Log in

A Review on Schiff Base Fluorescent Chemosensors for Cell Imaging Applications

  • Review
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescent determinations of analytes have proven to be a powerful method due to their simplicity, low cost, detection limit, rapid photoluminescence response, and applicability to bioimaging. Fluorescence imaging as a powerful tool for monitoring biomolecules within the living systems. Schiff base has been extensively used as strongly absorbing and colorful chromophores in the design of chemosensors. In recent years, Schiff base based fluorescent probes have been developed for the detection of various toxic analytes and imaging of various analytes in biological systems. This review gives an overview of the important fluorescent sensors which are based on Schiff base, their approaches for molecular recognition, and their potential application in bioimaging studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41

Similar content being viewed by others

References

  1. Gale P, Caltagirone C (2018) Fluorescent and colorimetric sensors for anionic species, Coord. Chem Rev 354:2–27

    CAS  Google Scholar 

  2. Kaur B, Kaur N, Kumar S (2018a) Colorimetric metal ion sensors – a comprehensive review of the years 2011–2016. Coord Chem Rev 358:13–69

    CAS  Google Scholar 

  3. Upadhyay S, Singh A, Sinha R, Omer S, Negi K (2019) Colorimetric chemosensors for d-metal ions: a review in the past, present and future prospect. J Mol Struct 1193:89–102

    CAS  Google Scholar 

  4. Zhang L, Rong Chen X, Wen SH, Liang RP, Qiu JD (2019) Optical sensors for inorganic arsenic detection. Trends in Analyt Chem 118:869–879

    CAS  Google Scholar 

  5. Zhou Y, Zhang JF, Yoon J (2014) Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chem Rev 114:5511–5571

    CAS  PubMed  Google Scholar 

  6. Botz M, Mudder T (2000) Modeling of natural cyanide attenuation in tailings impoundments. J Miner Metall Proc 17:228–233

    CAS  Google Scholar 

  7. Fang G, Meng S, Zhang G, Pan J (2001) Spectrophotometric determination of lead in foods with dibromo-p-methyl-bromosulfonazo. Talanta. 54:585–589

    CAS  PubMed  Google Scholar 

  8. Liu Q, Liu T, Fang Y (2020) Perylene Bisimide derivative-based fluorescent film sensors: from sensory materials to device fabrication. Langmuir 36:2155–2169

    CAS  PubMed  Google Scholar 

  9. Luo X, Han Y, Chen X, Tang W, Yue T, Li Z (2020) Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: a review. Trends Food Sci Tech 95:149–161

    CAS  Google Scholar 

  10. Shamsipur M, Barati A, Nematifar Z (2019) Fluorescent pH nanosensors: design strategies and applications. J Photochem Photobiol Rev 39:76–141

    CAS  Google Scholar 

  11. Ahamed M, Verma S, Kumar A, Siddiqui M (2005) Environmental exposure to lead and its correlation with biochemical indices in children. Sci Total Environ 346:48–55

    CAS  PubMed  Google Scholar 

  12. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev 106:1995–2044

    CAS  Google Scholar 

  13. Jaishankar M, Tseten T, Anbalagan N, Mathew B, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72

    PubMed  PubMed Central  Google Scholar 

  14. Matsui H, Morimoto M, Horimoto K, Nishimura Y (2007) Some characteristics of fluoride-induced cell death in rat thymocytes: cytotoxicity of sodium fluoride. Toxicol in Vitro 21:1113–1120

    CAS  PubMed  Google Scholar 

  15. Strausak D, Mercer JF, Dieter HH, Stremmel W, Multhaup G (2001) Copper in disorders with neurological symptoms: Alzheimer’s. Menkes, and Wilson diseases, Brain Res Bull 55:175–185

    CAS  PubMed  Google Scholar 

  16. Andersen CM, Mortensen G (2008) Fluorescence spectroscopy: a rapid tool for analyzing dairy products. J Agr Food Chem 56:720–729

    Google Scholar 

  17. Gowri A, Kathiravan A (2020) Fluorescent chemosensor for detection of water pollutants.In Pooja D., Kumar P., Singh P., Patil S. (eds) sensors in water pollutants monitoring: role of material. Advanced functional materials and sensors. Springer, Singapore

  18. Li S, He J, Xu Q-H (2020) Aggregation of metal-nanoparticle-induced fluorescence enhancement and its application in sensing. ACS Omega 5:41–48

    CAS  PubMed  Google Scholar 

  19. Sun X, Wang Y, Lei Y (2015) Fluorescence based explosive detection: from mechanisms to sensory materials. Chem Soc Rev 44:8019–8061

    CAS  PubMed  Google Scholar 

  20. Udhayakumari D (2018) Chromogenic and fluorogenic chemosensors for lethal cyanide ion. A comprehensive review of the year 2016. Sensor Actuat B-Chem 259:1022–1057

    CAS  Google Scholar 

  21. Carter KP, Young AM, Palmer AE (2014a) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Joo C, Balci H, Ishitsuka Y (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76

    CAS  PubMed  Google Scholar 

  23. Liang R, Broussard GJ, Tian L (2015) Imaging chemical neurotransmission with genetically encoded fluorescent sensors. ACS Chem Neurosci 6:84–93

    CAS  PubMed  Google Scholar 

  24. Sarder P, Maji D, Achilefu S (2015) Molecular probes for fluorescence lifetime imaging. Bioconjug Chem 6:963–974

    Google Scholar 

  25. Wei X, Li L, Liu J, Yu H, Cheng F, Yi X, He J, Li B (2019) Green synthesis of fluorescent carbon dots from gynostemma for bioimaging and antioxidant in Zebrafish ACS Appl. Mater Interfaces 11:9832–9840

    CAS  Google Scholar 

  26. Antony R, Arun T, David Manickam ST (2019a) A review on applications of chitosan-based Schiff bases, Int. J Biol Macromol 129:615–633

    CAS  Google Scholar 

  27. Channa A-M, Siyal A-N, Memon S-Q, Parveen S (2016) Design of experiment for treatment of arsenic-contaminated water using Schiff’s base metal complex modified Amberlite XAD-2. Desalin Water Treat 57:1–8

    Google Scholar 

  28. Das P, Linert W (2016) Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki–Miyaura reaction. Coord Chem Rev 311:1–23

    CAS  Google Scholar 

  29. Kaczmarek MT, Zabiszak M, Nowak M, Jastrzab R (2018) Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord Chem Rev 370:42–54

    CAS  Google Scholar 

  30. Soomro FK, Memon SQ, Memon N (2020) A new Schiff’s base polymer for remediation of phenol, 2-chlorophenol and 2,4-dichlorophenol from contaminated aqueous systems. Polym Bull 77:2367–2383

    CAS  Google Scholar 

  31. Udhayakumari D, Naha S, Velmathi S (2017) Colorimetric and fluorescent chemosensors for Cu2+. A comprehensive review from the years 2013–15. Anal Methods 9:552–578

    CAS  Google Scholar 

  32. Orojloo M, Amani S (2016) Synthesis and studies of selective chemosensor for naked-eye detection of anions and cations based on a new Schiff-base derivative. Talanta 159:292–299

    CAS  PubMed  Google Scholar 

  33. Murugesan K, Jeyasingh V, Lakshminarayanan S, Selvapalam N, Ramasamy S, Enoch IVMV, Piramuthu L (2019) Simple and highly electron deficient Schiff-base host for anions: first turn-on colorimetric bifluoride sensor. Spectrochim Acta A 209:165–169

    CAS  Google Scholar 

  34. Udhayakumari D, Velmathi S (2015a) Azo linked polycyclic aromatic hydrocarbons-based dual Chemosensor for Cu2+ and Hg2+ ions. Ind Eng Chem Res 54:3541–3547

    CAS  Google Scholar 

  35. Udhayakumari D, Velmathi S (2015b) Azo linked thiourea based effective dual sensor and its real samples application in aqueous medium. Sensor Actuat B-Chem 209:462–469

    CAS  Google Scholar 

  36. Dalapati S, Jana S, Guchhait N (2014) Anion recognition by simple chromogenic and chromo-fluorogenic salicylidene Schiff base or reduced-Schiff base receptors. Spectrochim Acta A 129:499–508

    CAS  Google Scholar 

  37. Saini N, Prigyai N, Wannasiri C, Ervithayasuporn V, Kiatkamjornwong S (2018) Green synthesis of fluorescent N,O-chelating hydrazone Schiff base for multi-analyt sensing in Cu2+, F¯ and CN¯ ions, J Photochem Photobiol 358: 215–225, Green synthesis of fluorescent N,O-chelating hydrazone Schiff base for multi-analyte sensing in Cu2+, F− and CN− ions

  38. Udhayakumari D, Velmathi S, Chen W-C, Wu S-P (2014) A dual-mode chemosensor: highly selective colorimetric fluorescentprobe for Cu2+ and F¯ ions. Sensor Actuat B-Chem 204:375–381

    CAS  Google Scholar 

  39. Vinoth Kumar GG, Kesavan MP, Sivaraman G, Rajesh J (2018) Colorimetric and NIR fluorescence receptors for F¯ ion detection in aqueous condition and its live cell imaging. Sensor Actuat B-Chem 255:3194–3206

    Google Scholar 

  40. Udhayakumari D (2020) Detection of toxic fluoride ion via chromogenic and fluorogenic sensing. A comprehensive review of the year 2015–2019. Spectrochim Acta A 228:1–33

    Google Scholar 

  41. Antony R, Arun T, Manickam TK (2019b) A review on applications of chitosan-based Schiff bases. Int J Biol Macromol 129:615–633

    CAS  PubMed  Google Scholar 

  42. Berhanu AL, Gaurav MI, Malik A, Aulakh JS, Kumar V, Kim KH (2019) A review of the applications of Schiff bases as optical chemical sensors. Trends in Analyt Chem 116:74–91

    CAS  Google Scholar 

  43. Chattopadhyay S, Drew MGB, Ghosh A (2008) Methylene spacer-regulated structural variation in cobalt(ii/iii) complexes with bridging acetate and salenor salpn-type schiff-base ligands. Eur J Inorg Chem 10:1693–1701

    Google Scholar 

  44. Dutta M, Das D (2012) Recent developments in fluorescent sensors for trace-level determination of toxic-metal ions. Trends in Analyt Chem 32:113–132

    CAS  Google Scholar 

  45. Feng L, Shia W, Ma J, Chen Y, Kui F, Hui Y, ** Z (2016) A novel thiosemicarbazone Schiff base derivative with aggregation-induced emission enhancement characteristics and its application in Hg2+ detection. Sensor Actuat B-Chem 237:563–569

    CAS  Google Scholar 

  46. Lee I, Kim S, Kim S-H, Jang Y, Jang J (2014) Highly fluorescent amidine/schiff base dual-modified polyacrylonitrile nanoparticles for selective and sensitive detection of copper ions in living cells. ACS Appl Mater Interfaces 6:17151–17156

    CAS  PubMed  Google Scholar 

  47. Liu B, Tan Y, Hu Q, Wang Y, Wu X, Huang Q, Zhang W, Zheng WH (2019a) A naked eye fluorescent chemosensor for Zn2+ based on triphenylamine derivative and its bioimaging in live cells. Chem Pap 73:3123–3134

    CAS  Google Scholar 

  48. Vidyasagar CC, Muñoz Flores BM, Jiménez-Pérez VM (2019) Recent advances in boron-based schiff base derivatives for organic light-emitting diodes. Mater Today Chem 11:133–155

    CAS  Google Scholar 

  49. Kaur B, Kaur N, Kumar S (2018b) Colorimetric metal ion sensors – a comprehensive review of the years 2011–2016. Coor Chem Rev 358:13–69

    CAS  Google Scholar 

  50. Liu X, Hamon J-R (2019) Recent developments in penta-, hexa- and heptadentate Schiff base ligands and their metal complexes. Coord Chem Rev 389:94–118

    CAS  Google Scholar 

  51. Zoubi WA, Mohanna NA (2014) Membrane sensors based on Schiff bases as chelating ionophores – a review. Spectrochim Acta A 132:854–870

    Google Scholar 

  52. Stafeeva K, Erlanger M, Velez-Montoya R, Olson JL (2012) Ocular argyrosis secondary to long-term ingestion of silver nitrate salts, Clin. Ophthalmol 6:2033–2036

    Google Scholar 

  53. Chopra L (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59:587–590

    CAS  PubMed  Google Scholar 

  54. Purcell TW, Peters JJ (1998) Sources of silver in the environment. Environ Toxicol Chem 17:539–546

    CAS  Google Scholar 

  55. Bhuvanesh N, Suresh S, Prabhu J, Kannan K, Rajesh Kannan V, Nandhakumar R (2018a) Ratiometric fluorescent chemosensor for silver ion and its bacterial cell imaging. Opt Mat 82:123–129

    CAS  Google Scholar 

  56. Bhuvanesh N, Suresh S, Ram Kumar P, Mothi EM, Kannan K, Rajesh Kannan V, Nandhakumar R (2018b) Small molecule “turn on” fluorescent probe for silver ion and application to bioimaging. J Photochem Photobiol A 360:6–12

    CAS  Google Scholar 

  57. Das S, Sahana A, Banerjee A, Lohar S, Safin DA, Babashkina MG, Bolte M, Garcia Y, Hauli I, Mukhopadhyay SK, Das D (2013) Ratiometric fluorescence sensing and intracellular imaging of Al3+ ions driven by an intramolecular excimer formation of a pyrimidine–pyrene scaffold. Dalton Trans 42:4757–4763

    CAS  PubMed  Google Scholar 

  58. Liu C, Yang Z, Yan M (2012) A highly selective and sensitive fluorescent turn-on chemosensor for Al3+ based on a chromone Schiff base. J Coord Chem 65:3845–3850

    CAS  Google Scholar 

  59. Naskar B, Modak R, Sikdar Y, Maiti DK, Bauzá A, Frontera A, Katarkar A, Chaudhuri K, Goswami S (2017) Fluorescent sensing of Al3+ by benzophenone based Schiff base chemosensor and live cell imaging applications: impact of keto-enol tautomerism. Sensors Actuators B Chem 239:1194–1204

    CAS  Google Scholar 

  60. Saravanan A, Shyamsivappan S, Suresh T, Subashini G, Kadirvelu K, Bhuvanesh N, Nandhakumar R, Mohan PS (2019) An efficient new dual fluorescent pyrene based chemosensor for the detection of bismuth (III) and aluminium (III) ions and its applications in bio-imaging. Talanta 198:249–256

    CAS  PubMed  Google Scholar 

  61. Gul A, Oguz M, Kursunlu AN, Yilmaz M (2020) A novel colorimetric/fluorometric dual-channel sensor based on phenolphthalein and Bodipy for Sn (II) and Al (III) ions in half-aqueous medium and its applications in bioimaging. Dyes Pigments 176:108221

    CAS  Google Scholar 

  62. Liu H, Liu T, Li J, Zhang Y, Li J, Song J, Qu J, Wong W-Y (2018) A simple Schiff base as dual-responsive fluorescent sensor for bioimaging recognition of Zn2+ and Al3+ in living cells. J Mater Chem B 6:5435–5442

  63. Li Y, Niu Q, Wei T, Li T (2019) Novel thiophene-based colorimetric and fluorescent turn-on sensor for highly sensitive and selective simultaneous detection of Al3+ and Zn2+ in water and food samples and its application in bioimaging. Ana Chem Acta 1049:196–212

    CAS  Google Scholar 

  64. Tian H, Qiao X, Zhang Z-L, **e C-Z, Li Q-Z, Xu J-Y (2019) A high performance 2-hydroxynaphthalene Schiff base fluorescent chemosensor for Al3+ and its applications in imaging of living cells and zebrafish in vivo. Spectrochim Acta A 207:31–38

    CAS  Google Scholar 

  65. Salarvand Z, Amirnasr M, Meghdadi S (2019) Colorimetric and fluorescent sensing of Al3+ by a new 2-hydroxynaphthalen based Schiff base “turn-off” chemosensor. J Lumin 207:78–84

  66. Wang Y, Ma Z-Y, Zhang D-L, Deng J-L, Chen X, **e C-Z, Qiao X, Li Q-Z, Xu J-Y (2019) Highly selective and sensitive turn-on fluorescent sensor for detection of Al3+ based on quinoline-base Schiff base. Spectrochim Acta A 198:157–164

    Google Scholar 

  67. Berrones-Reyes J, Muñoz-Flores BM, Gómez-Treviño A, Treto-Suárez MA, Páez-Hernández D, Schott E, Zarate X, Jiménez-Pérez VM (2019a) Novel fluorescent Schiff bases as Al3+ sensors with high selectivity and sensitivity, and their bioimaging applications. Mater Chem Phys 233:89–101

  68. Leng X, Xu W, Qiao C, Jia X, Long Y, Yang B (2019) New rhodamine B-based chromo-fluorogenic probes for highly selective detection of aluminium(III) ions and their application in living cell imaging. RSC Adv 9:6027–6034

  69. Kachwal V, Krishna ISV, Fageria L, Chaudhary J, Roy RK, Chowdhury R, Laskar IR (2018) Exploring the hidden potential of a benzothiazole- based Schiff-base exhibiting AIE and ESIPT and its activity in pH sensing, intracellular imaging and ultrasensitive & selective detection of aluminium (Al3+). Analyst 143:3741–3748

  70. Dhivya R, Gomathi A, Viswanathamurthi P (2019) A simple Schiff base platform: sensing of Al3+ ions in an aqueous medium, J Chem Sci 131:83

  71. Balamurugan A, Lee HI (2015) Aldoxime-derived water-soluble polymer for the multiple Analyte sensing: consecutive and selective detection of Hg2+, Ag+, ClO, and Cysteine in Aqueous Media, Macromolecules 48: 3934–3940

  72. Chen XQ, Tian XZ, Shin I, Yoon J (2011) Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 40:4783–4804

    CAS  PubMed  Google Scholar 

  73. Krasowska A, Konat GW (2004) Vulnerability of brain tissue to inflammatory oxidant, hypochlorous acid. Brain Res 997:176–184

    CAS  PubMed  Google Scholar 

  74. Wisman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313:17–29

    Google Scholar 

  75. Kumar K, Kaur S, Kaur S, Bhargava G, Kumar S, Singh P (2020) Self-assembled nanofibers of perylene diimide for the detection of hypochlorite in water, bio-fluids and solid-state: exogenous and endogenous bioimaging of hypochlorite in cells. J Mater Chem 8:125–135

    CAS  Google Scholar 

  76. Wang K, Sun P, Chao X, Cao D, Mao Z, Liu Z (2018a) Coumarin Schiff's base two-photon fluorescent probe for hypochlorite in living cells and zebrafish. RSC Adv 8:6904–6909

    CAS  Google Scholar 

  77. Yang Z, He Y, Liu X, Zhao S, Yang Z, Yang S (2017) Highly efficient approach for hypochlorous acid sensing in water samples and living cells based on acylhydrazone Schiff base functionalized fluorescent probes. New J Chem 41:12250–12258

  78. Chen L, Park SJ, Wu D, Kim HM, Yoon J (2018)A two-photon ESIPT based fluorescence probe for specific detection of hypochlorite, dyes Pigm 158: 526-532

  79. Yu X, Wang K, Cao D, Liu Z, Guan R, Wu Q, Xu Y, Sun Y, Zhao X (2017) A diethylamino pyridine formyl Schiff base as selective recognition chemosensor for biological thiols. Sensor Actuat B-Chem 250:132–138

    CAS  Google Scholar 

  80. Choudhury N, Ruidas B, Saha B, Srikanth K, Mukhopadhyay CD, De P (2020) Multifunctional tryptophan-based fluorescent polymeric probes for sensing, bioimaging and removal of Cu2+ and Hg2+ ions, Polym. Chem 11:2015–2026

    CAS  Google Scholar 

  81. He X, **e Q, Fan J, Xu C, Xu W, Li Y, Ding F, Deng H, Chen H, Shen J (2020) Dual-functional chemosensor with colorimetric/ratiometric response to cu(II)/Zn(II) ions and its applications in bioimaging and molecular logic gates. Dyes Pigmen 177:108255

    CAS  Google Scholar 

  82. Saravanan A, Subashini G, Shyamsivappan S, Suresh T, Kadirvelu K, Bhuvanesh N, Nandhakumar R, Mohan PS (2018) A selective fluorescence Chemosensor: Pyrene motif Schiff base derivative for detection of Cu2+ ions in living cells. J Photochem Photobiol 364:424–432

    Google Scholar 

  83. Feng GQ, Gao X, Yin J, Jiao Y (2019) Fluorescent sensor for copper (II) ion based on coumarin derivative and its application in cell imaging. Inorg Chem Commun 102:51–56

    CAS  Google Scholar 

  84. Liu Y-U, Yang L, Li P, Li S-J, Li L, Pang X, Ye F, Fu Y (2019b) A novel colorimetric and “turn-off” fluorescent probe based on catalyzed hydrolysis reaction for detection of Cu2+ in real water and in living cells. Spectrochim Acta A 227:117540

    Google Scholar 

  85. Liang S, Tong Q, Qin X, Liao X, Li Q, Yan Q (2019) A hydrophilic naphthalimide-based fluorescence chemosensor for Cu2+ ion: sensing properties, cell imaging and molecular logic behavior. Spectrochim Acta A 230:118029

    Google Scholar 

  86. Farhi A, Firdaus F, Saeed H, Mujeeb A, Shakira M, Owaisc M (2019) A quinoline-based fluorescent probe for selective detection and real-time monitoring of copper ions – a differential colorimetric approach. Photochem Photobiol Sci 18:3008–3015

    CAS  PubMed  Google Scholar 

  87. Hossain SM, Prakash V, Mamidi P, Chattopadhyay S, Singh AK (2020) Pyrene-appended bipyridine hydrazone ligand as a turn-on sensor for Cu2+ and its bioimaging application. RSC Adv 10:3646–3658

    CAS  Google Scholar 

  88. Yang M, Ma L, Liabc J, Kang L (2019) Fluorescent probe for Cu2+ and the secondary application of the resultant complex to detect cysteine. RSC Adv 9:16812–16818

    CAS  Google Scholar 

  89. Maji A, Lohar S, Pal S, Chattopadhyay P (2017) A new rhodamine based ‘turn-on’ Cu2+ ion selective chemosensor in aqueous system applicable in bioimaging. J Chem Sci 129:1423–1430

    CAS  Google Scholar 

  90. Santhi S, Amala S, Renganathan R, Subhashini M, Bashee SM (2019) Colorimetric and fluorescent sensors for the detection of co(II), Ni(II) and cu(II) in aqueous methanol solution. Res Chem 45:4813–4828

    CAS  Google Scholar 

  91. Carter KP, Young AM, Palmer AE (2014b) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science. 301:1203–1203

    CAS  PubMed  Google Scholar 

  93. Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18:149–175

    CAS  PubMed  Google Scholar 

  94. Kirthika Rani B, Abraham John S (2018) Fluorogenic mercury ion sensor based on pyrene-amino mercapto thiadiazole unit. J Hazard Mater 343:98–106

    PubMed  Google Scholar 

  95. Wu Y, Wen X, Fan Z (2019) An AIE active pyrene based fluorescent probe for selective sensing Hg2+ and imaging in live cells. Spectrochim Acta A 223:117315

    CAS  Google Scholar 

  96. Venkatesan P, Thirumalivasan N, Wu S-P (2017) A rhodamine-based chemosensor with diphenylselenium for highly selective fluorescence turn-on detection of Hg2+ in vitro and in vivo. RSC Adv 7:21733–21739

    CAS  Google Scholar 

  97. Andreini C, Banci L, Bertini I, Rosato A (2006) Zinc through the three domains of life. J Proteome Res 5:3173–3178

    CAS  PubMed  Google Scholar 

  98. Bhowmick R, Alam R, Mistri T, Das KK, Katarkar A, Chaudhuri K, Ali M (2016) A thiosemicarbazone based chemo and fluorogenic sensor for Zn2+ with CHEF and ESIPT behaviour: computational studies and cell imaging application. RSC Adv 6:11388–11399

    CAS  Google Scholar 

  99. Mos B, Kaposi K, Rose A et al (2017) Moderate Ocean warming mitigates but more extreme warming exacerbates the impacts of zinc from engineered nanoparticles on a marine larva. Environ Pollut 228:190–200

    CAS  PubMed  Google Scholar 

  100. Wang X, Ding G, Duan Y, Wang M, Zhu G, Li X, Zhang Y, Qin X (2020) Novel ‘naked-eye’ Bis-Schiff base fluorescent chemosensors for sensitive detection of Zn2+ and bio-imaging in living cells. Tetrahedron 76:131108

    CAS  Google Scholar 

  101. Patil M, Bothra S, Sahoo SK, Ahmad Rather H, Vasita R, Bendre R, Kuwar A (2018) Highly selective nicotinohydrazide based ‘turn-on’ chemosensor for the detection of bioactive zinc(II): its biocompitability and bioimaging application in cancer cells. Sensor Actuat B-Chem 270:200–206

    CAS  Google Scholar 

  102. Chen X, Xu J, Suo F, Yu C, Zhang D, Chen J, Wu Q, **g S, Li L, Huang W (2020) A novel naphthofluorescein-based probe for ultrasensitive pointof-care testing of zinc(II) ions and its bioimaging in living cells and zebrafishes. Spectrochim Acta A 229:117949

    CAS  Google Scholar 

  103. Wu W-N, Mao P-D, Wang Y, Zhao X-L, Xu Z-Q, Xu Z-H, Xue Y (2018) Quinoline containing acetyl hydrazone: an easily accessible switch-on optical chemosensor for Zn2+. Spectrochim Acta A 188:324–331

    CAS  Google Scholar 

  104. Berrones-Reyes JC, Munoz-Flores BM, Canton-Diaz AM, Treto-Suarez MA, Paez-Hernandez SE, Zarate X, Jimenez-Perez VM (2019b) Quantum chemical elucidation of the turn-on luminescence mechanism in two new Schiff bases as selective chemosensors of Zn2+: synthesis, theory and bioimaging applications. RSC Adv 9:30778–30789

  105. Wang Y, Hou X, Li Z, Zhou Q, Lei M, Hu S, Wu,X, Li C, Xu Z, Wang Y (2018b) A pyrrole-containing hydrazone and its Cu2+ complex: an easily accessible optical chemosensor system for the successive detection of Zn2+/Cu2+ and pyrophosphate anal Methods 10: 5790–5796

  106. Lu Z, Fan W, Lu Y, Fan C, Zhao H, Guo K, Chu W, Lu Y (2018) A highly sensitive fluorescent probe for bioimaging zinc ion in living cells and Zebrafish models. N J Chem 42:12198–12204

    CAS  Google Scholar 

  107. Jia F, **uqing S, Zhuobin S, Jianbin C, Yu W, Weiju J (2017) A new Biphenylcarbonitrile based fluorescent sensor for Zn2+ ions and application in living cells, Chem res Chin Univ 33: 695―701

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duraisamy Udhayakumari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udhayakumari, D., Inbaraj, V. A Review on Schiff Base Fluorescent Chemosensors for Cell Imaging Applications. J Fluoresc 30, 1203–1223 (2020). https://doi.org/10.1007/s10895-020-02570-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02570-7

Keywords

Navigation