scholar 

  6. Upadhyay S, Singh A, Sinha R et al (2019) Colorimetric chemosensors for d-metal ions: A review in the past, present and future prospect. J Mol Struct 1193:89–102. https://doi.org/10.1016/j.molstruc.2019.05.007

    Article  CAS  Google Scholar 

  7. Erdman JW, Macdonald IA, Zeisel SH (2012) Present Knowledge in Nutrition, 1st edn. Wiley

    Book  Google Scholar 

  8. Ross AC, Caballero BH, Cousins RJ, Tucker KL, Ziegler TR (2012) Modern nutrition in health and disease: Eleventh edition. Wolters Kluwer Health Adis (ESP)

  9. Ahamed M, Verma S, Kumar A, Siddiqui MKJ (2005) Environmental exposure to lead and its correlation with biochemical indices in children. Sci Total Environ 346:48–55. https://doi.org/10.1016/j.scitotenv.2004.12.019

    Article  CAS  PubMed  Google Scholar 

  10. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, Prion, and Parkinson’s Diseases and amyotrophic lateral sclerosis). Chem Rev 106:1995–2044. https://doi.org/10.1021/cr040410w

    Article  CAS  PubMed  Google Scholar 

  11. Jaishankar M, Tseten T, Anbalagan N et al (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matsui H, Morimoto M, Horimoto K, Nishimura Y (2007) Some characteristics of fluoride-induced cell death in rat thymocytes: Cytotoxicity of sodium fluoride. Toxicol In Vitro 21:1113–1120. https://doi.org/10.1016/j.tiv.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  13. Strausak D, Mercer JFB, Dieter HH et al (2001) Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res Bull 55:175–185. https://doi.org/10.1016/S0361-9230(01)00454-3

    Article  CAS  PubMed  Google Scholar 

  14. Botz MM, Mudder TI (2000) Modeling of natural cyanide attenuation in tailings impoundments. Mining Metall Explor 17:228–233. https://doi.org/10.1007/BF03403239

    Article  CAS  Google Scholar 

  15. Fang G (2001) Spectrophotometric determination of lead in foods with dibromo-p-methyl-bromosulfonazo. Talanta 54:585–589. https://doi.org/10.1016/S00399140(00)00677-9

    Article  CAS  PubMed  Google Scholar 

  16. Liu Q, Liu T, Fang Y (2020) Perylene Bisimide derivative-based fluorescent film sensors: From sensory materials to device fabrication. Langmuir 36:2155–2169. https://doi.org/10.1021/acs.langmuir.9b03919

    Article  CAS  PubMed  Google Scholar 

  17. Luo X, Han Y, Chen X et al (2020) Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review. Trends Food Sci Technol 95:149–161. https://doi.org/10.1016/j.tifs.2019.11.017

    Article  CAS  Google Scholar 

  18. Shamsipur M, Barati A, Nematifar Z (2019) Fluorescent pH nanosensors: Design strategies and applications. J Photochem Photobiol C 39:76–141. https://doi.org/10.1016/j.jphotochemrev.2019.03.001

    Article  CAS  Google Scholar 

  19. Velusamy S, Roy A, Sundaram S, Kumar Mallick T (2021) A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. Chem Rec 21:1570–1610. https://doi.org/10.1002/tcr.202000153

    Article  CAS  PubMed  Google Scholar 

  20. Becker JS, Matusch A, Depboylu C et al (2007) Quantitative imaging of selenium, copper, and zinc in thin sections of biological tissues (slugs−genus arion) measured by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 79:6074–6080. https://doi.org/10.1021/ac0700528

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Liang P, Guo L (2005) Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry. Talanta 68:25–30. https://doi.org/10.1016/j.talanta.2005.04.035

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Sun J, Tong J et al (2018) Paper-based sensor chip for heavy metal ion detection by SWSV. Micromachines 9:150. https://doi.org/10.3390/mi9040150

    Article  PubMed  PubMed Central  Google Scholar 

  23. Barba-Bon A, Costero AM, Gil S et al (2012) A new selective fluorogenic probe for trivalent cations. Chem Commun 48:3000. https://doi.org/10.1039/c2cc17184h

    Article  CAS  Google Scholar 

  24. Kaur B, Kaur N, Kumar S (2018) Colorimetric metal ion sensors – A comprehensive review of the years 2011–2016. Coord Chem Rev 358:13–69. https://doi.org/10.1016/j.ccr.2017.12.002

    Article  CAS  Google Scholar 

  25. Sarkar M (2020) A review on 2,6-Diformyl-4-methylphenol derived schiff bases as fluorescent sensors. Asian J Chem 32:1837–1848. https://doi.org/10.14233/ajchem.2020.22644

    Article  CAS  Google Scholar 

  26. Wright AT, Anslyn EV (2006) Differential receptor arrays and assays for solution-based molecular recognition. Chem Soc Rev 35:14–28. https://doi.org/10.1039/B505518K

    Article  CAS  PubMed  Google Scholar 

  27. Amendola V, Fabbrizzi L (2009) Anion receptors that contain metals as structural units. ChemCommun 513–531. https://doi.org/10.1039/B808264M

    Article  Google Scholar 

  28. Prodi L (2005) Luminescent chemosensors: from molecules to nanoparticles. New J Chem 29:20. https://doi.org/10.1039/b411758a

    Article  CAS  Google Scholar 

  29. Yoon J, Kim SK, Singh NJ, Kim KS (2006) Imidazolium receptors for the recognition of anions. Chem Soc Rev 35:355. https://doi.org/10.1039/b513733k

    Article  CAS  PubMed  Google Scholar 

  30. Czarnik AW (1994) Fluorescent chemosensors for ion and molecule recognition. Instrum Sci Technol 22:405–406. https://doi.org/10.1080/10739149408001201

    Article  Google Scholar 

  31. Kumar A, Virender MB et al (2022) Development of 2-hydroxy-naphthaldehyde functionalized Schiff base chemosensor for spectroscopic and colorimetric detection of Cu2+ and Pd2+ ions. Microchem J 180:107561. https://doi.org/10.1016/j.microc.2022.107561

    Article  CAS  Google Scholar 

  32. Yin P, Ma W, Liu J et al (2022) Dual functional chemosensor for nano-level detection of Al3+ and Cu2+: Application to real samples analysis, colorimetric test strips and molecular logic gates. Microchem J 180:107557. https://doi.org/10.1016/j.microc.2022.107557

    Article  CAS  Google Scholar 

  33. Yu W, Wang L, Wang L et al (2021) Quinoline based colorimetric and “turn-off” fluorescent chemosensor for phosgene sensing in solution and vapor phase. Microchem J 168:106334. https://doi.org/10.1016/j.microc.2021.106334

    Article  CAS  Google Scholar 

  34. Udhayakumari D, Naha S, Velmathi S (2017) Colorimetric and fluorescent chemosensors for Cu2+. A comprehensive review from the years 2013–15. Anal Methods 9:552–578. https://doi.org/10.1039/C6AY02416E

    Article  CAS  Google Scholar 

  35. Abu-Dief AM, Mohamed IMA (2015) A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ J Basic Appl Sci 4:119–133. https://doi.org/10.1016/j.bjbas.2015.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  36. Qin W, Long S, Panunzio M, Biondi S (2013) Schiff bases: a short survey on an evergreen chemistry tool. Molecules 18:12264–12289. https://doi.org/10.3390/molecules181012264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Antony R, Arun T, Manickam STD (2019) A review on applications of chitosan-based schiff bases. Int J Biol Macromol 129:615–633. https://doi.org/10.1016/j.ijbiomac.2019.02.047

    Article  CAS  PubMed  Google Scholar 

  38. Kajal A, Bala S, Kamboj S et al (2013) Schiff bases: A versatile pharmacophore. J Catal 2013:1–14. https://doi.org/10.1155/2013/893512

    Article  CAS  Google Scholar 

  39. Muzammil K, Trivedi P, Ketani DB (2015) Synthesis and characterization of schiff base m-nitro aniline and their complexes. Res J Chem 5:52–55

    CAS  Google Scholar 

  40. Kolapwar BG (2017) Study of Schiff base compounds and its derivatives. Anveshana’s Int J Rese Pharm Life Sci 2:15–18

    Google Scholar 

  41. Salvat A, Fortunato, et al (2001) Screening of some plants from Northern Argentina for their antimicrobial activity. Lett ApplMicrobiol 32:293–297. https://doi.org/10.1046/j.1472-765X.2001.00923.x

    Article  CAS  Google Scholar 

  42. Fareed G, Rizwani GH, Ahmed M et al (2017) Schiff bases derived from 1-aminoanthraquinone: A new class of analgesic compounds. Pak J Sciind Res Ser A Physsci 60:122–127. https://doi.org/10.52763/PJSIR.PHYS.SCI.60.3.2017.122.127

    Article  CAS  Google Scholar 

  43. Hanif M, Hassan M, Rafiq M et al (2018) Microwave-assisted synthesis, in vivo anti-inflammatory and in vitro anti-oxidant activities, and molecular docking study of new substituted schiff base derivatives. Pharm Chem J 52:424–437. https://doi.org/10.1007/s11094-018-1835-0

    Article  CAS  Google Scholar 

  44. Kakanejadifard A, Khojasteh V, Zabardasti A, Azarbani F (2018) New azo-schiff base ligand capped silver and cadmium sulfide nanoparticles preparation, characterization, antibacterial and antifungal activities. Org Chem Res. https://doi.org/10.22036/org.chem.2018.133383.1149

    Article  Google Scholar 

  45. Malik A, Goyat G, Verma KK, Garg S (2018) Synthesis, spectral and antimicrobial studies of some o-vanillin-2-aminopyridine schiff base complexes of organyltellurium (IV). Chem Sci Trans. https://doi.org/10.7598/cst2018.1480

    Article  Google Scholar 

  46. Kalaiarasi G, Dharani S, Puschmann H, Prabhakaran R (2018) Synthesis, structural characterization, DNA/protein binding and antioxidant activities of binuclear Ni(II) complexes containing ONS chelating ligands bridged by 1,3-bis(diphenylphosphino)propane. Inorg Chem Commun 97:34–38. https://doi.org/10.1016/j.inoche.2018.09.004

    Article  CAS  Google Scholar 

  47. Al-Shemary RK (2017) Design, synthesis and biological evaluation of schiff bases and their Co(II), Cu(II), Ni(II) chelates from derivative containing indole moiety bearing-triazole. ECB 6:433. https://doi.org/10.17628/ecb.2017.6.433-439

  48. Luo H, **a Y, Sun B et al (2017) Synthesis and evaluation of in vitro antibacterial and antitumor activities of novel N, N-disubstituted schiff bases. Biochem Res Int 2017:1–10. https://doi.org/10.1155/2017/6257240

    Article  CAS  Google Scholar 

  49. More G, Bootwala SZ, Mascarenhas J, Aruna K (2018) Anti-microbial and anti-tubercular activity evaluation of newly synthesized zinc complexes of aminothiophene schiff bases. Int J Pharm Sci Res 9:3029–3035. https://doi.org/10.13040/IJPSR.0975-8232.9(7)

    Article  CAS  Google Scholar 

  50. Mahmood Yousif Al-Labban H, Mohammed Sadiq H, AbduljabbarJaloobAljanaby A (2019) Synthesis, Characterization and study biological activity of some Schiff bases derivatives from 4-amino antipyrine as a starting material. J Phys Conf Ser 1294:052007. https://doi.org/10.1088/1742-6596/1294/5/052007

    Article  CAS  Google Scholar 

  51. Peng H, Liu Y, Huang J et al (2021) A simple fluorescent probe for selective detection of Al3+ based on furan Schiff base and its crystal structure. J Mol Struct 1229:129866. https://doi.org/10.1016/j.molstruc.2020.129866

    Article  CAS  Google Scholar 

  52. Shin H, Jannah F, Yoo EJ, Kim J-M (2022) A colorimetric and fluorescence “turn-on” sensor for Fe(III) ion based on imidazole-functionalized polydiacetylene. Sens Actuators B Chem 350:130885. https://doi.org/10.1016/j.snb.2021.130885

    Article  CAS  Google Scholar 

  53. Tümay SO, Yeşilot S (2021) Highly selective “turn-on” fluorescence determination of mercury ion in food and environmental samples through novel anthracene and pyrene appended Schiff bases. J Photochem Photobiol A 407:113093. https://doi.org/10.1016/j.jphotochem.2020.113093

    Article  CAS  Google Scholar 

  54. Mohanasundaram D, Bhaskar R, Sankarganesh M et al (2022) A simple pyridine based fluorescent chemosensor for selective detection of copper ion. Spectrochim Acta Part A Mol Biomol Spectrosc 265:120395. https://doi.org/10.1016/j.saa.2021.120395

    Article  CAS  Google Scholar 

  55. Chauhan A, Langyan R (2022) Photosensitization in highly luminescent nonmacrocyclic Samarium(III) complexes for application in light-emitting systems. J Photochem Photobiol A 424:113627. https://doi.org/10.1016/j.jphotochem.2021.113627

    Article  CAS  Google Scholar 

  56. Ding W, Wu Y, Zhang S et al (2021) A dual-channel ‘turn-on’ fluorescent chemosensor for high selectivity and sensitivity detection of CN¯ based on a coumarin-Schiff base derivative in an aqueous system. Luminescence 36:1306–1316. https://doi.org/10.1002/bio.4058

    Article  CAS  PubMed  Google Scholar 

  57. Singh H, Bamrah A, Bhardwaj SK et al (2021) Recent advances in the application of noble metal nanoparticles in colorimetric sensors for lead ions. Environ Sci Nano 8:863–889. https://doi.org/10.1039/D0EN00963F

    Article  CAS  Google Scholar 

  58. Sun X, Ding Y, Niu B, Chen Q (2021) Evaluation of a composite nanomaterial consist of gold nanoparticles and graphene-carbon nitride as capillary electrochromatography stationary phase for enantioseparation. Microchem J 169:106613. https://doi.org/10.1016/j.microc.2021.106613

    Article  CAS  Google Scholar 

  59. Udhayakumari D, Inbaraj V (2020) A review on schiff base fluorescent chemosensors for cell imaging applications. J Fluoresc 30:1203–1223. https://doi.org/10.1007/s10895-020-02570-7

    Article  CAS  PubMed  Google Scholar 

  60. Junaid HM, Batool M, Harun FW et al (2022) Naked eye chemosensing of anions by schiff bases. Crit Rev Anal Chem 52:463–480. https://doi.org/10.1080/10408347.2020.1806703

    Article  CAS  PubMed  Google Scholar 

  61. Shah SS, Shah D, Khan I, Ahmad S, Ali U, Rahman AU (2020) Synthesis and antioxidant activities of schiff bases and their complexes: An updated review. Biointerface Res Appl Chem 10:6936–6963. https://doi.org/10.33263/BRIAC106.69366963

    Article  CAS  Google Scholar 

  62. Al Zoubi W, Ko YG (2017) Schiff base complexes and their versatile applications as catalysts in oxidation of organic compounds: part I: Schiff bases and their versatile applications. Appl Organometal Chem 31:3574. https://doi.org/10.1002/aoc.3574

    Article  CAS  Google Scholar 

  63. Gupta P, Dwivedi D, Chourey VR (2021) Review article on metal complexes derived from 2’-hydroxyacetophenone based Schiff Base. Orient J Chem 37:25–32. https://doi.org/10.13005/ojc/370102

    Article  CAS  Google Scholar 

  64. Uddin MN, Ahmed SS, Alam SMR (2020) REVIEW: Biomedical applications of Schiff base metal complexes. J Coord Chem 73:3109–3149. https://doi.org/10.1080/00958972.2020.1854745

    Article  CAS  Google Scholar 

  65. Shetty P (2020) Schiff bases: An overview of their corrosion inhibition activity in acid media against mild steel. Chem Eng Commun 207:985–1029. https://doi.org/10.1080/00986445.2019.1630387

    Article  CAS  Google Scholar 

  66. Berhanu AL, Gaurav MI et al (2019) A review of the applications of Schiff bases as optical chemical sensors. TrAC, Trends Anal Chem 116:74–91. https://doi.org/10.1016/j.trac.2019.04.025

    Article  CAS  Google Scholar 

  67. Naskar B, Modak R, Sikdar Y et al (2017) Fluorescent sensing of Al3+by benzophenone-based Schiff base chemosensor and live cell imaging applications: Impact of keto-enol tautomerism. Sens Actuators B Chem 239:1194–1204. https://doi.org/10.1016/j.snb.2016.08.148

    Article  CAS  Google Scholar 

  68. Sen B, Sheet SK, Thounaojam R et al (2017) A coumarin based Schiff base probe for selective fluorescence detection of Al3+ and its application in live cell imaging. Spectrochim Acta Part A Mol Biomol Spectrosc 173:537–543. https://doi.org/10.1016/j.saa.2016.10.005

    Article  CAS  Google Scholar 

  69. Sharma S, Hundal MS, Walia A et al (2014) Nanomolar fluorogenic detection of Al(III) by a series of Schiff bases in an aqueous system and their application in cell imaging. Org BiomolChem 12:4445. https://doi.org/10.1039/c4ob00329b

    Article  CAS  Google Scholar 

  70. Fan L, Qin J, Li T et al (2014) A chromone Schiff-base as Al(III) selective fluorescent and colorimetric chemosensor. J Lumin 155:84–88. https://doi.org/10.1016/j.jlumin.2014.06.023

    Article  CAS  Google Scholar 

  71. Kashyap KS, Kumar A, Hira SK, Dey S (2019) Recognition of Al3+ through the off-on mechanism as a proficient driving force for the hydrolysis of BODIPY conjugated Schiff base and its application in bio-imaging. Inorganica Chim Acta 498:119157. https://doi.org/10.1016/j.ica.2019.119157

    Article  CAS  Google Scholar 

  72. Xu Y, Li L, Bai L et al (2020) Water-soluble fluorescent chemosensor based on Schiff base derivative terminated PEG for highly efficient detection of Al3+ in pure aqueous media. Tetrahedron Lett 61:152335. https://doi.org/10.1016/j.tetlet.2020.152335

    Article  CAS  Google Scholar 

  73. Xu Y, Kong L, Bai L et al (2021) A new water-soluble polymer fluorescent chemosensor with thiophene Schiff base site for selectively sensing Al3+ ions. Tetrahedron 79:131888. https://doi.org/10.1016/j.tet.2020.131888

    Article  CAS  Google Scholar 

  74. Selvan GT, Kumaresan M, Sivaraj R et al (2016) Isomeric 4-aminoantipyrine derivatives as fluorescent chemosensors of Al3+ ions and their molecular logic behaviour. Sens Actuators B Chem 229:181–189. https://doi.org/10.1016/j.snb.2016.01.097

    Article  CAS  Google Scholar 

  75. Xu H, Chen W, Ju L, Lu H (2021) A purine based fluorescent chemosensor for the selective and sole detection of Al3+ and its practical applications in test strips and bio-imaging. Spectrochim Acta Part A Mol Biomol Spectrosc 247:119074. https://doi.org/10.1016/j.saa.2020.119074

    Article  CAS  Google Scholar 

  76. Xu J, Li H, Li L et al (2020) A highly selective fluorescent chemosensor for Al3+ Based on 2,2’:6’,2”-terpyridine with a salicylal schiff base. J Braz Chem Soc. https://doi.org/10.21577/0103-5053.20200063

    Article  Google Scholar 

  77. Chen Y (2020) Microwave-assisted synthesis of a novel steroid-derived Schiff base chemosensor for detection of Al3+ in aqueous media. J Chem Res 44:750–755. https://doi.org/10.1177/1747519820914827

    Article  CAS  Google Scholar 

  78. Banerjee S, Brandão P, Saha A (2016) A robust fluorescent chemosensor for aluminum ion detection based on a Schiff base ligand with an azo arm and application in a molecular logic gate. RSC Adv 6:101924–101936. https://doi.org/10.1039/C6RA21217D

    Article  CAS  Google Scholar 

  79. Gao C, Zang P, Liu W, Tang Y (2016) A highly selective and sensitive fluorescent chemosensor for aluminum ions based on schiff base. J Fluoresc 26:2015–2021. https://doi.org/10.1007/s10895-016-1895-z

    Article  CAS  PubMed  Google Scholar 

  80. Hossain SM, Singh K, Lakma A et al (2017) A schiff base ligand of coumarin derivative as an ICT-Based fluorescence chemosensor for Al3+. Sens Actuators B Chem 239:1109–1117. https://doi.org/10.1016/j.snb.2016.08.093

    Article  CAS  Google Scholar 

  81. Hwang IH, Choi YW, Kim KB et al (2016) A highly selective and sensitive fluorescent turn-on Al3+ chemosensor in aqueous media and living cells: experimental and theoretical studies. New J Chem 40:171–178. https://doi.org/10.1039/C5NJ02334C

    Article  CAS  Google Scholar 

  82. Alyaninezhad Z, Bekhradnia A, Feizi N et al (2019) A novel aluminum-sensitive fluorescent chemosensor based on 4-aminoantipyrine: An experimental and theoretical study. Spectrochim Acta Part A Mol Biomol Spectrosc 212:32–41. https://doi.org/10.1016/j.saa.2018.12.035

    Article  CAS  Google Scholar 

  83. Manna AK, Chowdhury S, Patra GK (2020) Combined experimental and theoretical studies on a phenyl thiadiazole-based novel turn-on fluorescent colorimetric Schiff base chemosensor for the selective and sensitive detection of Al3+. New J Chem 44:10819–10832. https://doi.org/10.1039/D0NJ01954B

    Article  CAS  Google Scholar 

  84. Kim SY, Lee SY, Kang JH et al (2018) Colorimetric detection of Fe3+/2+ and fluorescent detection of Al3+ in aqueous media: applications and DFT calculations. J Coord Chem 71:2401–2414. https://doi.org/10.1080/00958972.2018.1478086

    Article  CAS  Google Scholar 

  85. Kurbah SD, Kumar A, Shangpung S et al (2017) Synthesis, characterization, and fluorescence chemosensor properties of a cis -dioxomolybdenum (VI) complex containing multidentate hydrazone ligands. Z Anorg Allg Chem 643:794–801. https://doi.org/10.1002/zaac.201700100

    Article  CAS  Google Scholar 

  86. Li H, Wang J, Zhang S et al (2018) A novel off-on fluorescent chemosensor for Al3+ derived from a 4,5-diazafluorene Schiff base derivative. RSC Adv 8:31889–31894. https://doi.org/10.1039/C8RA05280H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu T, Wan X, Dong Y et al (2017) Facile synthesis of a water-soluble fluorescence sensor for Al3+ in aqueous solution and on paper substrate. Spectrochim Acta Part A Mol Biomol Spectrosc 173:625–629. https://doi.org/10.1016/j.saa.2016.10.004

    Article  CAS  Google Scholar 

  88. Naskar B, Modak R, Sikdar Y et al (2017) Fluorescent sensing of Al3+ by benzophenone-based Schiff base chemosensor and live cell imaging applications: Impact of keto-enol tautomerism. Sens Actuators B Chem 239:1194–1204. https://doi.org/10.1016/j.snb.2016.08.148

    Article  CAS  Google Scholar 

  89. Selvan GT, Kumaresan M, Sivaraj R et al (2016) Isomeric 4-aminoantipyrine derivatives as fluorescent chemosensors of Al3+ ions and their molecular logic behavior. Sens Actuators B Chem 229:181–189. https://doi.org/10.1016/j.snb.2016.01.097

    Article  CAS  Google Scholar 

  90. Tian H, Qiao X, Zhang Z-L et al (2019) A high performance 2-hydroxynaphthalene schiff base fluorescent chemosensor for Al3+ and its applications in imaging of living cells and zebrafish in vivo. Spectrochim Acta Part A Mol Biomol Spectrosc 207:31–38. https://doi.org/10.1016/j.saa.2018.08.063

    Article  CAS  Google Scholar 

  91. Andreini C, Banci L, Bertini I, Rosato A (2006) Zinc through the three domains of life. J Proteome Res 5:3173–3178. https://doi.org/10.1021/pr0603699

    Article  CAS  PubMed  Google Scholar 

  92. Bhowmick R, Alam R, Mistri T et al (2016) A thiosemicarbazone based chemo and fluorogenic sensor for Zn 2+ with CHEF and ESIPT behavior: computational studies and cell imaging application. RSC Adv 6:11388–11399. https://doi.org/10.1039/C5RA25653D

    Article  CAS  Google Scholar 

  93. Mantyh PW, Ghilardi JR, Rogers S et al (1993) Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide. J Neurochem 61:1171–1174. https://doi.org/10.1111/j.1471-4159.1993.tb03639.x

    Article  CAS  PubMed  Google Scholar 

  94. Yanagisawa H, Miyakoshi Y, Kobayashi K et al (2009) Long-term intake of a high zinc diet causes iron deficiency anemia accompanied by reticulocytosis and extra-medullary erythropoiesis. Toxicol Lett 191:15–19. https://doi.org/10.1016/j.toxlet.2009.07.024

    Article  CAS  PubMed  Google Scholar 

  95. Ahmed N, Zareen W, Zhang D et al (2020) A DCM-based NIR sensor for selective and sensitive detection of Zn2+ in living cells. Spectrochim Acta Part A Mol Biomol Spectrosc 243:118758. https://doi.org/10.1016/j.saa.2020.118758

    Article  CAS  Google Scholar 

  96. Choi YW, You GR, Lee JJ, Kim C (2016) Turn-on fluorescent chemosensor for selective detection of Zn2+ in an aqueous solution: Experimental and theoretical studies. Inorg Chem Commun 63:35–38. https://doi.org/10.1016/j.inoche.2015.11.012

    Article  CAS  Google Scholar 

  97. Gomathi A, Vasanthi M, Viswanthamurthi P et al (2018) A simple perceptive diphenyl-imidazole-based dipodal schiff-base chemosensor for Zn2+ and PPi ions and its live-cell imaging applications. ChemistrySelect 3:11809–11815. https://doi.org/10.1002/slct.201802233

    Article  CAS  Google Scholar 

  98. Berrones-Reyes JC, Muñoz-Flores BM, Cantón-Diáz AM et al (2019) Quantum chemical elucidation of the turn-on luminescence mechanism in two new Schiff bases as selective chemosensors of Zn2+ : synthesis, theory and bioimaging applications. RSC Adv 9:30778–30789. https://doi.org/10.1039/C9RA05010H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Feng E, Tu Y, Fan C et al (2017) A highly selective and sensitive fluorescent chemosensor for Zn2+ based on a diarylethene derivative. RSC Adv 7:50188–50194. https://doi.org/10.1039/C7RA09966E

    Article  CAS  Google Scholar 

  100. Sarkar D, Pramanik A, Jana S et al (2015) Quinoline based reversible fluorescent ‘turn-on’ chemosensor for the selective detection of Zn2+: Application in living cell imaging and as INHIBIT logic gate. Sens Actuators B Chem 209:138–146. https://doi.org/10.1016/j.snb.2014.11.097

    Article  CAS  Google Scholar 

  101. Rout K, Manna AK, Sahu M, Patra GK (2019) A guanidine based bis schiff base chemosensor for colorimetric detection of Hg(II) and fluorescent detection of Zn(II) ions. Inorganica Chim Acta 486:733–741. https://doi.org/10.1016/j.ica.2018.11.021

    Article  CAS  Google Scholar 

  102. Kim MS, Jo TG, Yang M et al (2019) A fluorescent and colorimetric Schiff base chemosensor for the detection of Zn2+ and Cu2+: Application in live cell imaging and colorimetric test kit. Spectrochim Acta Part A Mol Biomol Spectrosc 211:34–43. https://doi.org/10.1016/j.saa.2018.11.058

    Article  CAS  Google Scholar 

  103. Kumar M, Kumar A, Singh MK et al (2017) A novel benzidine based Schiff base “turn-on” fluorescent chemosensor for selective recognition of Zn2+. Sens Actuators B Chem 241:1218–1223. https://doi.org/10.1016/j.snb.2016.10.008

    Article  CAS  Google Scholar 

  104. Li H, Zhang S, Gong C et al (2016) A turn-on and reversible fluorescence sensor for zinc ion based on 4,5-diazafluorene schiff base. J Fluoresc 26:1555–1561. https://doi.org/10.1007/s10895-016-1877-1

    Article  CAS  PubMed  Google Scholar 

  105. Shamel A, Salemnoush T (2016) Synthesis and fluorescence study of the grafted salicylidene schiff base onto SBA-15 mesoporous silica for detecting Zn2+ traces in aqueous medium. Russ J Appl Chem 89:500–504. https://doi.org/10.1134/S10704272160030228

    Article  CAS  Google Scholar 

  106. Wang W, Li R, Song T et al (2016) Study on the fluorescent chemosensors based on a series of bis-Schiff bases for the detection of zinc(II). Spectrochim Acta Part A Mol Biomol Spectrosc 164:133–138. https://doi.org/10.1016/j.saa.2016.04.016

    Article  CAS  Google Scholar 

  107. Yan J, Fan L, Qin J et al (2016) A novel and resumable schiff-base fluorescent chemosensor for Zn(II). Tetrahedron Lett 57:2910–2914. https://doi.org/10.1016/j.tetlet.2016.05.079

    Article  CAS  Google Scholar 

  108. Wang X, Ding G, Duan Y et al (2020) Novel ‘naked-eye’ bis-schiff base fluorescent chemosensors for sensitive detection of Zn2+ and bio-imaging in living cells. Tetrahedron 76:131108. https://doi.org/10.1016/j.tet.2020.131108

    Article  CAS  Google Scholar 

  109. Lee SY, Bok KH, Kim JA et al (2016) Simultaneous detection of Cu2+ and Cr3+ by a simple Schiff-base colorimetric chemosensor bearing NBD (7-nitrobenzo-2-oxa-1,3-diazolyl) and julolidine moieties. Tetrahedron 72:5563–5570. https://doi.org/10.1016/j.tet.2016.07.051

    Article  CAS  Google Scholar 

  110. Murugesan K, Jeyasingh V, Lakshminarayanan S et al (2019) Simple and highly electron deficient schiff-base host for anions: First turn-on colorimetric bifluoride sensor. Spectrochim Acta Part A Mol Biomol Spectrosc 209:165–169. https://doi.org/10.1016/j.saa.2018.10.043

    Article  CAS  Google Scholar 

  111. Udhayakumari D, Velmathi S (2015) Azo linked polycyclic aromatic hydrocarbons-based dual chemosensor for Cu2+ and Hg2+ ions. Ind Eng Chem Res 54:3541–3547. https://doi.org/10.1021/acs.iecr.5b00775

    Article  CAS  Google Scholar 

  112. Basaki M, Saeb M, Nazifi S, Shamsaei HA (2012) Zinc, copper, iron, and chromium concentrations in young patients with type 2 diabetes mellitus. Biol Trace Elem Res 148:161–164. https://doi.org/10.1007/s12011-012-9360-6

    Article  CAS  PubMed  Google Scholar 

  113. De Romaña DL, Olivares M, Uauy R, Araya M (2011) Risks and benefits of copper in light of new insights of copper homeostasis. J Trace Elem Med Biol 25:3–13. https://doi.org/10.1016/j.jtemb.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  114. Zhang Y, Cao X, Zhen L, Wang X (2021) A mesoporous silica-based fluorescent chemosensor bearing bis-Schiff base for the sensitive detection of Cu2+ ions. J Solid-State Chem 297:122093. https://doi.org/10.1016/j.jssc.2021.122093

  115. Moradinia E, Mansournia M, Notash B (2019) A turn-off fluorescent chemosensor for Cu(II) based on sensitive Schiff base derived from 4-tert-Butyl-2,6-diformylphenol and p-toluic hydrazide. J Photochem Photobiol A 382:111963. https://doi.org/10.1016/j.jphotochem.2019.111963

    Article  CAS  Google Scholar 

  116. Liang S, Tong Q, Qin X et al (2020) A hydrophilic naphthalimide-based fluorescence chemosensor forCu2+ ion: Sensing properties, cell imaging and molecular logic behavior. Spectrochim Acta Part A Mol Biomol Spectrosc 230:118029. https://doi.org/10.1016/j.saa.2020.118029

    Article  CAS  Google Scholar 

  117. Rathod RV, Bera S, Singh M, Mondal D (2016) A colorimetric and fluorometric investigation of Cu(ii) ion in aqueous medium with a fluorescein-based chemosensor. RSC Adv 6:34608–34615. https://doi.org/10.1039/C6RA03021A

    Article  CAS  Google Scholar 

  118. Sadia M, Naz R, Khan J, Khan R (2018) Synthesis and evaluation of a schiff-based fluorescent chemosensors for the selective and sensitive detection of Cu2+ in aqueous media with fluorescence off-on responses. J Fluoresc 28:1281–1294. https://doi.org/10.1007/s10895-018-2278-4

    Article  CAS  PubMed  Google Scholar 

  119. Wang Y, Hao X, Liang L et al (2020) A coumarin-containing Schiff base fluorescent probe with AIE effect for the copper (ii) ion. RSC Adv 10:6109–6113. https://doi.org/10.1039/C9RA10632D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kowser Z, ** C-C, Jiang X et al (2016) Fluorescent turn-on sensors based on pyrene-containing Schiff base derivatives for Cu2+ recognition: spectroscopic and DFT computational studies. Tetrahedron 72:4575–4581. https://doi.org/10.1016/j.tet.2016.06.017

    Article  CAS  Google Scholar 

  121. Slassi S, Aarjane M, El-Ghayoury A, Amine A (2019) A highly turn-on fluorescent CHEF-type chemosensor for selective detection of Cu2+ in aqueous media. Spectrochim Acta Part A Mol Biomol Spectrosc 215:348–353. https://doi.org/10.1016/j.saa.2019.02.099

    Article  CAS  Google Scholar 

  122. Uyanik I, Oguz M, Bhatti AA et al (2017) A new piperidine derivatized-schiff base based “turn-on” Cu2+ chemo-sensor. J Fluoresc 27:791–797. https://doi.org/10.1007/s10895-016-2013-y

    Article  CAS  PubMed  Google Scholar 

  123. Wu W-N, Mao P-D, Wang Y et al (2018) AEE active Schiff base-bearing pyrene unit and further Cu2+–induced self-assembly process. Sens Actuators B Chem 258:393–401. https://doi.org/10.1016/j.snb.2017.11.114

    Article  CAS  Google Scholar 

  124. Xu Y, Aderinto SO, Wu H et al (2017) A highly selective fluorescent chemosensor based on naphthalimide and Schiff base units for Cu2+ detection in aqueous medium. Z Naturforsch B 72:35–41. https://doi.org/10.1515/znb-2016-0138

    Article  CAS  Google Scholar 

  125. Zhang Y-M, Zhu W, Qu W-J et al (2018) Novel chemosensor for ultrasensitive dual-channel detection of Cu2+ and its application in IMPLICATION logic gate. J Lumin 202:225–231. https://doi.org/10.1016/j.jlumin.2018.05.064

    Article  CAS  Google Scholar 

  126. Zhang X-B, Han Z-X, Fang Z-H et al (2006) 5,10,15-Tris(pentafluorophenyl)corrole as highly selective neutral carrier for a silver ion-sensitive electrode. Anal Chim Acta 562:210–215. https://doi.org/10.1016/j.aca.2006.01.056

    Article  CAS  Google Scholar 

  127. He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140. https://doi.org/10.1016/j.jtemb.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  128. Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: A review. Environ Toxicol Chem 18:89–108. https://doi.org/10.1002/etc.5620180112

    Article  CAS  Google Scholar 

  129. Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59:587–590. https://doi.org/10.1093/jac/dkm006

    Article  CAS  PubMed  Google Scholar 

  130. Purcell TW, Peters JJ (1998) Sources of silver in the environment. Environ Toxicol Chem 17:539–546. https://doi.org/10.1002/etc.5620170404

    Article  CAS  Google Scholar 

  131. Bhuvanesh N, Suresh S, Kumar PR et al (2018) Small molecule “turn on” fluorescent probe for silver ion and application to bioimaging. J Photochem Photobiol A 360:6–12. https://doi.org/10.1016/j.jphotochem.2018.04.027

    Article  CAS  Google Scholar 

  132. Sahu M, Kumar Manna A, Rout K et al (2020) A highly selective thiosemicarbazone based Schiff base chemosensor for colorimetric detection of Cu2+ and Ag+ ions and turn-on fluorometric detection of Ag+ ions. Inorganica Chim Acta 508:119633. https://doi.org/10.1016/j.ica.2020.119633

    Article  CAS  Google Scholar 

  133. Satarug S, Baker JR, Urbenjapol S et al (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83. https://doi.org/10.1016/S0378-4274(02)00381-8

    Article  CAS  PubMed  Google Scholar 

  134. Singh BR, McLaughlin MJ (1999) Cadmium in soils and plants. In: McLaughlin MJ, Singh BR (eds) Cadmium in Soils and Plants. Springer, Netherlands, Dordrecht, pp 257–267

    Chapter  Google Scholar 

  135. Dobson S (1992) Cadmium-environmental aspects. Environ Health Criteria 135:1–156

    Google Scholar 

  136. Mohanasundaram D, Bhaskar R, GangatharanVinoth Kumar G et al (2021) A quinoline based Schiff base as a turn-on fluorescence chemosensor for selective and robust detection of Cd2+ ion in semi-aqueous medium. Microchem J 164:106030. https://doi.org/10.1016/j.microc.2021.106030

    Article  CAS  Google Scholar 

  137. Khan SA, Ullah Q, Almalki ASA et al (2021) Synthesis and photophysical investigation of (BTHN) Schiff base as off-on Cd2+ fluorescent chemosensor and its live cell imaging. J Mol Liq 328:115407. https://doi.org/10.1016/j.molliq.2021.115407

    Article  CAS  Google Scholar 

  138. Singh AK, Gupta VK, Gupta B (2007) Chromium(III) selective membrane sensors based on Schiff bases as chelating ionophores. Anal Chim Acta 585:171–178. https://doi.org/10.1016/j.aca.2006.11.074

    Article  CAS  PubMed  Google Scholar 

  139. Latva S, Jokiniemi J, Peräniemi S, Ahlgrén M (2003) Separation of picogram quantities of Cr(iii) and Cr(vi) species in aqueous solutions and determination by graphite furnace atomic absorption spectrometry. J Anal AtSpectrom 18:84–86. https://doi.org/10.1039/B207941K

    Article  CAS  Google Scholar 

  140. McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ (2009) In situ imaging of metals in cells and tissues. Chem Rev 109:4780–4827. https://doi.org/10.1021/cr900223a

    Article  CAS  PubMed  Google Scholar 

  141. Abbaspour A (2001) Chromium(III) ion-selective electrode based on 4-dimethylaminoazobenzene. Talanta 53:1009–1013. https://doi.org/10.1016/S0039-9140(00)00593-2

    Article  CAS  PubMed  Google Scholar 

  142. O’Brien T, Mandel HG, Pritchard DE, Patierno SR (2002) Critical role of chromium (Cr)−DNA interactions in the formation of Cr-induced polymerase arresting lesions. Biochemistry 41:12529–12537. https://doi.org/10.1021/bi020452j

    Article  CAS  PubMed  Google Scholar 

  143. Chalmardi GB, Tajbakhsh M, Bekhradnia A, Hosseinzadeh R (2017) A highly sensitive and selective novel fluorescent chemosensor for detection of Cr3+ based on a schiff base. Inorganica Chim Acta 462:241–248. https://doi.org/10.1016/j.ica.2017.03.041

    Article  CAS  Google Scholar 

  144. Chalmardi GB, Tajbakhsh M, Hasani N, Bekhradnia A (2018) A new Schiff-base as fluorescent chemosensor for selective detection of Cr3+: An experimental and theoretical study. Tetrahedron 74:2251–2260. https://doi.org/10.1016/j.tet.2018.03.046

    Article  CAS  Google Scholar 

  145. Sivaraman G, Sathiyaraja V, Chellappa D (2014) Turn-on fluorogenic and chromogenic detection of Fe(III) and its application in living cell imaging. J Lumin 145:480–485. https://doi.org/10.1016/j.jlumin.2013.08.018

    Article  CAS  Google Scholar 

  146. Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: Regulation of mammalian iron metabolism. Cell 142:24–38. https://doi.org/10.1016/j.cell.2010.06.028

    Article  CAS  PubMed  Google Scholar 

  147. Chen M, **ong H, Wen W et al (2013) Electrochemical biosensors for the assay of DNA damage initiated by ferric ions catalyzed oxidation of dopamine in room temperature ionic liquid. Electrochim Acta 114:265–270. https://doi.org/10.1016/j.electacta.2013.10.122

    Article  CAS  Google Scholar 

  148. Andersen JET (2005) A novel method for the filterlesspreconcentration of iron. Analyst 130:385. https://doi.org/10.1039/b412061b

    Article  CAS  PubMed  Google Scholar 

  149. Halliwell B, Gutteridge JMC (1992) Biologically relevant metal ion-dependent hydroxyl radical generation an update. FEBS Lett 307:108–112. https://doi.org/10.1016/0014-5793(92)80911-Y

    Article  CAS  PubMed  Google Scholar 

  150. Yamazaki I, Piette LH (1990) ESR spin-trap** studies on the reaction of Fe2+ ions with H2O2-reactive species in oxygen toxicity in biology. J Biol Chem 265:13589–13594. https://doi.org/10.1016/S0021-9258(18)77389-4

    Article  CAS  PubMed  Google Scholar 

  151. Enami S, Sakamoto Y, Colussi AJ (2014) Fenton chemistry at aqueous interfaces. Proc Natl AcadSci USA 111:623–628. https://doi.org/10.1073/pnas.1314885111

    Article  CAS  Google Scholar 

  152. Li Y, Pan W, Zheng C, Pu S (2020) A diarylethene derived Fe3+ fluorescent chemosensor and its application in wastewater analysis. J Photochem Photobiol A 389:112282. https://doi.org/10.1016/j.jphotochem.2019.112282

    Article  CAS  Google Scholar 

  153. Faculty of Applied Sciences, UniversitiTeknologi MARA, Hasan S, Zakaria S, Adnan SNAM (2017) Fluorescent chemosensor bearing amine and benzenyl functionality for Fe3+ ions detection in aqueous solution. IJCEA 8:28–32. https://doi.org/10.18178/ijcea.2017.8.1.626

  154. He Y, Yin J, Wang G (2018) New selective “on-off” fluorescence chemosensor based on carbazole Schiff base for Fe3+ detection. Chem Heterocycl Comp 54:146–152. https://doi.org/10.1007/s10593-018-2246-6

    Article  CAS  Google Scholar 

  155. Khan SA, Asiri AM (2017) Physicochemical properties of novel methyl 2-{(E)-[(2-hydroxynaphthalen-1-yl)methylidene] amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate as turn-off fluorometric chemosensor for detection Fe3+ ion. J Mol Liq 243:85–90. https://doi.org/10.1016/j.molliq.2017.07.054

    Article  CAS  Google Scholar 

  156. Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301:1203–1203. https://doi.org/10.1126/science.1085941

    Article  CAS  PubMed  Google Scholar 

  157. Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem Rev 108:3443–3480. https://doi.org/10.1021/cr068000q

    Article  CAS  PubMed  Google Scholar 

  158. Bernhoft RA (2012) Mercury toxicity and treatment: A review of the literature. J Environ Public Health 2012:1–10. https://doi.org/10.1155/2012/460508

    Article  Google Scholar 

  159. Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601. https://doi.org/10.1021/cr400546e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Review: Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18:149–175. https://doi.org/10.1002/tox.10116

    Article  CAS  PubMed  Google Scholar 

  161. Bhaskar R, Sarveswari S (2020) Thiocarbohydrazide based schiff base as a selective colorimetric and fluorescent chemosensor for Hg 2+ with “turn-off” fluorescence responses. ChemistrySelect 5:4050–4057. https://doi.org/10.1002/slct.202000652

    Article  CAS  Google Scholar 

  162. Jiao Y, Zhou L, He H et al (2017) A new fluorescent chemosensor for recognition of Hg2+ ions based on a coumarin derivative. Talanta 162:403–407. https://doi.org/10.1016/j.talanta.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  163. Jiao Y, Liu X, Zhou L et al (2017) A Schiff-base dual emission ratiometric fluorescent chemosensor for Hg2+ ions and its application in cellular imaging. Sens Actuators B Chem 247:950–956. https://doi.org/10.1016/j.snb.2017.01.124

    Article  CAS  Google Scholar 

  164. Su Q, Niu Q, Sun T, Li T (2016) A simple fluorescence turn-on chemosensor based on Schiff-base for Hg2+-selective detection. Tetrahedron Lett 57:4297–4301. https://doi.org/10.1016/j.tetlet.2016.08.031

    Article  CAS  Google Scholar 

  165. Wang A, Fan R, Dong Y et al (2017) Novel hydrogen-bonding cross-linking aggregation-induced emission: Water as a fluorescent “ribbon” detected in a wide range. ACS Appl Mater Interfaces 9:15744–15757. https://doi.org/10.1021/acsami.7b01254

    Article  CAS  PubMed  Google Scholar 

  166. Wang A, Fan R, Wang P et al (2017) Research on the mechanism of aggregation-induced emission through supramolecular metal-organic frameworks with mechanoluminescent properties and application in press-jet printing. Inorg Chem 56:12881–12892. https://doi.org/10.1021/acs.inorgchem.7b01687

    Article  CAS  PubMed  Google Scholar 

  167. Srivastava SK, Gupta VK, Jain S (1995) Determination of lead using a poly(vinyl chloride)-based crown ether membrane. Analyst 120:495. https://doi.org/10.1039/an9952000495

    Article  CAS  Google Scholar 

  168. Chai F, Wang C, Wang T et al (2010) Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces 2:1466–1470. https://doi.org/10.1021/am100107k

    Article  CAS  PubMed  Google Scholar 

  169. Karachi N, Azadi O, Razavi R et al (2018) Combinatorial experimental and DFT theoretical evaluation of a nano novel thio-dicarboxaldehyde based Schiff base supported on a thin polymer film as a chemosensor for Pb2+ detection. J Photochem Photobiol A 360:152–165. https://doi.org/10.1016/j.jphotochem.2018.04.039

    Article  CAS  Google Scholar 

  170. Sun T, Niu Q, Guo Z, Li T (2017) A simple highly sensitive and selective turn-on fluorescent chemosensor for the recognition of Pb2+. Tetrahedron Lett 58:252–256. https://doi.org/10.1016/j.tetlet.2016.12.022

    Article  CAS  Google Scholar 

  171. Hariharan PS, Anthony SP (2014) Selective turn-on fluorescence for Zn2+ and Zn2+Cd2+ metal ions by single Schiff base chemosensor. Anal Chim Acta 848:74–79. https://doi.org/10.1016/j.aca.2014.07.042

    Article  CAS  PubMed  Google Scholar 

  172. Chandra R, Manna AK, Sahu M et al (2020) Simple salicylaldimine-functionalized dipodal bis schiff base chromogenic and fluorogenic chemosensors for selective and sensitive detection of Al3+ and Cr3+. Inorganica Chim Acta 499:119192. https://doi.org/10.1016/j.ica.2019.119192

    Article  CAS  Google Scholar 

  173. Zhu W, Yang L, Fang M et al (2015) New carbazole-based schiff base: Colorimetric chemosensor for Fe3+ and fluorescent turn-on chemosensor for Fe3+ and Cr3+. J Lumin 158:38–43. https://doi.org/10.1016/j.jlumin.2014.09.020

    Article  CAS  Google Scholar 

  174. Yin P, Niu Q, Liu J et al (2021) A new AIEE-active carbazole based colorimetric/fluorimetric chemosensor for ultra-rapid and nano-level determination of Hg2+ and Al3+ in food/environmental samples and living cells. Sens Actuators B Chem 331:129418. https://doi.org/10.1016/j.snb.2020.129418

    Article  CAS  Google Scholar 

  175. Zhang S, Wu X, Niu Q et al (2017) Highly selective and sensitive colorimetric and fluorescent chemosensor for rapid detection of Ag+, Cu2+ and Hg2+ based on a simple schiff base. J Fluoresc 27:729–737. https://doi.org/10.1007/s10895-016-2005-y

    Article  CAS  PubMed  Google Scholar 

  176. Zhang S, Niu Q, Lan L, Li T (2017) Novel oligothiophene-phenylamine based Schiff base as a fluorescent chemosensor for the dual-channel detection of Hg2+ and Cu2+with high sensitivity and selectivity. Sens Actuators B Chem 240:793–800. https://doi.org/10.1016/j.snb.2016.09.054

    Article  CAS  Google Scholar 

  177. Dong G, Duan K, Zhang Q, Liu Z (2019) A new colorimetric and fluorescent chemosensor based on schiff base-phenyl-crown ether for selective detection of Al3+ and Fe3+. Inorganica Chim Acta 487:322–330. https://doi.org/10.1016/j.ica.2018.12.036

    Article  CAS  Google Scholar 

  178. Dong Y, Fan R, Chen W et al (2017) A simple quinolone Schiff-base containing CHEF based fluorescence ‘turn-on’ chemosensor for distinguishing Zn2+ and Hg2+ with high sensitivity, selectivity and reversibility. Dalton Trans 46:6769–6775. https://doi.org/10.1039/C7DT00956A

    Article  CAS  PubMed  Google Scholar 

  179. Gao W, Zhang Y, Li H, Pu S (2018) A multi-controllable selective fluorescent turn-on chemosensor for Al3+ and Zn2+ based on a new diarylethene with a 3-(4-methylphenyl)-1H-pyrazol-5-amine Schiff base group. Tetrahedron 74:6299–6309. https://doi.org/10.1016/j.tet.2018.09.017

    Article  CAS  Google Scholar 

  180. Horak E, Vianello R, Hranjec M, Murković Steinberg I (2018) Colourimetric and fluorimetric metal ion chemosensor based on a benzimidazole functionalised Schiff base. Supramol Chem 30:891–900. https://doi.org/10.1080/10610278.2018.1436708

    Article  CAS  Google Scholar 

  181. İnal EK (2020) A fluorescent chemosensor based on schiff base for the determination of Zn2+, Cd2+and Hg2+. J Fluoresc 30:891–900. https://doi.org/10.1007/s10895-020-02563-6

    Article  CAS  PubMed  Google Scholar 

  182. Iyappan M, Dhineshkumar E, Anbuselvan C (2020) Novel schiff base of E-2-(((4-aminophenyl)imino)methyl)-5-(difluoromethoxy)phenol fluorescence chemosensor for detection of Al3+, Fe2+, Cu2+ ions and its application towards live cell imaging. Asian J Chem 32:739–745. https://doi.org/10.14233/ajchem.2020.22394

  183. Purkait R, Dey S, Sinha C (2018) A multi-analyte responsive chemosensor vanilinyl Schiff base: fluorogenic sensing of Zn(ii), Cd(ii) and I . New J Chem 42:16653–16665. https://doi.org/10.1039/C8NJ03165G

    Article  CAS  Google Scholar 

  184. Roy N, Dutta A, Mondal P et al (2017) Coumarin based fluorescent probe for colorimetric detection of Fe3+ and fluorescence turn on-off response of Zn2+ and Cu2+. J Fluoresc 27:1307–1321. https://doi.org/10.1007/s10895-017-2065-7

    Article  CAS  PubMed  Google Scholar 

  185. Tajbakhsh M, Chalmardi GB, Bekhradnia A et al (2018) A new fluorene-based schiff-base as fluorescent chemosensor for selective detection of Cr3+ and Al3+. Spectrochim Acta Part A Mol Biomol Spectrosc 189:22–31. https://doi.org/10.1016/j.saa.2017.08.007

  186. Mandal J, Ghorai P, Pal K et al (2019) 2-hydroxy-5-methylisophthalaldehyde based fluorescent-colorimetric chemosensor for dual detection of Zn2+ and Cu2+ with high sensitivity and application in live cell imaging. J Lumin 205:14–22. https://doi.org/10.1016/j.jlumin.2018.08.080

    Article  CAS  Google Scholar 

  187. Wang L, Li W, Zhi W et al (2018) A new coumarin Schiff based fluorescent-colorimetric chemosensor for dual monitoring of Zn2+ and Fe3+ in different solutions: An application to bio-imaging. Sens Actuators B Chem 260:243–254. https://doi.org/10.1016/j.snb.2017.12.200

    Article  CAS  Google Scholar 

  188. Kaur N, Kaur B (2020) Colorimetric and fluorescent multi-ion recognition by Anthracene appended di-Schiff base chemosensor. Inorg Chem Commun 121:108239. https://doi.org/10.1016/j.inoche.2020.108239

    Article  CAS  Google Scholar 

  189. Iyappan M, Dhineshkumar E, Anbuselvan C (2020) Schiff base of 4E,10E–4-(2-(4-nitrophenyl)-N-((1H-indol-3-yl)methylene) benzenamine-based “turn-on” fluorescence chemosensor for highly selective detection of Ni2+, Fe3+ and Mg2+ ions. Chem Pap 74:4213–4226. https://doi.org/10.1007/s11696-020-01236-9

    Article  CAS  Google Scholar 

  190. Manna AK, Rout K, Chowdhury S, Patra GK (2019) A dual-mode highly selective and sensitive schiff base chemosensor for fluorescent colorimetric detection of Ni2+ and colorimetric detection of Cu2+. Photochem Photobiol Sci 18:1512–1525. https://doi.org/10.1039/C9PP00114J

    Article  CAS  PubMed  Google Scholar 

  191. Rout K, Manna AK, Sahu M et al (2019) Triazole-based novel bis Schiff base colorimetric and fluorescent turn-on dual chemosensor for Cu2+ and Pb2+: application to living cell imaging and molecular logic gates. RSC Adv 9:25919–25931. https://doi.org/10.1039/C9RA03341F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kaczmarek MT, Zabiszak M, Nowak M, Jastrzab R (2018) Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord Chem Rev 370:42–54. https://doi.org/10.1016/j.ccr.2018.05.012

    Article  CAS  Google Scholar 

  193. Kundu BK, Mandal P, Mukhopadhyay BG et al (2019) Substituent dependent sensing behavior of Schiff base chemosensors in detecting Zn2+and Al3+ ions: Drug sample analysis and living cell imaging. Sens Actuators B Chem 282:347–358. https://doi.org/10.1016/j.snb.2018.11.076

    Article  CAS  Google Scholar 

  194. Singh B, Moudgil L, Singh G, Kaura A (2018) The growth of ZnO nanostructures using Arginine. Bikaner, India, p 030234

    Google Scholar 

  195. Mahal A, Goshisht MK, Khullar P et al (2014) Protein mixtures of environmentally friendly zein to understand protein–protein interactions through biomaterials synthesis, hemolysis, and their antimicrobial activities. Phys Chem Chem Phys 16:14257–14270. https://doi.org/10.1039/C4CP01457J

    Article  CAS  PubMed  Google Scholar 

  196. Cui M, **n Y, Song R et al (2020) Fluorescence sensor for bovine serum albumin detection based on the aggregation and release of CdS QDs within CMC. Cellulose 27:1621–1633. https://doi.org/10.1007/s10570-019-02865-4

    Article  CAS  Google Scholar 

  197. Zhu B, Zhang X, Jia H et al (2010) A highly selective ratiometric fluorescent probe for 1,4-dithiothreitol (DTT) detection. Org Biomol Chem 8:1650. https://doi.org/10.1039/b923754b

    Article  CAS  PubMed  Google Scholar 

  198. Gupta KC, Sutar AK (2008) Catalytic activities of Schiff base transition metal complexes. Coord Chem Rev 252:1420–1450. https://doi.org/10.1016/j.ccr.2007.09.005

    Article  CAS  Google Scholar 

  199. Ma C, Xu B, **e G et al (2014) An AIE-active luminophore with tunable and remarkable fluorescence switching based on the piezo and protonation–deprotonation control. Chem Commun 50:7374–7377. https://doi.org/10.1039/C4CC01012D

    Article  CAS  Google Scholar 

  200. Yoon B, Lee J, Park IS et al (2013) Recent functional material based approaches to prevent and detect counterfeiting. J Mater Chem C 1:2388. https://doi.org/10.1039/c3tc00818e

    Article  CAS  Google Scholar 

  201. Ling P-X, Fang S-L, Yin X-S et al (2015) Palladium-catalyzed arylation of unactivated γ-Methylene C(sp3)-H and δ-C-H bonds with an oxazoline-carboxylate auxiliary. Chem Eur J 21:17503–17507. https://doi.org/10.1002/chem.201502621

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the authors(NK) is thankful for the financial assistance from MHRD, India.

Author information

Authors and Affiliations

Authors

Contributions

Neha Kumari: Studies, data collection, compilation, and draft preparation; Shalini Singh: Draft preparation, critical revision; MinatiBaral: Conceptualisation, supervision, editing, and correction; B K Kanungo: Editing, formatting, and correction.

Corresponding author

Correspondence to Minati Baral.

Ethics declarations

Ethical Approval

This article does not contain any studies involving animals performed by any authors.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, N., Singh, S., Baral, M. et al. Schiff Bases: A Versatile Fluorescence Probe in Sensing Cations. J Fluoresc 33, 859–893 (2023). https://doi.org/10.1007/s10895-022-03135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03135-6

Keywords

Navigation