Log in

Scattering and Minimization Theory for Cubic Inhomogeneous Nls with Inverse Square Potential

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the scattering theory for the cubic inhomogeneous Schrödinger equations with inverse square potential \(iu_t+\Delta u-\frac{a}{|x|^2}u=\lambda |x|^{-b}|u|^2u\) with \(a>-\frac{1}{4}\) and \(0<b<1\) in dimension three. In the defocusing case (i.e. \(\lambda =1\)), we establish the global well-posedness and scattering for any initial data in the energy space \(H^1_a(\mathbb {R}^3)\). While for the focusing case(i.e. \(\lambda =-1\)), we obtain the scattering for the initial data below the threshold of the ground state, by making use of the virial/Morawetz argument as in Dodson and Murphy (Proc Am Math Soc 145:4859–4867, 2017) and Campos and Cardoso (Proc Am Math Soc 150:2007–2021, 2022) that avoids the use of interaction Morawetz estimate. We also address the existence and the non-existence of normalized solutions of the above Schrödinger equation in dimension N for the focusing and defocusing cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Torres, P.J.: Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett. 98(6), 064102 (2007)

    Article  Google Scholar 

  2. Bhimani, D.G., Hajaiej, H., Haque, S., Luo, T.-J.: A sharp Gagliardo-Nirenberg inequality and its application to fractional problems with inhomogeneous nonlinearity. Evol. Equ. Control Theory 12, 362–390 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burq, N., Planchon, F., Stalker, J., Tahvildar-Zadeh, A.S.: Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential. J. Funct. Anal. 203, 519–549 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Campos, L.: Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation. Nonlinear Anal. 202, 112118 (2021)

    Article  MATH  Google Scholar 

  5. Campos, L., Cardoso, M.: A Virial-Morawetz approach to scattering for the non-raidal inhomogeneous NLS. Proc. Am. Math. Soc. 150, 2007–2021 (2022)

    MATH  Google Scholar 

  6. Campos, L., Guzmán, C.M.: On the inhomogeneous NLS with inverse-square potential. Z. Angew. Math. Phys. 72, 143 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cazenave, T.: Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, Vol. 10. New York: New York University Courant Institute of Mathematical Sciences (2003). ISBN: 0-8218-3399-5

  8. Cazenave, T., Weissler, F.: The Cauchy problem for the critical nonlinear Schrödinger equation in \(H^s\). Nonlinear Anal. 14, 807–836 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, D., Feng, B., Luo, T.-J.: On the standing waves for the X-ray free electron laser Schrödinger equation. Discrete Contin. Dyn. Syst. 42, 6097–6137 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  10. Christ, M., Kiselev, A.: Maximal functions associated to filtrations. J. Funct. Anal. 179, 409–425 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Christ, M., Weinstein, M.: Dispersion of small amplitude solutions of the generalized Korteweg-de Vries quation. J. Funct. Anal. 100, 87–109 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global existence and scattering for rough solutions to a nonlinear Schrödinger equation on \(\mathbb{R} ^3\). Commun. Pure Appl. Math. 57, 987–1014 (2004)

    Article  MATH  Google Scholar 

  13. Dodson, B., Murphy, J.: A new proof of scattering below the ground state for the 3d radial focusing cubic NLS. Proc. Am. Math. Soc. 145, 4859–4867 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dodson, B., Murphy, J.: A new proof of scattering below the ground state for the non-radial focusing NLS. Math. Res. Lett. 25, 1805–1825 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duyckaerts, T., Holmer, J., Roudenko, S.: Scattering for the non-radial 3D cubic nonlinear Schrödinger equation. Math. Res. Lett. 15(6), 1233–1250 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fanelli, L., Felli, V., Fontelos, M.A., Primo, A.: Time decay of scaling critical electromagnetic Schrödinger flows. Commun. Math. Phys. 324, 1033–1067 (2013)

    Article  MATH  Google Scholar 

  17. Farah, L.G., Guzmán, C.M.: Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation. J. Differ. Equ. 262(8), 4175–4231 (2017)

    Article  MATH  Google Scholar 

  18. Ginibre, J., Velo, G.: Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J. Math. Pure Appl. 64, 363–401 (1985)

    MATH  Google Scholar 

  19. Holmer, J., Roudenko, S.: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. Commun. Math. Phys. 282(2), 435–467 (2008)

    Article  MATH  Google Scholar 

  20. Kartashov, Y.V., Malomed, B.A., Vysloukh, V.A., Belic, M.R., Torner, L.: Rotating vortex clusters in media with inhomogeneous defocusing nonlinearity. Opt. Lett. 42, 446–449 (2017)

    Article  Google Scholar 

  21. Kalf, H., Schmincke, U. W., Walter, J., Wüst, R.: On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials. In: Spectral theory and differential equations, pp. 182–226. Lect. Notes in Math., 448. Springer, Berlin (1975)

  22. Killip, R., Miao, C., Visan, M., Zhang, J., Zheng, J.: Sobolev spaces adapted to the Schrödinger operator with inverse-square potential. Math. Z. 288, 1273–1298 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Killip, R., Murphy, J., Visan, M., Zheng, J.: The focusing cubic NLS with inverse square potential in three space dimensions. Differ. Integr. Equ. 30, 161–206 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Killip, R., Visan, M.: Nonlinear Schrödinger Equations at Critical Regularity. Lecture notes prepared for Clay Mathematics Institute Summer School, Zürich, Switzerland (2008)

  25. Lin, J., Strauss, W.: Decay and scattering of solutions of a nonlinear Schrödinger equation. J. Funct. Anal. 30, 245–263 (1978)

    Article  MATH  Google Scholar 

  26. Luo, T.-J., Hajaiej, H.: Normalized solutions for a class of scalar field equations involving mixed fractional Laplacians. Adv. Nonlinear Stud. 22, 228–247 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Miao, C., Murphy, J., Zheng, J.: Scattering for the non-radial inhomogeneous NLS. Math. Res. Lett. 28, 1481–1504 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Murphy, J.: A simple proof of scattering for the intercritical inhomogeneous NLS. Proc. Am. Math. Soc. 150(3), 1177–1186 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ogawa, T., Tsutsumi, Y.: Blow-up of \(H^1\) solution for the nonlinear Schrödinger equation. J. Differ. Equ. 92, 317–330 (1991)

    Article  MATH  Google Scholar 

  30. Tao, T.: On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation. Dyn. Partial Differ. Equ. 1, 1–48 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tao, T., Visan, M., Zhang, X.: The nonlinear Schrödinger equation with combined power-type nonlinearities. Commun. PDE 32, 1281–1343 (2007)

    Article  MATH  Google Scholar 

  32. Vazquez, J.L., Zuazua, E.: The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173, 103–153 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, J., Zheng, J.: Scattering theory for nonlinear Schrödinger equations with inverse-square potential. J. Funct. Anal. 267, 2907–2932 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, J., Zheng, J.: Global-in-time strichartz estimates and cubic Schrödinger equation on metric cone. ar**v preprint, ar**v:1702.05813 (2017)

  35. Zheng, J.: Focusing NLS with inverse square potential. J. Math. Phys. 59, 111502, 14 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee and the associated editor for their invaluable comments which helped to improve the paper. Tingjian Luo is partially supported by the National Natural Science Foundation of China (12271116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we will establish the interaction Morawetz estimate for the solution to (1.1) with \(\lambda =1\). As an application, we give a simple proof for the scattering theory for (1.1) with \(\lambda =1\) but \(a>0\).

Theorem 5.9

(Interaction Morawetz estimate) Let \(a>0,\;0<b<1\) and \(u:\;\mathbb {R}\times \mathbb {R}^3\rightarrow \mathbb {C}\) solve (1.1) with \(\lambda =1\) and \(u_0\in H^1(\mathbb {R}^3)\). Then, there holds

$$\begin{aligned} \Vert u\Vert _{L_{t,x}^4(\mathbb {R}\times \mathbb {R}^3)}\le C\big (M(u_0),E(u_0)\big ). \end{aligned}$$
(5.27)

Interpolating this with \(\Vert u\Vert _{L_t^\infty L_x^6}\lesssim \Vert u\Vert _{L_t^\infty \dot{H}^1}\lesssim \sqrt{E(u_0)}\) implies

$$\begin{aligned} \Vert u\Vert _{L_t^6 L_x^\frac{9}{2}(\mathbb {R}\times \mathbb {R}^3)}\le C\big (M(u_0),E(u_0)\big ). \end{aligned}$$

As a consequence, the global solution u to (1.1) with \(\lambda =1\) scatters.

Remark 5.10

For the higher dimension case \(N\ge 4\), one can also obtain the interaction Morawetz estimate

$$\begin{aligned} \big \Vert |\nabla |^{-\frac{N-3}{4}}u\big \Vert _{L_{t,x}^4(\mathbb {R}\times \mathbb {R}^N)}\le C\big (M(u_0),E(u_0)\big ), \end{aligned}$$
(5.28)

where \(u:\mathbb {R}\times \mathbb {R}^N\rightarrow \mathbb {C}\) solves \(i\partial _tu-\mathcal {L}_au=|x|^{-b}|u|^{p-1}u\) with \(a>-\tfrac{(N-2)^2}{4}+\tfrac{1}{4}\) and \(b>0\). Compared with dimension three case and higher dimension case, we can get the interaction Morawetz estimate for some negative a in higher dimension cases.

To prove Theorem 5.9, we first consider that the function u(tx) solves

$$\begin{aligned} i\partial _tu+\Delta u=F(t,x),\quad (t,x)\in \mathbb {R}\times \mathbb {R}^3. \end{aligned}$$
(5.29)

Define Morawetz action

$$\begin{aligned} M_w(t):=2\textrm{Im}\int _{\mathbb {R}^3}\nabla w(x)\cdot \nabla u(x)\bar{u}(x)\;dx. \end{aligned}$$
(5.30)

A simple computation shows

Lemma 5.11

(Morawetz identity) There holds

$$\begin{aligned} \frac{d}{dt}M_w(t)=\int _{\mathbb {R}^3}(-\Delta \Delta w)|u|^2dx+4\int _{\mathbb {R}^3}w_{jk}\Re (\partial _j\bar{u}\partial _ku)dx+2\int _{\mathbb {R}^3}w_j(x)\{F,u\}_P^jdx \end{aligned}$$

where \(\{f,g\}_P=\Re (f\nabla \bar{g}-g\nabla \bar{f}),\) and repeated indices are implicitly summed. Especially, if u solves (1.1) with \(\lambda =1\), then

$$\begin{aligned} \nonumber \frac{d}{dt}M_w(t)=&\int _{\mathbb {R}^3} \Big [(-\Delta \Delta w)|u|^2 + 4\Re (\bar{u}_j u_k) w_{jk} +4a\frac{x\cdot \nabla w}{|x|^4}|u|^2 \Big ]\,dx\\&\quad + b\int _{\mathbb {R}^3}\frac{x\cdot \nabla w}{|x|^{2+b}}|u|^4\;dx+\int _{\mathbb {R}^3}\Delta w(x)\frac{|u|^4}{|x|^b}\;dx. \end{aligned}$$
(5.31)

Taking \(w(x)=|x|\), one can obtain the standard Morawetz inequality.

Lemma 5.12

(Classical Morawetz inequality) Let \(a>0,\;0<b<1\) and \(u:\;\mathbb {R}\times \mathbb {R}^3\rightarrow \mathbb {C}\) solve (1.1) with \(\lambda =1\) and \(u_0\in H^1(\mathbb {R}^3)\). Then, there holds

$$\begin{aligned} \int _{\mathbb {R}}\int _{\mathbb {R}^3}\left( \frac{|u(t,x)|^2}{|x|^3}+\frac{|u(t,x)|^4}{|x|^{1+b}}\right) \;dx\;dt\le C\big (M(u_0),E(u_0)\big ). \end{aligned}$$
(5.32)

Define the Morawetz action center y as

$$\begin{aligned} M_w^y(t):=2\textrm{Im}\int _{\mathbb {R}^3}\nabla w(x-y)\cdot \nabla u(x)\bar{u}(x)\;dx. \end{aligned}$$
(5.33)

Now, we define the interaction Morawetz action by

$$\begin{aligned} M^{Int}(t):=&\int _{\mathbb {R}^3}|u(y)|^2 M_w^y(t)\;dy\\\nonumber =&2\textrm{Im}\iint _{\mathbb {R}^3\times \mathbb {R}^3}|u(y)|^2\nabla w(x-y)\cdot \nabla u(x)\bar{u}(x)\;dx\;dy. \end{aligned}$$
(5.34)

Note that

$$\begin{aligned} \partial _t(|u|^2)=2\textrm{Im}(-\Delta u\bar{u}+F\bar{u})=-2\partial _j\textrm{Im}(\partial _ju\bar{u})+2\textrm{Im}(F\bar{u}), \end{aligned}$$

this together with Lemma 5.11 implies

$$\begin{aligned} \frac{d}{dt}M^{Int}(t)=&\int _{\mathbb {R}^3}\partial _t(|u(y)|^2) M_w^y(t)\;dy+\int _{\mathbb {R}^3}|u(y)|^2\frac{d}{dt}M_w^y(t)\;dy\nonumber \\ =&-4\iint \textrm{Im}(\partial _ju\bar{u})(y) w_{jk}(x-y)\textrm{Im}(\partial _ku\bar{u})(x)\;dx\;dy \end{aligned}$$
(5.35)
$$\begin{aligned}&+4\iint \textrm{Im}(F\bar{u})(y)\nabla w(x-y)\cdot \textrm{Im}(\nabla u\bar{u})(x)\;dx\;dy \end{aligned}$$
(5.36)
$$\begin{aligned}&+\iint (-\Delta \Delta w)(x-y)|u(x)|^2|u(y)|^2\;dx\;dy \end{aligned}$$
(5.37)
$$\begin{aligned}&+4\iint |u(y)|^2w_{jk}(x-y)\Re (\partial _j\bar{u}\partial _ku)(x)\;dx\;dy \end{aligned}$$
(5.38)
$$\begin{aligned}&+2\iint |u(y)|^2w_j(x-y)\{F,u\}_P^j(x)\;dx\;dy. \end{aligned}$$
(5.39)

Hence, taking \(w(x-y)=|x-y|\), one can obtain the interaction Morawetz identity.

Lemma 5.13

(Interaction Morawetz identity) Assume that \(u:\;\mathbb {R}\times \mathbb {R}^3\rightarrow \mathbb {C}\) solves (1.1) with \(\lambda =1\), then

$$\begin{aligned}&\frac{d}{dt}M^{Int}(t) =-4\iint \textrm{Im}(\partial _ju\bar{u})(y)\Big (\frac{\delta _{jk}}{|x-y|}-\frac{(x-y)_j(x-y)_k}{|x-y|^3}\Big )\textrm{Im}(\partial _ku\bar{u})(x)\;dx\;dy \end{aligned}$$
(5.40)
$$\begin{aligned}&+4\iint |u(y)|^2\Big (\frac{\delta _{jk}}{|x-y|}-\frac{(x-y)_j(x-y)_k}{|x-y|^3}\Big )\Re (\partial _j\bar{u}\partial _ku)(x)\;dx\;dy \end{aligned}$$
(5.41)
$$\begin{aligned}&+c\int _{\mathbb {R}^3} |u(x)|^4\;dx \end{aligned}$$
(5.42)
$$\begin{aligned}&+4\iint |u(y)|^2\frac{x}{|x|^4}\cdot \frac{x-y}{|x-y|}|u(x)|^2\;dx\;dy \end{aligned}$$
(5.43)
$$\begin{aligned}&+b\iint |u(y)|^2\frac{x}{|x|^{2+b}}\cdot \frac{x-y}{|x-y|}|u(x)|^4\;dx\;dy \end{aligned}$$
(5.44)
$$\begin{aligned}&+2\iint |u(y)|^2\frac{|u(x)|^4}{|x|^{b}}\;dx\;dy. \end{aligned}$$
(5.45)

By the same argument as in Killip and Visan [24], we know that

$$\begin{aligned} (5.40)+(5.41)\ge 0. \end{aligned}$$

On the other hand, by the definition of \(M^{Int}(t)\), we know that

$$\begin{aligned} |M^{Int}(t)|\lesssim \Vert u(t)\Vert _{L_x^2}^3\Vert u(t)\Vert _{\dot{H}^1}\le C\big (M(u_0),E(u_0)\big ). \end{aligned}$$

Hence, we obtain

$$\begin{aligned} \int _{\mathbb {R}}\int _{\mathbb {R}^3}|u(t,x)|^4\;dx\;dt&\le 2\sup _{t\in \mathbb {R}}|M^{Int}(t)|+\Vert u_0\Vert _{L_x^2}^2\int _{\mathbb {R}}\int _{\mathbb {R}^3}\Big (\frac{|u(t,x)|^2}{|x|^3}+\frac{|u(t,x)|^4}{|x|^{1+b}}\Big )\;dx\;dt\\&\lesssim C\big (M(u_0),E(u_0)\big ), \end{aligned}$$

where we have used Lemma 5.12. Therefore, we conclude the proof of Theorem 5.9.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajaiej, H., Luo, T. & Wang, Y. Scattering and Minimization Theory for Cubic Inhomogeneous Nls with Inverse Square Potential. J Dyn Diff Equat (2023). https://doi.org/10.1007/s10884-023-10301-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-023-10301-2

Keywords

Mathematics Subject Classification

Navigation