Log in

Highly Selective and Sensitive Colorimetric and Fluorescent Chemosensor for Rapid Detection of Ag+, Cu2+ and Hg2+ Based on a Simple Schiff Base

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new reversible colorimetric and fluorescent chemosensor MMIP based on a simple Schiff base has been successfully synthesized. MMIP exhibited high selectivity and sensitivity towards Ag+, Cu2+ and Hg2+ ions with a short response time in DMSO/H2O (1/1, v/v) solution among various metal ions, and the results could be monitored directly by naked eyes. The binding stoichiometry between MMIP and Ag+/Hg2+/Cu2+ has been determined to be 1:2 by Job’s plot and FT-IR analysis. MMIP could effectively detect Ag+, Cu2+ and Hg2+ over a wide pH range of 3–10. The good linear correlations were obtained in the concentration ranges of 0–20 μM for Ag+, Cu2+ and Hg2+. Thus sensor MMIP could be potentially used for the quantification of Ag+, Cu2+ and Hg2+ in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Purcell TW, Peters JJ (1998) Sources of silver in the environment. Environ Toxicol Chem 17:539–546

    Article  CAS  Google Scholar 

  2. Míriam ÁC, Manuel MD, Ignacio RG (2008) Slive-mediated synthesis of heterocycles. Chem Rev 108:3174–3198

    Article  Google Scholar 

  3. Sung YM, Wu SP (2014) Highly selective and sensitive colorimetric detection of Ag(I) using N-1-(2-mercaptoethyl)adenine-functionalized gold nanoparticles. Sensors Actuators B Chem 197:172–176

    Article  CAS  Google Scholar 

  4. Liu C, Huang SS, Yao HR, He S, Lu Y, Zhao LZ, Zeng XS (2014) Preparation of fluorescein-based chemosensors and their sensing behaviors toward silver ions. RSC Adv 4:16109–16114

    Article  CAS  Google Scholar 

  5. Zhang T, Kim B, Levard C, Reinsch BC, Lowry GV, Deshusses MA, Hsu-Kim H (2012) Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environ Sci Technol 46:6950–6958

    Article  CAS  PubMed  Google Scholar 

  6. Fitzgerald WF, Lamgorg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662

    Article  CAS  PubMed  Google Scholar 

  7. Gutknecht J (1981) Inorganic mercury (Hg2+) transport through lipid bilayer membranes. J Membr Biol 61:61–66

    Article  CAS  Google Scholar 

  8. Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18:149–175

    Article  CAS  PubMed  Google Scholar 

  9. Torrado A, Walkup GK, Imperiali B (1998) Exploiting polypeptide motifs for the Design of Selective Cu(II) ion chemosensors. J Am Chem Soc 120:609–610

    Article  CAS  Google Scholar 

  10. Grandini P, Mancin F, Tecilla P, Scrimin P, Tonellato U (1999) Exploiting the self-assembly strategy for the design of selective CuII ion chemosensors. Angew Chem Int Ed 38:3061–3064

    Article  CAS  Google Scholar 

  11. Lutsenko S, Gupta A, Burkhead JL, Zuzel V (2008) Cellular multitasking: the dual role of human Cu-ATPases in cofactor delivery and intracellular copper balance. Arch Biochem Biophys 476:22–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12:222–228

    Article  CAS  PubMed  Google Scholar 

  13. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev 106:1995–2044

    Article  CAS  PubMed  Google Scholar 

  14. Kozlowski H, Luczkowski M, Remelli M, Valensin D (2012) Copper, zinc and iron in neurodegenerative diseases (Alzheimer’s, Parkinson’s and prion diseases). Coord Chem Rev 256:2129–2141

    Article  CAS  Google Scholar 

  15. Wright AT, Anslyn EV (2006) Differential receptor arrays and assays for solution-based molecular recognition. Chem Soc Rev 35:14–28

    Article  CAS  PubMed  Google Scholar 

  16. Liu J, Lu Y (2004) Colorimetric biosensors based on DNAzyme-assembled gold nanoparticles. J Fluoresc 14:343–354

    Article  CAS  PubMed  Google Scholar 

  17. Lee JH, Wang Z, Liu J, Lu Y (2008) Highly sensitive and selective colorimetric sensors for uranyl (UO2 2+): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J Am Chem Soc 130:14217–14226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi YW, Park GJ, Na YJ, Jo HY, Lee SA, You GR, Kim C (2014) A single schiff base molecule for recognizing multiple metal ions: a fluorescence sensor for Zn(II) and Al(III) and colorimetric sensor for Fe(II) and Fe(III). Sensors Actuators B Chem 194:343–352

    Article  CAS  Google Scholar 

  19. Song EJ, Kim H, Hwang IH, Kim KB, Kim AR, Noh I, Kim C (2014) A single fluorescent chemosensor for multiple target ions: recognition of Zn2+ in 100% aqueous solution and F in organic solvent. Sensors Actuators B Chem 195:36–43

    Article  CAS  Google Scholar 

  20. Gupta VK, Mergu N, Kumawat LK (2016) A new multifunctional rhodamine-derived probe for colorimetric sensing of Cu(II) and Al(III) and fluorometric sensing of Fe(III) in aqueous media. Sensors Actuators B Chem 223:101–113

    Article  CAS  Google Scholar 

  21. Goswami S, Aich K, Das S, Mukhopadhyay CD, Sarkar D, Mondal TK (2015) A new visible-light-excitable ICT-CHEF-mediated fluorescence ‘turn-on’ probe for the selective detection of Cd2+ in a mixed aqueous system with live-cell imaging. Dalton Trans 44:5763–5770

    Article  CAS  PubMed  Google Scholar 

  22. Patra GK, Ghorai A, Mondal J, Chandra R (2015) Molecular and electronic structures of donor-functionalized dysprosium pentadienyl complexes. Dalton Trans 44:7109–7113

    Article  Google Scholar 

  23. Li Y, Yu H, Shao G, Gan F (2015) A tetraphenylethylene-based "turn on" fluorescent sensor for the rapid detection of Ag+ ions with high selectivity. J Photoch Photobio A 301:14–19

    Article  CAS  Google Scholar 

  24. Kim DH, Seong J, Lee H, Lee KH (2014) Ratiometric fluorescence detection of Hg(II) in aqueous solutions at physiological pH and live cells with a chemosensor based on tyrosine. Sensors Actuators B Chem 196:421–428

    Article  CAS  Google Scholar 

  25. **g S, Zheng C, Pu S, Fan C, Liu G (2014) A highly selective ratiometric fluorescent chemosensor for Hg2+ based on a new diarylethene with a stilbene-linked terpyridine unit. Dyes Pigments 107:38–44

    Article  CAS  Google Scholar 

  26. Zhang D, Li M, Wang M, Wang J, Yang X, Ye Y, Zhao YF (2013) A rhodamine-phosphonate off-on fluorescent sensor for Hg2+ in natural water and its application in live cell imaging. Sensors Actuators B Chem 177:997–1002

    Article  CAS  Google Scholar 

  27. Alizadeha A, Khodaei MM, Hamidi Z, Shamsuddin MB (2014) Naked-eye colorimetric detection of Cu2+ and Ag+ ions based on close-packed aggregation of pyridines-functionalized gold nanoparticles. Sensors Actuators B Chem 190:782–791

    Article  Google Scholar 

  28. Wang M, Yan FY, Zou Y, Chen L, Yang N, Zhou XG (2014) Recognition of Cu2+ and Hg2+ in physiological conditions by a new rhodamine based dual channel fluorescent probe. Sensors Actuators B Chem 192:512–521

    Article  CAS  Google Scholar 

  29. Niu Q, Wu X, Zhang S, Li T, Li X (2016) A highly selective and sensitive fluorescent sensor for the rapid detection of Hg2+ based on phenylamine-oligothiophene derivative. Spectrochim Acta Part A 153:143–146

    Article  CAS  Google Scholar 

  30. Zhang S, Niu Q, Wu X, Li T, Cui Y, Li X (2015) A fast-responsive fluorescent sensor for Hg2+ with high selectivity and sensitivity in aqueous media. J Fluoresc 25:1543–1548

    Article  CAS  PubMed  Google Scholar 

  31. Xu ZH, Zhang L, Guo R, **ang TC, Wu CZ, Zheng Z, Yang FL (2011) A highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ based on rhodamine B derivative. Sensors Actuators B Chem 156:546–552

    Article  CAS  Google Scholar 

  32. Raman N, Fathima SSA, Raja JD (2008) Designing, synthesis and spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies. J Serb Chem Soc 73:1063–1071

    Article  CAS  Google Scholar 

  33. Hitoshi T, Tamao N, Hideyuki A, Manabu F, Takayuki M (1997) Preparation and characterization of novel cyclic tetranuclear manganese (III) complexes: MnIII 4(X-salmphen)6(X-salmphenH2 = N,N′-di-substituted-salicylidene-1,3-dia minobenzene) (X = H, 5-Br). Polyhedron 16:3787–3794

    Article  Google Scholar 

  34. Punniyamurthy T, Karla SJS, Iqbal J (1995) Cobalt(II) catalyzed biomimetic oxidation of hydrocarbons in the presence of dioxygen and 2-methylpropanal. Tetrahedron Lett 36:8497–9500

    Article  CAS  Google Scholar 

  35. Bernardo K, Leppard S, Robert A, Commenges G, Dahan F, Meunier B (1996) Synthesis and characterization of new chiral Schiff Base complexes with Diiminobinaphthyl or Diiminocyclohexyl moieties as potential Enantioselective Epoxidation catalysts. Inorg Chem 35:387–396

    Article  CAS  PubMed  Google Scholar 

  36. Yıldırım M, Kaya I (2010) Synthesis of a novel fluorescent Schiff base as a possible Cu(II) ion selective sensor. J Fluoresc 20:771–777

    Article  PubMed  Google Scholar 

  37. Li HG, Yang ZY, Qin DD (2009) A new Schiff-base type selective fluorescent chemosensor for Cu2+. Inorg Chem Commun 12:494–497

    Article  CAS  Google Scholar 

  38. Yan MH, Li TR, Yang ZY (2011) A novel coumarin Schiff-base as a Zn(II) ion fluorescent sensor. Inorg Chem Commun 14:463–465

    Article  CAS  Google Scholar 

  39. Liu S, Bi C, Fan Y, Zhao Y, Zhang P, Luo Q, Zhang D (2011) Synthesis, characterization and crystal structure of a new fluorescent probe based on Schiff Base for the detection of zinc (II). Inorg Chem Commun 14:1297–1301

    Article  CAS  Google Scholar 

  40. Ghorai A, Mondal J, Chandra R, Patra GK (2015) A reversible fluorescent-colorimetric imino-pyridyl bis-Schiff base sensor for expeditious detection of Al3+ and HSO3 in aqueous media. Dalton Trans 44:13261–13271

    Article  CAS  PubMed  Google Scholar 

  41. Ghorai A, Mondal J, Chandra R, Patra GK (2015) Exploitation of a simple Schiff base as a ratiometric and colorimetric chemosensor for glutamic acid. Anal Methods 7:8146–8151

    Article  CAS  Google Scholar 

  42. Gupta VK, Singh AK, Kumawat LK, Mergu N (2016) An easily accessible switch-on optical chemosensor for the detection of noxious metal ions Ni(II), Zn(II), Fe(III) and UO2(II). Sensors Actuators B Chem 222:468–482

    Article  CAS  Google Scholar 

  43. Wang M, Wang LF, Li YZ, Li QX, Xu ZD, Qu DM (2001) Antitumour activity of transition metal complexes with the thiosemicarbazone derived from 3-acetylumbelliferone. Transit Met Chem 26:307–310

    Article  CAS  Google Scholar 

  44. Lehn J-M (1995) Supramolecular chemistry: concepts and perspectives. Angew Chem Int Ed Eng 107:2617

    Google Scholar 

  45. Losier P, Zaworotko MJ (1996) A Noninterpenetrated molecular ladder with hydrophobic cavities. Angew Chem Int Ed Eng 35:2779–2782

    Article  CAS  Google Scholar 

  46. Aboaly MM, Khalil MMH (2001) Synthesis and spectroscopic study of Cu(II), Ni(II), and Co(II) complexes of the ligand salicylidene-2-amino thiophenol. Spectrosc Lett 34:495–504

    Article  CAS  Google Scholar 

  47. Dziembowska T, Jagodzińska E, Rozwadowski Z, Kotfi (2001) Ca M solvent effect on intramolecular proton transfer equilibrium in some N-(R-salicylidene)-alkylamines. J Mol Struct 598:229–234

    Article  CAS  Google Scholar 

  48. Khalil MMH, Aboaly MM, Ramadan RM (2005) Spectroscopic and electrochemical studies of ruthenium and osmium complexes of salicylideneimine-2-thiophenol Schiff base. Spectrochim Acta A 61:157–161

    Article  CAS  Google Scholar 

  49. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 8:3533–3539

    Article  Google Scholar 

  50. Sureshan CA, Bhaltacharya PK (1997) Study of CuII binuclear complexes of binucleating hexadentate ligands. Polyhedron 16:489–494

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no. 21376125/51402157), and Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfen Niu.

Additional information

Shanshan Zhang and **ngxing Wu contributed equally to this work.

Electronic supplementary material

ESM 1

(DOC 538 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wu, X., Niu, Q. et al. Highly Selective and Sensitive Colorimetric and Fluorescent Chemosensor for Rapid Detection of Ag+, Cu2+ and Hg2+ Based on a Simple Schiff Base. J Fluoresc 27, 729–737 (2017). https://doi.org/10.1007/s10895-016-2005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-2005-y

Keywords

Navigation